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REGULARITY CRITERIA FOR WEAK SOLUTIONS TO THE 3D
NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS VIA

BMO NORM

JAE-MYOUNG KIM

Communicated by Jesus Ildefonso Diaz

Abstract. We study three-dimensional incompressible Navier-Stokes equa-

tions in bounded domains with smooth boundary. We present regularity cri-
teria of weak solutions to this equation via the BMO norm.

1. Introduction

We study the three-dimensional Navier-Stokes equation

ut + (u · ∇)u−∆u+∇π = 0, div u = 0 in QT := Ω× (0, T ), (1.1)

where Ω is a domain in R3 with smooth boundary ∂Ω ∈ C2. Here u : QT → R3

is the flow velocity vector and π : QT → R is the pressure. We consider the
initial-boundary value problem of (1.1) with initial condition

u(x, 0) = u0(x) x ∈ Ω (1.2)

together with two types of boundary conditions: Either

u = 0, (1.3)

or
u · n = 0, (∇× u)× n = 0, (1.4)

where n is the outward unit normal vector along boundary ∂Ω. The initial condi-
tions satisfy the compatibility condition, i.e. ∇ · u0(x) = 0. A weak solution u of
(1.1)–(1.2) with boundary conditions either

(1.3) or (1.4) is regular in QT provided that ‖u‖L∞(QT ) < ∞. The notion of
weak solutions will be introduced in Definition 2.1 of Section 2.

The initial conditions hold the compatibility condition, i.e. ∇ · u0(x) = 0. Since
Leray [24] proved the existence of weak solutions of the Navier-Stokes equations
(see also [16]), regularity question has remained open.

Definition 1.1. A weak solution u of (1.1)–(1.2) with boundary conditions (1.3)
or (1.4) is regular in QT provided that ‖u‖L∞(QT ) <∞.
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It is known that any weak solution becomes unique and regular in QT , provided
that the following scaling invariant conditions [3, 7, 27, 30], so called Serrin’s type
conditions, are satisfied:

u ∈ Lq(0, T ;Lp(R3)), 3/p+ 2/q ≤ 1, 3 < p ≤ ∞,

∇u ∈ Lq(0, T ;Lp(R3)), 3/p+ 2/q ≤ 2,
3
2
< p ≤ ∞,

π ∈ Lq(0, T ;Lp(R3)), 3/p+ 2/q ≤ 2,
3
2
< p ≤ ∞,

∇π ∈ Lq(0, T ;Lp(R3)), 3/p+ 2/q ≤ 3, 1 < p ≤ ∞.

In this direction, thee are numerous contributions, see [2, 9, 11, 14, 23, 25, 26, 29].
In view of the regularity conditions in view of the BMO space, Kozono and Taniuchi
proved in [20] that a weak solution u become regular if u satisfies

u ∈ L2(0, T ; BMO(R3),

w := ∇× u ∈ L1(0, T ; BMO(R3), T <∞,

which is the result to the space BMO, which is larger than L∞(R3). Also, Fan and
Ozawa proved in [12] that a weak solution u become regular if u satisfies

∇p ∈ L2/3(0, T ; BMO(R3)), 0 < T <∞.

Our study is motivated by the works above, that is, we obtain the regularity condi-
tions for a weak solution to 3D Naiver-Stokes equations (1.1)–(1.2) with the bound-
ary conditions (1.3) or (1.4) in bounded domains. In particular, for bounded do-
mains, the difficulty lies in treating the pressure. To be more precise, in the case
that Ω = R3, using the equation of pressure, we observe that the pressure π satisfies

‖π‖Lp(Rn) ≤ C‖u‖2L2p(R3), 1 < p <∞. (1.5)

However, it is not known yet whether or not the estimate above (1.5) holds for
domains with the boundary condition. Thus, the methods of proof in a whole
space R3 do not seem to be applicable to our case. To overcome these difficulties,
we use the maximal estimates of Stokes system for both cases of slip and no-slip
boundary conditions, regarding the nonlinear term as an external force (see Lemma
2.2 in section 2). Since such estimates of the Stokes system are also available for
domain with boundaries, this approach allows for control of pressure and is useful
for our analysis. On the other hand, to obtain the regularity condition for a vorticity
vector, we consider the vorticity equations for Navier-Stokes equations to avoid the
estimate of terms containing the pressure term. In this case, our proof is based on a
priori estimate for the vorticity. At last, we give regularity criteria for the pressure
to this equations using the maximal regularity theorem (see Lemma 2.2 in section
2). Our main results read as follows.

Theorem 1.2. Suppose that u is a weak solution to (1.1)–(1.2) with initial condi-
tions u0 ∈ H2(Ω)∩W 1,q(Ω), q > 3 and boundary conditions (1.3) or (1.4). Assume
further that u satisfies

‖u‖L2(0,T ;BMO(Ω)) <∞

Then, u becomes regular in QT .
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Theorem 1.3. Suppose that u is a weak solution to (1.1)–(1.2) with initial condi-
tions u0 ∈ H2(Ω)∩W 1,q(Ω), q > 3 and boundary conditions (1.3) or (1.4). Assume
further that w := ∇× u satisfies

‖w‖L1(0,T ;BMO(Ω)) <∞

Then, u becomes regular in QT .

Theorem 1.4. Suppose that u is a weak solution to (1.1)–(1.2) with initial condi-
tions u0 ∈ H2(Ω) ∩W 1,q(Ω), q > 3 and boundary condition (1.3). Assume further
that u satisfies

‖π‖L2(0,T ;BMO(Ω)) <∞
Then, u become regular in QT .

Theorem 1.5. Suppose that u is a weak solution to (1.1)–(1.2) with initial condi-
tions u0 ∈ H2(Ω)∩W 1,q(Ω), q > 3 and boundary conditions (1.3) or (1.4). Assume
further that u satisfies

‖∇π‖L2/3(0,T ;BMO(Ω)) <∞
Then, u becomes regular in QT .

Remark 1.6. Theorem 1.4 can be extended to any dimension Ω ⊂ RN , because
we do not deal with the terms related to pressure. On the other hand, Theorems
1.2, 1.3 and 1.5 can be restricted to the case n = 3, 4 in view of [17, Remark 3.2]
or [19].

Remark 1.7. Theorems 1.5 is given in [13] under the boundary condition (1.4).
For the convenience of readers, we give a sketch of the proof.

This article is organized as follows. In Section 2, we recall the notion of weak
solutions and review some known results. In Section 3, we present the proofs of
Theorems 1.2–1.5.

2. Preliminaries

In this section, we introduce the notation and definitions used throughout this
paper. We also recall some lemmas which are useful for our analysis. For 1 ≤ q ≤ ∞
and a nonnegative integer k, W k,q(Ω) indicates the standard Sobolev space with
norm ‖ · ‖k,q, i.e., W k,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ k}. As usual,
W k,q

0 (Ω) is defined as the completion of C∞0 (Ω) in W k,q(Ω). When q = 2, we write
W k,q(Ω) as Hk(Ω). Let I be a finite time interval. For a function f(x, t), Ω ⊂ R3,
we denote ‖f‖Lp,qx,t(Ω×I) = ‖f‖Lqt (I;Lpx(Ω)) =

∥∥‖f‖Lpx(Ω)

∥∥
Lqt (I)

. All generic constants
will be denoted by C, which may vary from line to line. We recall first the definition
of weak solutions.

Definition 2.1. Let u0 ∈ L2(Ω) with div u0 = 0. We say that u is a distributional
solution (or weak solution) of (1.1)–(1.2) if u satisfies the following:

(1) u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and u satisfies∫ T

0

∫
Ω

(∂φ
∂t

+ (u · ∇)φ
)
u dx dt+

∫
Ω

u0φ(x, 0)dx =
∫ T

0

∫
Ω

∇u : ∇φdx dt

for all φ ∈ C∞0 (Ω× [0, T )) with div φ = 0.
(2) u satisfies divergence free condition; that is,

∫
Ω
u · ∇ψdx = 0 for any ψ ∈

C∞(Ω̄).
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We consider the following Stokes system which is the linearized Navier-Stokes
equations,

vt −∆v +∇p = f, div v = 0 in QT := Ω× (0, T ) (2.1)
with initial data v(x, 0) = v0(x). As in (1.3) and (1.4), boundary data of v are
again assumed to be either no-slip or slip conditions, namely

v(x, t) = 0, x ∈ ∂Ω or (2.2)

v · n = 0, (∇× v)× n = 0, x ∈ ∂Ω. (2.3)

Next, we recall maximal estimates of the Stokes system in terms of mixed norms
(see [15, Theorem 5.1] and [28, Theorem 1.2] for no-slip and slip boundary cases,
respectively).

Lemma 2.2. Let 1 < l,m < ∞. Suppose that f ∈ Ll,mx,t (QT ) and v0 ∈ D
1− 1

m ,m

l .
If (v, p) is the solution of the Stokes system (2.1) satisfying one of the boundary
conditions (2.2) or (2.3), then the following estimate is satisfied:

‖vt‖Ll,mx,t (QT ) + ‖∇2v‖Ll,mx,t (QT ) + ‖∇p‖Ll,mx,t (QT )

≤ C‖f‖Ll,mx,t (QT ) + ‖v0‖
D

1− 1
m
,m

l (Ω)
.

(2.4)

We note that ‖v0‖
D

1− 1
m
,m

l (Ω)
≤ ‖v0‖W 1,l(Ω) because

D
1− 1

m ,m

l (Ω) := [Ll(Ω),W 1,l((Ω))]1− 1
m ,m

(see e.g., [1, Chapter 7]) and, therefore, ‖v0‖
D

1− 1
m
,m

l (Ω)
in (2.4) can be replaced by

‖v0‖W 1,l(Ω).
The John-Nirenberg space or the space of the Bounded Mean Oscillation (in

short BMO space) [22] consists of all functions f which are integrable on every ball
BR(x) ⊂ R3 and satisfy

‖f‖2BMO = sup
x∈R3

sup
R>0

1
B(x,R)

∫
B(x,R)

|f(y)− fBR(y)|dy <∞.

Here, fBR is the average of f over all ball BR(x) in R3. Next we recall a Gagliardo-
Nirenberg inequality using BMO-norm (See [8, Theorem 2.3] and [21, Theorem
2.2]).

Lemma 2.3. Suppose that 1 ≤ p < r <∞ and f ∈ Lp(Ω) ∩ BMO(Ω). Then there
exists a constant C = C(n, p, r,Ω) such that

‖f‖Lr(Ω) ≤ C‖f‖
p/r
Lp(Ω)‖f‖

1− pr
BMO(Ω).

Also, we recall estimates with respect to smooth vector field under the slip
boundary condition. (See [4, Lemma 2.2],[5, Theorem 2.1] and [6, Lemma 2.1-2.2]).

Lemma 2.4. Let Ω be a smooth domain in R3. Then, for each q > 1, regular
smooth vector fields f ,

(a)

−
∫

Ω

∆f · f |f |q−2dx =
1
2

∫
Ω

|f |q−2|∇f |2dx+
4(q − 2)
q2

∫
Ω

∣∣∣∣f |q/2∣∣2dx
−
∫
∂Ω

|f |q−2(n · ∇)f · fdS.
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(b) Moreover, using the vector identity,

(n · ∇)f · f = (f · ∇)f · n+ ((∇× f)× n) · f,
we deduce that

−
∫

Ω

∆f · f |f |q−2dx

=
1
2

∫
Ω

|f |q−2|∇f |2dx+
4(q − 2)
p2

∫
Ω

∣∣∇|f |q/2∣∣2dx
−
∫
∂Ω

|f |p−2(f · ∇)f · ndS −
∫
∂Ω

|f |p−2((∇× f)× n) · fdS.

Lemma 2.5. Assume that u is a regular enough satisfying the boundary condition
(1.4) on ∂Ω. Then, the for w = ∇× u we have

−∂w
∂n
· w = (ε1jkε1βγ + ε2jkε2βγ + ε3jkε3βγ)wjwβ∂knγ on∂Ω,

where εijk denotes the totally anti-symmetric tensor such that (a × b) = ε1jkajbk.
In particular, ∫

Ω

∆w · wdx ≤ −
∫

Ω

|∇w|2dx+ C

∫
∂Ω

|w|2dx.

3. Proof of main results

Proof of Theorem 1.2. Following the argument in [18, 19], it is sufficient to show
the L4-estimate of u. Suppose that T ∗ be the first time of singularity. Then u must
satisfies for any δ > 0,

lim
t↗T∗

(
‖u(·, t)‖4L4 +

∫ t

T∗−δ

(∥∥|∇u(·, τ)| |u(·, τ)|
∥∥2

L2

+
∥∥∇|u(·, τ)|2

∥∥2

L2

)
dτ
)

=∞.
(3.1)

In the proof, we consider only the boundary condition (1.4), since the case of (1.3)
is much simpler. Multiplying the first equation of (1.1) with |u|2u, and integrating
over Ω, we have

1
4
d

dt

∫
Ω

|u|4 +
∫

Ω

|∇u|2|u|2 +
1
2

∫
Ω

|∇|u|2|2

= −
∫

Ω

∇π|u|2u+
3∑

i,j=1

∫
∂Ω

uj,xiuj |u|2ni,
(3.2)

where we used integration by parts, divergence-free conditions of u and trace the-
orem. Let ε be a sufficiently small positive number, which will be specified later.
Integrating (3.2) in time over (T ∗−ε, τ) for any τ with T ∗−ε < τ < T ∗, we observe
that

1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx

+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤
∫ τ

T∗−ε

∫
Ω

|∇π||u|2|u| dx dt+
∫ τ

T∗−ε

∫
Ω

|u|3|∇u| dx dt := I1 + I2.

(3.3)
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For convenience, we denote Qτ := Ω × (T ∗ − ε, τ). Using Hölder’s inequality, the
first term I1 can be estimated as follows:

I1 ≤
∫ τ

T∗−ε
‖∇π‖L2‖u‖3L6 ≤ C

∫ τ

T∗−ε
‖∇π‖L2‖u‖2L4‖u‖BMO

≤ C‖∇π‖L2(Qτ )‖u‖L2(0,τ ;BMO(Ω)) sup
T∗−ε<t<τ

‖u(·, t)‖2L4 ,

For convenience of computations, we denote Cε := ‖u(·, T ∗ − ε)‖W 1,2(Ω). Using the
estimate (2.4), we continue to estimate I1 as

I1 ≤ C
(
‖(u · ∇)u‖L2(Qτ ) + Cε

)
‖u‖L2((T∗−ε,τ);BMO(Ω)) sup

T∗−ε<t<τ
‖u(·, t)‖2L4

≤ C‖(u · ∇)u‖L2(Qτ )‖u‖L2((T∗−ε,τ);BMO(Ω)) sup
T∗−ε<t<τ

‖u(·, t)‖2L4 (3.4)

+ CCε‖u‖L2(0,τ ;BMO(Ω)) sup
T∗−ε<t<τ

‖u(·, t)‖2L4 .

On the other hand, by direct calculations, I2 is bounded by

Cε1/2
∣∣|u||∇u|∣∣

L2(Qτ )
sup

T∗−ε<t<τ
‖u(·, t)‖2L4 .

Summing the estimates of I1 and I2 with using Young’s inequality, we obtain
1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx

+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤ C‖ |u||∇u| ‖L2(Qτ )‖u‖L2(0,τ ;BMO(Ω)) sup

T∗−ε<t<τ
‖u(·, t)‖2L4

+ CCε‖u‖L2(0,τ ;BMO(Ω)) sup
T∗−ε<t<τ

‖u(·, t)‖2L4

≤ 1
2
‖ |u||∇u| ‖2L2(Qτ ) + CC2

ε + C(‖u‖2L2(0,τ ;BMO(Ω)) + ε) sup
T∗−ε<t<τ

‖u(·, t)‖4L4 .

Since the above estimate holds for all t with T ∗ − ε < t < τ , we obtain

sup
T∗−ε<t<τ

‖u(·, t)‖4L4 +
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2| dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤
∫

Ω

|u(·, T ∗ − ε)|4dx+ CC2
ε

+ C
(
‖u‖2L2((T∗−ε,τ);BMO(Ω)) + ε

)
sup

T∗−ε<t<τ
‖u(·, t)‖4L4 .

With sufficiently small ε so that
(
‖u‖2L2((T∗−ε,τ);BMO(Ω)) + ε

)
≤ 1

2C with a constant
C > 0 in the above estimate, we have

‖u(·, t)‖4
L4,∞
x,t (Qτ )

+
1
2
‖ |∇u||u| ‖2L2(Qτ ) +

1
2
‖∇|u|2‖2L2(Qτ )

≤ 2‖u(·, T − ε)‖4L4
x(Ω) + CC2

ε .

For simplicity, we denote Qε = Ω× (T ∗ − ε, T ∗). Since τ is arbitrary with τ < T ∗,
we obtain

‖u(·, t)‖4
L4,∞
x,t (Qε)

+
1
2

∥∥|∇u||u|∥∥2

L2(Qε)
+

1
2
‖∇|u|2‖2L2(Qε)

≤ C,
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where C is a constant depending on ‖u(·, T ∗ − ε)‖W 1,2(Ω). This is contrary to the
hypothesis of (3.1). Therefore, T ∗ cannot be a maximal time of existence less than
or equal to T . This completes the proof. �

Proof of Theorem 1.3. First, we consider the vorticity equation

wt −∆w + (u · ∇)w − (u · ∇)w = 0. (3.5)

Multiplying the first equation of (3.5) by w, integrating over Ω, and adding them,
we have

1
2
d

dt

∫
Ω

|w|2 +
∫

Ω

|∇w|2 ≤
∫

Ω

|w||∇u||w|+
∫
∂Ω

∣∣∂w
∂n
· w
∣∣ := II1 + II2,

where we use Lemmas 2.4 and 2.5. Using Hölder inequality and Lemma 2.3, the
term II1 is estimated as follows:

II1 ≤ ‖∇u‖L3(Ω)‖w‖2L3(Ω) ≤ C‖w‖
3
L3(Ω) ≤ C‖w‖

2
L2(Ω)‖w‖BMO(Ω),

Next, we can easily estimate II2. Indeed, we use the Trace theorem (see e.g., [10,
pp 257-258]) and smoothness of boundary to find

II2 ≤
∫
∂Ω

∣∣∂w
∂n
· w
∣∣ ≤ C ∫

Ω

|w|2,

Summing the estimates II1 and II2, we obtain

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤ C(1 + ‖w‖BMO(Ω))‖w‖2L2 . (3.6)

Applying the Gronwall’s inequality to (3.6),

sup
0<t<T

‖w(t)‖2L2 +
∫ T

0

‖∇w‖2L2 ≤ C‖w0‖2L2 ,

which is the desired result. �

Proof of Theorem 1.4. First, we note that, without loss of generality, the mean
value of the pressure π is assumed to be zero, namely

∫
Ω
π(·, t)dx = 0 for each time

t ∈ [0, T ). We get π satisfies

‖π‖L2(Ω) ≤ C‖∇π‖L2(Ω).

The proof of Theorem 1.4 is similar to that of Theorem 1.2. Indeed, from (3.3), we
note that

1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx

+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤
∫ τ

T∗−ε

∫
Ω

|π| |u| |u||∇u| dx dt+
∫ τ

T∗−ε

∫
Ω

|u|3|∇u| dx dt := III1 + III2.

Using Hölder’s inequality, the first term III1 can be estimated as

III1 ≤
∫ τ

T∗−ε
‖π‖L4‖u‖L4

∥∥|u||∇u|∥∥
L2 ≤ C

∫ τ

T∗−ε
‖π‖L4‖u‖L4

∥∥|u||∇u|∥∥
L2

≤
∫ τ

T∗−ε
C‖π‖1/2L2 ‖π‖1/2BMO‖u‖L4

∥∥|u||∇u|∥∥
L2
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≤ C‖∇π‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

For convenience of computations, we denote Cε := ‖u(·, T ∗ − ε)‖W 1,2(Ω). Using the
estimate (2.4), we obtain

III1 ≤ C
(
‖(u · ∇)u‖1/2L2(Qτ ) + Cε

)(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

,

≤ C‖(u · ∇)u‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

+ CCε
(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

.

(3.7)
Following similar computations as in I2, we obtain

III2 ≤ C
∣∣|u||∇u|∣∣

L2(Qτ )
sup

T∗−ε<t<τ
‖u(·, t)‖2L4 . (3.8)

Summing (3.7)-(3.8) and using Young’s inequality, we obtain

1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx

+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤ C‖(u · ∇)u‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

+ CCε
(∫ τ

T∗−ε
‖π‖2BMO‖u‖4L4 dt

)1/4∥∥|u||∇u|∥∥
L2(Qτ )

+ Cε
1
2
∣∣|u||∇u|∣∣

L2(Qτ )
sup

T∗−ε<t<τ
‖u(·, t)‖2L4

≤ 1
2

∥∥|u||∇u|∥∥2

L2(Qτ )
+ CC4

ε + C
[ ∫ τ

T∗−ε
‖π(·, t)‖2BMO dt+ ε

]
sup

T∗−ε<t<τ
‖u(·, t)‖4L4 .

With sufficiently small ε so that(∫ τ

T∗−ε
‖π(·, t)‖2BMO dt+ ε

)
≤ 1

2C

with a constant C in the above estimate, we have

‖u(·, t)‖4
L4,∞
x,t (Qτ )

+
1
2
‖ |∇u||u|‖2L2(Qτ ) +

1
2
‖∇|u|2‖2L2(Qτ )

≤ 2‖u(·, T − ε)‖4L4
x(Ω) + CC4

ε .

By the same argument as in the proof of Theorem 1.2, we finally obtain

‖u(·, t)‖4
L4,∞
x,t (Qε)

+
1
2

∥∥|∇u||u|∥∥2

L2(Qε)
+

1
2
‖∇|u|2‖2L2(Qε)

≤ C,

where C is a constant depending on ‖u(·, T ∗ − ε)‖W 1,2(Ω). �

Proof of Theorem 1.5. This proof is similar to that of Theorem 1.2. Indeed, from
From (3.3), we note that

1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx
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+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤
∫ τ

T∗−ε

∫
Ω

|∇π| |u|2|u| dx dt+
∫ τ

T∗−ε

∫
Ω

|u|3|∇u| dx dt := IV1 + IV2.

Using Hölder’s inequality, the first term IV1 can be estimated as

IV1 ≤
∫ τ

T∗−ε
‖∇π‖L4‖u‖3L4 ≤ C

∫ τ

T∗−ε
‖∇π‖1/2L2 ‖∇π‖1/2BMO‖u‖

3
L4

≤ C‖∇π‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

sup
T∗−ε<t<τ

‖u(·, t)‖3L4 ,

For convenience of computations, we denote Cε := ‖u(·, T ∗ − ε)‖W 1,2(Ω). Using the
estimate (2.4), we obtain

IV1 ≤ C
(
‖(u · ∇)u‖1/2L2(Qτ ) + Cε

)(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

× sup
T∗−ε<t<τ

‖u(·, t)‖3L4 ,

≤ C‖(u · ∇)u‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

sup
T∗−ε<t<τ

‖u(·, t)‖3L4

+ CCε
(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

sup
T∗−ε<t<τ

‖u(·, t)‖3L4 .

(3.9)

Following similar computations as in I2, we obtain

IV2 ≤ Cε1/2
∣∣|u||∇u|∣∣

L2(Qτ )
sup

T∗−ε<t<τ
‖u(·, t)‖2L4 . (3.10)

Summing (3.7)-(3.8) and using Young’s inequality, we obtain
1
4

∫
Ω

|u(·, τ)|4dx− 1
4

∫
Ω

|u(·, T ∗ − ε)|4dx

+
∫ τ

T∗−ε

∫
Ω

|∇u|2|u|2 dx dt+
1
2

∫ τ

T∗−ε

∫
Ω

∣∣∇|u|2∣∣2 dx dt
≤ C‖(u · ∇)u‖1/2L2(Qτ )

(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

sup
T∗−ε<t<τ

‖u(·, t)‖3L4

+ CCε
(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt

)3/4

sup
T∗−ε<t<τ

‖u(·, t)‖3L4

+ Cε1/2
∣∣|u||∇u|∣∣

L2(Qτ )
sup

T∗−ε<t<τ
‖u(·, t)‖2L4

≤ 1
2
‖ |u||∇u| ‖2L2(Qτ ) + CC4

ε + C
(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt+ ε

)
× sup
T∗−ε<t<τ

‖u(·, t)‖4L4 .

With sufficiently small ε so that(∫ τ

T∗−ε
‖∇π(·, t)‖2/3BMO dt+ ε

)
≤ 1

2C

with a constant C in the above estimate, we have

‖u(·, t)‖4
L4,∞
x,t (Qτ )

+
1
2
‖ |∇u||u| ‖2L2(Qτ ) +

1
2
‖∇|u|2‖2L2(Qτ )
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≤ 2‖u(·, T − ε)‖4L4
x(Ω) + CC4

ε .

By the same argument from the proof of Theorem 1.2, we finally obtain the desired
result. �

Remark 3.1. The arguments of Theorems 1.2–1.4 also hold for a whole space Rn
because Lemma 2.2 also established for these cases.
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Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967),

169–185.

[24] Leray, J.; Sur le mouvement d’un liquide visqueux emplissant l’espace (in French). Acta
Math. 63(1) (1934), 193–248.

[25] Ohyama, T.; Interior regularity of weak solutions to the Navier-Stokes equation. Proc. Japan

Acad. 36, (1960), 273–277.
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