Mifodijus Sapagovas, Jurij Novickij, Arturas Stikonas
Abstract:
We consider two-dimensional hyperbolic equations with nonlocal purely
integral conditions. We analyze the spectral properties of the finite
difference scheme for the two-dimensional hyperbolic problem.
To analyze the stability of a weighted difference scheme, we investigate
the spectrum of a finite difference operator, subject to integral conditions.
Submitted April 25, 2018. Published January 10, 2019.
Math Subject Classifications: 65M06, 35L20, 34B10, 34K20.
Key Words: Nonlocal boundary conditions; hyperbolic equations;
spectrum of finite difference operator;
stability of finite difference scheme.
Show me the PDF file (260 KB), TEX file for this article.
Mifodijus Sapagovas Faculty of Mathematics and Informatics Vilnius University Akademijos str. 4, LT-04812 Vilnius, Lithuania email: mifodijus.sapagovas@mii.vu.lt | |
Jurij Novickij Institute of Data Science and Digital Technologies Vilnius University Akademijos str. 4, LT-04812 Vilnius, Lithuania email: jurij.novickij@mif.vu.lt | |
Arturas Stikonas Institute of Applied Mathematics Vilnius University Naugarduko str. 24, LT-03225, Vilnius, Lithuania email: arturas.stikonas@mif.vu.lt |
Return to the EJDE web page