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EXISTENCE OF SOLUTIONS TO BIHARMONIC EQUATIONS
WITH SIGN-CHANGING COEFFICIENTS

SOMAYEH SAIEDINEZHAD

Communicated by Vicentiu D. Radulescu.

Abstract. In this article, we study the existence of solutions for the semi-

linear elliptic equation

∆2u− a(x)∆u = b(x)|u|p−2u

with Navier boundary condition u = ∆u = 0 on ∂Ω, where Ω is a bounded
domain with smooth boundary and 2 < p < 2∗. We consider two different

assumptions on the potentials a and b, including the case of sign-changing

weights. The approach is based on the Nehari manifold with variational ar-
guments about the corresponding fibering map, which ensures the multiple

results.

1. Introduction and preliminary results

The literature concerning the existence of solution of the elliptic PDEs is very
extensive, (for instance see [4, 6, 11, 18] and the references therein). Since fourth-
order PDEs have been appeared in various models such as micro-electro-mechanical
systems, phase field models of multiphase systems (see [7, 9, 16]), a number of
articles have been devoted to the fourth-order elliptic PDEs; we refer the interested
readers to [2, 5, 12, 13, 15, 20, 21, 22].

In particular, the biharmonic equation ∆2u + c∆u = d[(u + 1)+ − 1], in which
u+ = max{u, 0}, have attracted the attention of the mathematicians. This type
of elliptic equation furnishes a model to study the traveling waves in suspension
bridges, which is first developed by Lazer and Mckenna [14]. For u = u(x1, . . . , xN )
the bi-Laplacian operator is defined by

∆2u =
N∑
i=1

∂4u

∂x4
i

+
N∑

i,j=1;i 6=j

∂4u

∂x2
i ∂x

2
j

.

The fourth-order equations, which are studied in the most papers, has the form
∆2u+c∆u = f(x, u), in which f satisfied certain conditions, c < µ1 and sometimes
c > µ1; where µ1 is the first eigenvalue of −∆u = λu with Dirichlet boundary
condition.

Micheletti and Pistoia [15] provided a geometrical structure of the equation
∆2u + c∆u = bg(x, u) similar to the linking theorem, by supposing 2G(x, s) ≤ s2,
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lim sups→−∞G(x, s)/s2 ≤ 0 and lim infs→0G(x, s)/s2 = l(x); where G(x, u) =∫ u
0
g(x, s)ds, and consequently they derived the multiplicity existence results.
In [21], based on the mountain pass theorem, the existence of positive solutions

for the problem ∆2u+c∆u = f(x, u) is studied in which f satisfies the local superlin-
earity or sublinearity conditions and c < µ1. The similar problem in [10] is studied
under the conditions lim inf |u|→∞G(x, u)/|u|2 =∞ and ug(x, u)−2G(x, u) ≥ d|u|σ
where σ > 2N

N+4 and by using the variant fountain theorem the existence of mul-
tiple solutions is derived. In [22] by using the least action principle, the Ekeland
variational principle and the mountain pass theorem, the multiplicity of solutions
for the problem ∆2u+ c∆u = a(x)|u|s−2u+f(x, u) with the combined nonlinearity
on f is studied.

In [20] the equation ∆2u+c∆u = λu+f(u) was studied in which f has subcritical
growth condition, i.e., |f(s)| ≤ d1|s|+ d2|s|p−1 for some p ∈ [2, 2∗) and d1, d2 > 0,
under Navier boundary condition by applying the topological degree theory.

In this paper, we consider the problem

∆2u− a(x)∆u = b(x)|u|p−2u, x ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded subset of RN with N > 4 and 2 < p < 2∗ = 2N
N−2 . Moreover,

one of the following assumptions is satisfied.

(A1) a, b ∈ L∞(Ω) and a(x), b(x) ≥ 0 a.e. in Ω, or
(A2) a, b ∈ L∞(Ω) and a, b may change sign.

The main results of the article are in two subsections. In the first one, we consider
problem (1.1) by assuming condition (A1) and so we seek the solutions through
providing a minimizer sequence.

In the second subsection, where condition (A2) is satisfied, we study the existence
results due to the behavior of the corresponding fibering map, while a+ < µ1

or µ1 < a− < a+ < µ1 + σ for some appropriate σ which is introduced later,
a+ = ess sup{a(x), x ∈ Ω} and a− = ess inf{a(x), x ∈ Ω}.

It is known that if I(u) denotes the energy functional corresponding to an equa-
tion, all of the critical points of I must lie on the manifold {u; 〈I ′(u), u〉 = 0},
which is known as the Nehari manifold (see [17, 19]). Moreover, the fibering map
(ϕu : t → I(tu)) which is closely linked to the Nehari manifold is an interesting
approach for describing of the energy functional’s behavior on the Nehari manifold
(see [3, 8]).

Consider the Sobolev space

H1(Ω) := {u ∈ L2(Ω) : uxi ∈ L2(Ω), 1 ≤ i ≤ N}.

It is known that H1(Ω) with the inner product 〈u, v〉 :=
∫

Ω
|∇u∇v|dx is a Hilbert

space. Moreover, let

H1
0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0},

H2(Ω) := {u ∈ L2(Ω) : uxi , uxixj ∈ L2(Ω), 1 ≤ i, j ≤ N}.

We recall that H2(Ω) with the inner products 〈u, v〉 =
∫

Ω
|4u4v|dx or

〈u, v〉 =
∫

Ω

|4u4v|dx− c
∫

Ω

|∇u∇v|dx,
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with c < µ1 and µ1 = inf{
R
Ω |∇u|

2dxR
Ω |u|2dx

: 0 6= u ∈ H1(Ω)} is a Hilbert space. We
remark that all of the derivatives in the above definitions are in the weak sense; for
more details see [1].

The compact embeddingH1(Ω) ↪→↪→ L2(Ω) is known, thus there exists a positive
constant e such that ‖u‖2 ≤ e‖∇u‖2; in which ‖ · ‖2 is the usual norm on L2(Ω).
Indeed, the sharp constant e is equal to 1√

µ1
. Hence

‖u‖2 ≤
1
√
µ1
‖∇u‖2; ∀u ∈ H1(Ω). (1.2)

Also we have, H2(Ω) ↪→↪→ L2(Ω). Let

µ2
1 = inf{

∫
Ω
|∆u|2dx∫

Ω
|u|2dx

: 0 6= u ∈ H2(Ω)}. (1.3)

By the natural continuous map, H2(Ω) is embedded intoH1(Ω), so for some positive
constant k, we insert that ‖∇u‖2 ≤ k‖∆u‖2. By considering (1.2) and (1.3), the
sharp constant k would be 1√

µ1
, i.e.,

µ1 = inf{
∫

Ω
|∆u|2dx∫

Ω
|∇u|2dx

: 0 6= u ∈ H2(Ω)}. (1.4)

We assume throughout this paper, ϕ1 as a unit vector in H2(Ω), which µ1 =R
Ω |∆ϕ1|2dxR
Ω |∇ϕ1|2dx and let X = H2(Ω) ∩H1

0 (Ω), which is a Hilbert space equipped under
the inner product

〈u, v〉 =
∫

Ω

(4u4v + a(x)∇u∇v)dx.

2. Main results

From the basic variational arguments we insert that the weak solutions of (1.1)
are corresponded to the local minimizer of

I(u) =
1
2

∫
Ω

(|4u|2 + a(x)|∇u|2)dx− 1
p

∫
Ω

b(x)|u|pdx.

Since p > 2, for every u 6= 0, I(tu) tends to −∞ as t tends to +∞. Thus, I is not
bounded below and so the minimizing approach in X may fail.

2.1. Case of nonnegative coefficients. For every α ∈ R, let

Sα := {u ∈ X :
∫

Ω

b(x)|u|p = α}.

Then for every u ∈ Sα, I(u) = 1
2‖u‖

2 − 1
2α. Thus I|Sα is certainly bounded below

and the process of minimizing I on Sα is equivalent to the process of minimizing
‖u‖ or ‖u‖2 on Sα. Set infu∈Sα ‖u‖2 =: mα, we will show that mα is achieved by
a function, and a multiple of this function is a minimizer of I on X and so a weak
solution of (1.1).

Lemma 2.1. For every α > 0, there exists a nonnegative function uα ∈ Sα such
that ‖uα‖2 = mα.
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Proof. By the coercivity of I on Sα (i.e., lim‖u‖→∞,u∈Sα I(u) = ∞), there exists
a bounded minimizer sequence {u(α)

n } for f(u) := ‖u‖2 on Sα. Obviously, since
{|u(α)

n |} is still a minimizer sequence in Sα, we can suppose that u(α)
n (x) ≥ 0 a.e.

in Ω. By reflexivity of X, there exists a subsequence of u(α)
n (still denote it by

u
(α)
n ), which is weakly convergent to uα ∈ X (u(α)

n ⇀ uα) and therefore the Sobolev
compact embedding ensures that u(α)

n is strongly convergent in Lp(Ω). Hence

limn→∞

∫
Ω

b(x)|u(α)
n |pdx =

∫
Ω

b(x)|uα|p,

which means uα ∈ Sα. If u(α)
n 6→ uα in X, we have that ‖uα‖2 < lim inf ‖u(α)

n ‖2 =
mα, which is a contradiction, since uα ∈ Sα. Hence un → uα in X and since
uα ∈ Sα, u does not vanish identically. �

Theorem 2.2. Suppose that a, b satisfy condition (A1), then problem (1.1) admits
at least one weak solution in X.

Proof. Let g(u) :=
∫

Ω
b(x)|u|pdx and f(u) := ‖u‖2. Relying on the Lagrange

multiplier theorem, if uα is a minimizer of f under the condition g(u) = α, then
there exists λ ∈ R such that f ′(uα) = λg′(uα); that is

〈uα, v〉 =
pλ

2

∫
Ω

b(x)|∇uα|p−2∇uα∇vdx, (2.1)

for every v ∈ X. By taking uα = Cwα for an appropriate constant C, which will
be introduced in the sequel, it yields

C〈wα, v〉 =
pλ

2
Cp−1

∫
Ω

b(x)|∇wα|p−2∇wα∇vdx.

Now, by considering C = ( 2
pλ )

1
p−2 we have 〈wα, v〉 =

∫
Ω
b(x)|∇wα|p−2∇wα∇vdx,

namely wα is a weak solution of (1.1). �

Remark 2.3. For α 6= β the minimizers of f on Sα and Sβ give the same weak
solution of (1.1).

Proof. For α 6= β, one can readily check that mα =
(
α
β

)2/p
mβ . Indeed,

Sα =
{
u ∈ X :

∫
Ω

b(x)|u|p = α
}

=
{(α
β

)1/p
v : v ∈ X,

∫
Ω

b(x)|v|p = β
}
.

Thus

mα = inf
u∈Sα

‖u‖2 =
(α
β

)2/p
mβ . (2.2)

So uα minimizes ‖u‖2 on Sα if and only if (βα )1/puα minimizes ‖u‖2 on Sβ . More-
over, it is easy to see that λα = 2mα

pα
and Cα = ( α

mα
)

1
p−2 ; indeed, it is sufficient to

rewrite (2.1) by substituting v = uα. Therefore

wα =
1
Cα

uα = (
mα

α
)

1
p−2
(α
β

)1/p
uβ

= (
mβ

β
)

1
p−2uβ =

uβ
cβ

= wβ .

�
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Corollary 2.4. Let a ∈ L∞(Ω) which is a.e. nonnegative. Every µ > 0 is an
eigenvalue of problem (2.3) where

∆2u− a(x)∆u = µ|u|p−2u, quadx ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω;

(2.3)

2.2. Case of sign-changing coefficients. Now we consider problem (1.1) in
which a, b meet the condition (A2). The fibering map corresponding to the Euler-
Lagrange functional of problem (1.1) is defined as a map ϕ : [0,∞) → R with
ϕu(t) = I(tu). Hence,

ϕu(t) =
t2

2

∫
Ω

(|4u|2 − a(x)|∇u|2)dx− tp

p

∫
Ω

b(x)|u|pdx,

ϕ′u(t) = t

∫
Ω

(|4u|2 − a(x)|∇u|2)dx− tp−1

∫
Ω

b(x)|u|pdx.

Obviously, ϕ′u(1) = 0 if and only if u ∈ N := {u ∈ X; 〈I ′(u), u〉 = 0. It is natural
to divide the critical points of ϕ′u(t) into three subsets containing local minimuma,
local maximuma and inflection points and so we define N+ := {u ∈ N,ϕ′′u(1) > 0},
N− := {u ∈ N,ϕ′′u(1) < 0} and N0 := {u ∈ N,ϕ′′u(1) = 0}.

In this section, we consider X with the norm ‖u‖ = (
∫

Ω
|4u|2dx)1/2; moreover

A(u) :=
∫

Ω
(|4u|2−a(x)|∇u|2)dx and B(u) :=

∫
Ω
b(x)|u|pdx. Hence for each u ∈ X

we have ϕ′u(t) = 0 if and only if A(u) = tp−2B(u). Moreover, if A(u)B(u) > 0 then
there exists t0 > 0 such that ϕu(t0) = 0, i.e. t0u ∈ N and otherwise no multiple of
u belongs to N . Finally, if t0u ∈ N , then

ϕ′′t0u(1) = (2− p)A(t0u) = (2− p)t20A(u).

Hence, for p > 2, if A(u) > 0 we derive t0u ∈ N− and if A(u) < 0 we conclude
t0u ∈ N+.

Lemma 2.5. If a+ < µ1, then there exists δ > 0 such that for every u ∈ X,
A(u) ≥ δ‖u‖2.

Proof. If
∫

Ω
a(x)|∇u|2dx ≤ 0 then the assertion is obvious. Let us suppose that∫

Ω
a(x)|∇u|2dx > 0 and argue by contradiction. If for each δ > 0 there exists u ∈ X

such that A(u) < δ‖u‖2, we derive that

‖u‖2 <
∫

Ω
a(x)|∇u|2dx

1− δ
<
a+
∫

Ω
|∇u|2dx

1− δ
. (2.4)

Now, by considering δ < 1 − a+

µ1
we have a+

1−δ < µ1 and thus (2.4) leads to a
contradiction with (1.4). �

Theorem 2.6. If a+ < µ1, then I admits a minimizer on N .

Proof. Since a+ < µ1, we deduce that N+ = ∅; thus infu∈N I(u) = infu∈N− I(u).
We will show that infu∈N− I(u) > 0. For u ∈ N , A(u) = B(u) and hence ‖u‖2 =
(A(v)
B(v) )

2
p−2 where v = u

‖u‖ . Consequently, for u ∈ N we have

I(u) = (
1
2
− 1
p

)A(u) = (
1
2
− 1
p

)‖u‖2A(v) = (
1
2
− 1
p

)
A(v)

p
p−2

B(v)
2
p−2

.
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Lemma 2.5 ensures that A(v) ≥ δ for some δ > 0. Moreover, by Sobolev embedding
X ↪→ Lp(Ω), for a positive constant C we have,

∫
Ω
|v|pdx < C. Hence

I(u) ≥ (
1
2
− 1
p

)
δ

p
p−2

(b+C)
2
p−2

;

and thus infu∈N− I(u) > 0. Set m := infu∈N− I(u) and let us consider {un} ⊂ N−,
which limn→∞ I(un) = m. In this cae, the coercivity of I on N−, {un} would
be bounded and so by reflexivity of X, up to subsequence, there exists u0 ∈ X
such that un is weakly convergent to u0, (un ⇀ u0). Since un → u0 in Lp(Ω) and
un ∈ N , then

m = lim
n→∞

I(un) = (
1
2
− 1
p

) lim
n→∞

B(un) = (
1
2
− 1
p

)B(u0).

Thus B(u0) > 0 and hence u0 6= 0. Moreover, since a+ < µ1 we have A(u0) > 0.
Therefore, a multiple of u0 (t0u0; tp−2

0 = A(u0)
B(u0) ) belongs to N−. If un 6→ u0 in X

then ‖u0‖ < lim infn→∞ ‖un‖ and so

A(u0)−B(u0) < lim inf
n→∞

(A(un)−B(un)) = 0.

Consequently, t0 < 1 and ϕ′u0
(1) < 0. Therefore

I(t0u0) < lim inf
n→∞

I(t0un) = lim inf
n→∞

ϕun(t0) < lim inf
n→∞

ϕun(1) = lim inf
n→∞

I(un) = m,

which is in contrast with t0u0 ∈ N−. Hence, un → u0 in X and u0 ∈ N , since
A(u0) = B(u0). �

Lemma 2.7. There exists σ > 0 in a way that for every µ ∈ (µ1, µ1 + σ) if∫
Ω

(|4u|2 − µ|∇u|2)dx ≤ 0 then u = kϕ1 for some k ∈ R.

Proof. Suppose the sequences {µn} and {un} are such that µn → µ+
1 (i.e., µn → µ1

and µn > µ1 ) and
∫

Ω
(|4un|2 − µn|∇un|2)dx ≤ 0. Without loss of generality, let

‖un‖ = 1. Since {un} is bounded, there exists u0 ∈ X such that un ⇀ u0. If this
convergence is not strong in X then∫

Ω

(|4u0|2 − µ1|∇u0|2)dx < lim inf
∫

Ω

(|4un|2 − µn|∇un|2)dx ≤ 0

which is impossible. Hence un → u0 and so ‖u0‖ = 1. Moreover, we deduce that∫
Ω

(|4u0|2−µ1|∇u0|2)dx ≤ 0 which holds if and only if u0 = kϕ1, for some constant
k. �

Theorem 2.8. Suppose that B(ϕ1) 6= 0 and let σ > 0 as introduced in lemma 2.7.
If µ1 < a− ≤ a+ < µ1 + σ then I admits a minimizer on N+.

Proof. Firstly, we show that N+ is bounded. Let us argue by contradiction, so
assume that there exists an unbounded sequence {un} ⊆ N+, which ‖un‖ → ∞.
Let vn := un

‖un‖ , thus by boundedness of vn, up to a subsequence, it would be weakly
convergent to some v0 ∈ X. We have A(un) = B(un) then

A(vn) = ‖un‖p−2B(vn). (2.5)

Moreover, |A(vn)| ≤ 1 + |
∫

Ω
a(x)|∇vn|2dx| < 1 + C2a+, so A(vn) is uniformly

bounded and this in conjunction with (2.5) ensures that limn→∞B(vn) = 0 and
since vn → v0 in Lp(Ω), we get B(v0) = 0. If vn 6→ v0 in X we have

A(v0) < lim inf A(vn) ≤ 0; (2.6)
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therefore by regarding to the lemma 2.7 we deduce v0 = kϕ1. Since B(v0) = 0,
while B(ϕ1) 6= 0, we insert that k = 0, which contradicts (2.6). Hence vn → v0

in X and so ‖v0‖ = 1 and further A(v0) = lim inf A(vn) ≤ 0. Due to the lemma
2.7 and since B(v0) = 0, we get v0 = 0, which contradicts ‖v0‖ = 1, hence N+ is
bounded.

Hence, let us suppose {un} as a bounded minimizer sequence of I on N+ and
set

m := inf I(u)u∈N+ = lim
n→∞

I(un).

Then, up to a subsequence, there exists u0 ∈ X in a way that un ⇀ u0 in X and
un → u0 in Lp(Ω). Hence

B(u0) = lim
n→∞

B(un) = (
2p
p− 2

)m < 0,

A(u0) ≤ lim inf A(un) = (
2p
p− 2

)m < 0.

Consequently, a multiple of u0 (t0u0; tp−2
0 = A(u0)

B(u0) ) belongs to N and since

ϕ′′t0u0
(1) = (2− p)t20A(u0) > 0,

then t0u0 ∈ N+. If u0 6→ u0 in X, we have

A(u0) < lim inf A(un) = lim inf B(un) = B(u0)

and thus t0 < 1. Therefore

I(t0u0) = (
1
2
− 1
p

)t20A(u0) < (
1
2
− 1
p

)A(u0) < (
1
2
− 1
p

) lim inf A(un) = (
1
2
− 1
p

)m < m;

which contradicts t0u0 ∈ N+. Hence, we deduce that un converge strongly to
u0 in X and A(u0) = B(u0), i.e., u0 ∈ N and since B(u0) < 0 we derive that
u0 ∈ N+. �

Theorem 2.9. Suppose that B(ϕ1) < 0 and let σ > 0 as introduced in lemma 2.7.
If µ1 < a− ≤ a+ < µ1 + σ then I admits a minimizer on N−.

Proof. In the first step, by an argument similar to the proof of theorem 2.8, we
deduce that every minimizer sequence of I on N− is bounded. In what follows, we
will show that infu∈N− I(u) 6= 0. Let us argue by contradiction. Suppose that, for
a bounded minimizer sequence {un} ⊂ N−, A(un) = B(un)→ 0 as n→∞.

Let vn = un
‖un‖ , then A(vn) → 0 as n → ∞, and for some v0 ∈ X, up to a

subsequence, vn ⇀ v0 in X. If vn 6→ v0 then

A(v0) < lim inf A(vn) = 0. (2.7)

Thus, by lemma 2.7, v0 is a multiple of ϕ1 such as v0 = kϕ1.
Further, B(vn)→ B(v0) which B(vn) = ‖un‖−pB(un) > 0, thus B(v0) ≥ 0. But

since v0 = kϕ1 and B(ϕ1) < 0 we derive that k = 0 and so v0 = 0, which gives a
contradiction with (2.7), hence vn → v0 in X and ‖v0‖ = 1.

In addition, if A(v0) ≤ 0, by applying lemma 2.7 we deduce v0 = 0, which
contradicts ‖v0‖ = 1, hence infu∈N− I(u) > 0. In the sequel we will show that, I
achieves its minimum on N−. We insert that un ⇀ u0 for some u0 ∈ X. One can
derive that A(u0) ≤ 0; indeed, if A(u0) > 0 by lemma 2.7, u0 = kϕ1 and yields

|k|pB(ϕ1) = B(u0) = (
2p
p− 2

) inf
u∈N−

I(u) > 0,
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which is not compatible with the assumption B(ϕ1) < 0.

Hence A(u0) > 0 and so a multiple of u0 (t0u0; tp−2
0 =

A(u0)
B(u0)

) belongs to N−.

If un 6→ u0 then A(u0) < B(u0) and thus t0 < 1, which leads to

I(t0u0) < lim inf I(t0un) = lim inf ϕun(t0)

≤ lim inf ϕun(1) = lim inf E(un) = inf
u∈N−

I(u).

This is in contrast with t0u0 ∈ N−, hence u0 is a nontrivial weak solution of the
problem, which belongs to N−. �
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