Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 99, pp. 1-9.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTIONS TO BIHARMONIC EQUATIONS WITH SIGN-CHANGING COEFFICIENTS

SOMAYEH SAIEDINEZHAD
Communicated by Vicentiu D. Radulescu.

Abstract

In this article, we study the existence of solutions for the semilinear elliptic equation $$
\Delta^{2} u-a(x) \Delta u=b(x)|u|^{p-2} u
$$ with Navier boundary condition $u=\Delta u=0$ on $\partial \Omega$, where Ω is a bounded domain with smooth boundary and $2<p<2^{*}$. We consider two different assumptions on the potentials a and b, including the case of sign-changing weights. The approach is based on the Nehari manifold with variational arguments about the corresponding fibering map, which ensures the multiple results.

1. Introduction and preliminary results

The literature concerning the existence of solution of the elliptic PDEs is very extensive, (for instance see [4, 6, 11, 18, and the references therein). Since fourthorder PDEs have been appeared in various models such as micro-electro-mechanical systems, phase field models of multiphase systems (see [7, 9, 16), a number of articles have been devoted to the fourth-order elliptic PDEs; we refer the interested readers to [2, 5, 12, 13, 15, 20, 21, 22.

In particular, the biharmonic equation $\Delta^{2} u+c \Delta u=d\left[(u+1)^{+}-1\right]$, in which $u^{+}=\max \{u, 0\}$, have attracted the attention of the mathematicians. This type of elliptic equation furnishes a model to study the traveling waves in suspension bridges, which is first developed by Lazer and Mckenna [14. For $u=u\left(x_{1}, \ldots, x_{N}\right)$ the bi-Laplacian operator is defined by

$$
\Delta^{2} u=\sum_{i=1}^{N} \frac{\partial^{4} u}{\partial x_{i}^{4}}+\sum_{i, j=1 ; i \neq j}^{N} \frac{\partial^{4} u}{\partial x_{i}^{2} \partial x_{j}^{2}}
$$

The fourth-order equations, which are studied in the most papers, has the form $\Delta^{2} u+c \Delta u=f(x, u)$, in which f satisfied certain conditions, $c<\mu_{1}$ and sometimes $c>\mu_{1}$; where μ_{1} is the first eigenvalue of $-\Delta u=\lambda u$ with Dirichlet boundary condition.

Micheletti and Pistoia [15] provided a geometrical structure of the equation $\Delta^{2} u+c \Delta u=b g(x, u)$ similar to the linking theorem, by supposing $2 G(x, s) \leq s^{2}$,

[^0]$\limsup { }_{s \rightarrow-\infty} G(x, s) / s^{2} \leq 0$ and $\liminf _{s \rightarrow 0} G(x, s) / s^{2}=l(x) ;$ where $G(x, u)=$ $\int_{0}^{u} g(x, s) d s$, and consequently they derived the multiplicity existence results.

In [21], based on the mountain pass theorem, the existence of positive solutions for the problem $\Delta^{2} u+c \Delta u=f(x, u)$ is studied in which f satisfies the local superlinearity or sublinearity conditions and $c<\mu_{1}$. The similar problem in [10] is studied under the conditions $\lim \inf _{|u| \rightarrow \infty} G(x, u) /|u|^{2}=\infty$ and $u g(x, u)-2 G(x, u) \geq d|u|^{\sigma}$ where $\sigma>\frac{2 N}{N+4}$ and by using the variant fountain theorem the existence of multiple solutions is derived. In [22] by using the least action principle, the Ekeland variational principle and the mountain pass theorem, the multiplicity of solutions for the problem $\Delta^{2} u+c \Delta u=a(x)|u|^{s-2} u+f(x, u)$ with the combined nonlinearity on f is studied.

In 20 the equation $\Delta^{2} u+c \Delta u=\lambda u+f(u)$ was studied in which f has subcritical growth condition, i.e., $|f(s)| \leq d_{1}|s|+d_{2} \mid s^{p-1}$ for some $p \in\left[2,2^{*}\right)$ and $d_{1}, d_{2}>0$, under Navier boundary condition by applying the topological degree theory.

In this paper, we consider the problem

$$
\begin{gather*}
\Delta^{2} u-a(x) \Delta u=b(x)|u|^{p-2} u, \quad x \in \Omega \\
u=\Delta u=0, \quad x \in \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded subset of \mathbb{R}^{N} with $N>4$ and $2<p<2^{*}=\frac{2 N}{N-2}$. Moreover, one of the following assumptions is satisfied.
(A1) $a, b \in L^{\infty}(\Omega)$ and $a(x), b(x) \geq 0$ a.e. in Ω, or
(A2) $a, b \in L^{\infty}(\Omega)$ and a, b may change sign.
The main results of the article are in two subsections. In the first one, we consider problem (1.1) by assuming condition ($A 1$) and so we seek the solutions through providing a minimizer sequence.

In the second subsection, where condition (A2) is satisfied, we study the existence results due to the behavior of the corresponding fibering map, while $a^{+}<\mu_{1}$ or $\mu_{1}<a^{-}<a^{+}<\mu_{1}+\sigma$ for some appropriate σ which is introduced later, $a^{+}=\operatorname{ess} \sup \{a(x), x \in \Omega\}$ and $a^{-}=\operatorname{ess} \inf \{a(x), x \in \Omega\}$.

It is known that if $I(u)$ denotes the energy functional corresponding to an equation, all of the critical points of I must lie on the manifold $\left\{u ;\left\langle I^{\prime}(u), u\right\rangle=0\right\}$, which is known as the Nehari manifold (see [17, 19]). Moreover, the fibering map $\left(\varphi_{u}: t \rightarrow I(t u)\right)$ which is closely linked to the Nehari manifold is an interesting approach for describing of the energy functional's behavior on the Nehari manifold (see [3, 8]).

Consider the Sobolev space

$$
H^{1}(\Omega):=\left\{u \in L^{2}(\Omega): u_{x_{i}} \in L^{2}(\Omega), 1 \leq i \leq N\right\}
$$

It is known that $H^{1}(\Omega)$ with the inner product $\langle u, v\rangle:=\int_{\Omega}|\nabla u \nabla v| d x$ is a Hilbert space. Moreover, let

$$
\begin{gathered}
H_{0}^{1}(\Omega):=\left\{u \in H^{1}(\Omega):\left.u\right|_{\partial \Omega}=0\right\} \\
H^{2}(\Omega):=\left\{u \in L^{2}(\Omega): u_{x_{i}}, u_{x_{i} x_{j}} \in L^{2}(\Omega), 1 \leq i, j \leq N\right\} .
\end{gathered}
$$

We recall that $H^{2}(\Omega)$ with the inner products $\langle u, v\rangle=\int_{\Omega}|\triangle u \triangle v| d x$ or

$$
\langle u, v\rangle=\int_{\Omega}|\triangle u \Delta v| d x-c \int_{\Omega}|\nabla u \nabla v| d x
$$

with $c<\mu_{1}$ and $\mu_{1}=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega}|u|^{2} d x}: 0 \neq u \in H^{1}(\Omega)\right\}$ is a Hilbert space. We remark that all of the derivatives in the above definitions are in the weak sense; for more details see 1 .

The compact embedding $H^{1}(\Omega) \hookrightarrow \hookrightarrow L^{2}(\Omega)$ is known, thus there exists a positive constant e such that $\|u\|_{2} \leq e\|\nabla u\|_{2}$; in which $\|\cdot\|_{2}$ is the usual norm on $L^{2}(\Omega)$. Indeed, the sharp constant e is equal to $\frac{1}{\sqrt{\mu_{1}}}$. Hence

$$
\begin{equation*}
\|u\|_{2} \leq \frac{1}{\sqrt{\mu_{1}}}\|\nabla u\|_{2} ; \quad \forall u \in H^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

Also we have, $H^{2}(\Omega) \hookrightarrow \hookrightarrow L^{2}(\Omega)$. Let

$$
\begin{equation*}
\mu_{1}^{2}=\inf \left\{\frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|u|^{2} d x}: 0 \neq u \in H^{2}(\Omega)\right\} \tag{1.3}
\end{equation*}
$$

By the natural continuous map, $H^{2}(\Omega)$ is embedded into $H^{1}(\Omega)$, so for some positive constant k, we insert that $\|\nabla u\|_{2} \leq k\|\Delta u\|_{2}$. By considering (1.2) and (1.3), the sharp constant k would be $\frac{1}{\sqrt{\mu_{1}}}$, i.e.,

$$
\begin{equation*}
\mu_{1}=\inf \left\{\frac{\int_{\Omega}|\Delta u|^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}: 0 \neq u \in H^{2}(\Omega)\right\} . \tag{1.4}
\end{equation*}
$$

We assume throughout this paper, φ_{1} as a unit vector in $H^{2}(\Omega)$, which $\mu_{1}=$ $\frac{\int_{\Omega}\left|\Delta \varphi_{1}\right|^{2} d x}{\int_{\Omega}\left|\nabla \varphi_{1}\right|^{2} d x}$ and let $X=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, which is a Hilbert space equipped under the inner product

$$
\langle u, v\rangle=\int_{\Omega}(\triangle u \triangle v+a(x) \nabla u \nabla v) d x
$$

2. Main Results

From the basic variational arguments we insert that the weak solutions of 1.1 are corresponded to the local minimizer of

$$
I(u)=\frac{1}{2} \int_{\Omega}\left(|\triangle u|^{2}+a(x)|\nabla u|^{2}\right) d x-\frac{1}{p} \int_{\Omega} b(x)|u|^{p} d x
$$

Since $p>2$, for every $u \neq 0, I(t u)$ tends to $-\infty$ as t tends to $+\infty$. Thus, I is not bounded below and so the minimizing approach in X may fail.
2.1. Case of nonnegative coefficients. For every $\alpha \in \mathbb{R}$, let

$$
S_{\alpha}:=\left\{u \in X: \int_{\Omega} b(x)|u|^{p}=\alpha\right\}
$$

Then for every $u \in S_{\alpha}, I(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{2} \alpha$. Thus $\left.I\right|_{S_{\alpha}}$ is certainly bounded below and the process of minimizing I on S_{α} is equivalent to the process of minimizing $\|u\|$ or $\|u\|^{2}$ on S_{α}. Set $\inf _{u \in S_{\alpha}}\|u\|^{2}=: m_{\alpha}$, we will show that m_{α} is achieved by a function, and a multiple of this function is a minimizer of I on X and so a weak solution of 1.1 .

Lemma 2.1. For every $\alpha>0$, there exists a nonnegative function $u_{\alpha} \in S_{\alpha}$ such that $\left\|u_{\alpha}\right\|^{2}=m_{\alpha}$.

Proof. By the coercivity of I on S_{α} (i.e., $\lim _{\|u\| \rightarrow \infty, u \in S_{\alpha}} I(u)=\infty$), there exists a bounded minimizer sequence $\left\{u_{n}^{(\alpha)}\right\}$ for $f(u):=\|u\|^{2}$ on S_{α}. Obviously, since $\left\{\left|u_{n}^{(\alpha)}\right|\right\}$ is still a minimizer sequence in S_{α}, we can suppose that $u_{n}^{(\alpha)}(x) \geq 0$ a.e. in Ω. By reflexivity of X, there exists a subsequence of $u_{n}^{(\alpha)}$ (still denote it by $\left.u_{n}^{(\alpha)}\right)$, which is weakly convergent to $u_{\alpha} \in X\left(u_{n}^{(\alpha)} \rightharpoonup u_{\alpha}\right)$ and therefore the Sobolev compact embedding ensures that $u_{n}^{(\alpha)}$ is strongly convergent in $L^{p}(\Omega)$. Hence

$$
\lim _{n \rightarrow \infty} \int_{\Omega} b(x)\left|u_{n}^{(\alpha)}\right|^{p} d x=\int_{\Omega} b(x)\left|u_{\alpha}\right|^{p}
$$

which means $u_{\alpha} \in S_{\alpha}$. If $u_{n}^{(\alpha)} \nrightarrow u_{\alpha}$ in X, we have that $\left\|u_{\alpha}\right\|^{2}<\lim \inf \left\|u_{n}^{(\alpha)}\right\|^{2}=$ m_{α}, which is a contradiction, since $u_{\alpha} \in S_{\alpha}$. Hence $u_{n} \rightarrow u_{\alpha}$ in X and since $u_{\alpha} \in S_{\alpha}, u$ does not vanish identically.

Theorem 2.2. Suppose that a, b satisfy condition (A1), then problem 1.1) admits at least one weak solution in X.

Proof. Let $g(u):=\int_{\Omega} b(x)|u|^{p} d x$ and $f(u):=\|u\|^{2}$. Relying on the Lagrange multiplier theorem, if u_{α} is a minimizer of f under the condition $g(u)=\alpha$, then there exists $\lambda \in \mathbb{R}$ such that $f^{\prime}\left(u_{\alpha}\right)=\lambda g^{\prime}\left(u_{\alpha}\right)$; that is

$$
\begin{equation*}
\left\langle u_{\alpha}, v\right\rangle=\frac{p \lambda}{2} \int_{\Omega} b(x)\left|\nabla u_{\alpha}\right|^{p-2} \nabla u_{\alpha} \nabla v d x \tag{2.1}
\end{equation*}
$$

for every $v \in X$. By taking $u_{\alpha}=C w_{\alpha}$ for an appropriate constant C, which will be introduced in the sequel, it yields

$$
C\left\langle w_{\alpha}, v\right\rangle=\frac{p \lambda}{2} C^{p-1} \int_{\Omega} b(x)\left|\nabla w_{\alpha}\right|^{p-2} \nabla w_{\alpha} \nabla v d x .
$$

Now, by considering $C=\left(\frac{2}{p \lambda}\right)^{\frac{1}{p-2}}$ we have $\left\langle w_{\alpha}, v\right\rangle=\int_{\Omega} b(x)\left|\nabla w_{\alpha}\right|^{p-2} \nabla w_{\alpha} \nabla v d x$, namely w_{α} is a weak solution of 1.1).

Remark 2.3. For $\alpha \neq \beta$ the minimizers of f on S_{α} and S_{β} give the same weak solution of 1.1 .

Proof. For $\alpha \neq \beta$, one can readily check that $m_{\alpha}=\left(\frac{\alpha}{\beta}\right)^{2 / p} m_{\beta}$. Indeed,

$$
S_{\alpha}=\left\{u \in X: \int_{\Omega} b(x)|u|^{p}=\alpha\right\}=\left\{\left(\frac{\alpha}{\beta}\right)^{1 / p} v: v \in X, \int_{\Omega} b(x)|v|^{p}=\beta\right\}
$$

Thus

$$
\begin{equation*}
m_{\alpha}=\inf _{u \in S_{\alpha}}\|u\|^{2}=\left(\frac{\alpha}{\beta}\right)^{2 / p} m_{\beta} \tag{2.2}
\end{equation*}
$$

So u_{α} minimizes $\|u\|^{2}$ on S_{α} if and only if $\left(\frac{\beta}{\alpha}\right)^{1 / p} u_{\alpha}$ minimizes $\|u\|^{2}$ on S_{β}. Moreover, it is easy to see that $\lambda_{\alpha}=\frac{2 m_{\alpha}}{p_{\alpha}}$ and $C_{\alpha}=\left(\frac{\alpha}{m_{\alpha}}\right)^{\frac{1}{p-2}}$; indeed, it is sufficient to rewrite (2.1) by substituting $v=u_{\alpha}$. Therefore

$$
\begin{aligned}
w_{\alpha} & =\frac{1}{C_{\alpha}} u_{\alpha}=\left(\frac{m_{\alpha}}{\alpha}\right)^{\frac{1}{p-2}}\left(\frac{\alpha}{\beta}\right)^{1 / p} u_{\beta} \\
& =\left(\frac{m_{\beta}}{\beta}\right)^{\frac{1}{p-2}} u_{\beta}=\frac{u_{\beta}}{c_{\beta}}=w_{\beta} .
\end{aligned}
$$

Corollary 2.4. Let $a \in L^{\infty}(\Omega)$ which is a.e. nonnegative. Every $\mu>0$ is an eigenvalue of problem (2.3) where

$$
\begin{gather*}
\Delta^{2} u-a(x) \Delta u=\mu|u|^{p-2} u, q u a d x \in \Omega \\
u=\Delta u=0, \quad x \in \partial \Omega \tag{2.3}
\end{gather*}
$$

2.2. Case of sign-changing coefficients. Now we consider problem 1.1) in which a, b meet the condition (A2). The fibering map corresponding to the EulerLagrange functional of problem (1.1) is defined as a map $\varphi:[0, \infty) \rightarrow \mathbb{R}$ with $\varphi_{u}(t)=I(t u)$. Hence,

$$
\begin{aligned}
& \varphi_{u}(t)=\frac{t^{2}}{2} \int_{\Omega}\left(|\triangle u|^{2}-a(x)|\nabla u|^{2}\right) d x-\frac{t^{p}}{p} \int_{\Omega} b(x)|u|^{p} d x \\
& \varphi_{u}^{\prime}(t)=t \int_{\Omega}\left(|\triangle u|^{2}-a(x)|\nabla u|^{2}\right) d x-t^{p-1} \int_{\Omega} b(x)|u|^{p} d x .
\end{aligned}
$$

Obviously, $\varphi_{u}^{\prime}(1)=0$ if and only if $u \in N:=\left\{u \in X ;\left\langle I^{\prime}(u), u\right\rangle=0\right.$. It is natural to divide the critical points of $\varphi_{u}^{\prime}(t)$ into three subsets containing local minimuma, local maximuma and inflection points and so we define $N^{+}:=\left\{u \in N, \varphi_{u}^{\prime \prime}(1)>0\right\}$, $N^{-}:=\left\{u \in N, \varphi_{u}^{\prime \prime}(1)<0\right\}$ and $N^{0}:=\left\{u \in N, \varphi_{u}^{\prime \prime}(1)=0\right\}$.

In this section, we consider X with the norm $\|u\|=\left(\int_{\Omega}|\triangle u|^{2} d x\right)^{1 / 2}$; moreover $A(u):=\int_{\Omega}\left(|\triangle u|^{2}-a(x)|\nabla u|^{2}\right) d x$ and $B(u):=\int_{\Omega} b(x)|u|^{p} d x$. Hence for each $u \in X$ we have $\varphi_{u}^{\prime}(t)=0$ if and only if $A(u)=t^{p-2} B(u)$. Moreover, if $A(u) B(u)>0$ then there exists $t_{0}>0$ such that $\varphi_{u}\left(t_{0}\right)=0$, i.e. $t_{0} u \in N$ and otherwise no multiple of u belongs to N. Finally, if $t_{0} u \in N$, then

$$
\varphi_{t_{0} u}^{\prime \prime}(1)=(2-p) A\left(t_{0} u\right)=(2-p) t_{0}^{2} A(u)
$$

Hence, for $p>2$, if $A(u)>0$ we derive $t_{0} u \in N^{-}$and if $A(u)<0$ we conclude $t_{0} u \in N^{+}$.

Lemma 2.5. If $a^{+}<\mu_{1}$, then there exists $\delta>0$ such that for every $u \in X$, $A(u) \geq \delta\|u\|^{2}$.

Proof. If $\int_{\Omega} a(x)|\nabla u|^{2} d x \leq 0$ then the assertion is obvious. Let us suppose that $\int_{\Omega} a(x)|\nabla u|^{2} d x>0$ and argue by contradiction. If for each $\delta>0$ there exists $u \in X$ such that $A(u)<\delta\|u\|^{2}$, we derive that

$$
\begin{equation*}
\|u\|^{2}<\frac{\int_{\Omega} a(x)|\nabla u|^{2} d x}{1-\delta}<\frac{a^{+} \int_{\Omega}|\nabla u|^{2} d x}{1-\delta} \tag{2.4}
\end{equation*}
$$

Now, by considering $\delta<1-\frac{a^{+}}{\mu_{1}}$ we have $\frac{a^{+}}{1-\delta}<\mu_{1}$ and thus 2.4 leads to a contradiction with (1.4).

Theorem 2.6. If $a^{+}<\mu_{1}$, then I admits a minimizer on N.
Proof. Since $a^{+}<\mu_{1}$, we deduce that $N^{+}=\emptyset$; thus $\inf _{u \in N} I(u)=\inf _{u \in N^{-}} I(u)$. We will show that $\inf _{u \in N^{-}} I(u)>0$. For $u \in N, A(u)=B(u)$ and hence $\|u\|^{2}=$ $\left(\frac{A(v)}{B(v)}\right)^{\frac{2}{p-2}}$ where $v=\frac{u}{\|u\|}$. Consequently, for $u \in N$ we have

$$
I(u)=\left(\frac{1}{2}-\frac{1}{p}\right) A(u)=\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|^{2} A(v)=\left(\frac{1}{2}-\frac{1}{p}\right) \frac{A(v)^{\frac{p}{p-2}}}{B(v)^{\frac{2}{p-2}}}
$$

Lemma 2.5 ensures that $A(v) \geq \delta$ for some $\delta>0$. Moreover, by Sobolev embedding $X \hookrightarrow L^{p}(\Omega)$, for a positive constant C we have, $\int_{\Omega}|v|^{p} d x<C$. Hence

$$
I(u) \geq\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\delta^{\frac{p}{p-2}}}{\left(b^{+} C\right)^{\frac{2}{p-2}}}
$$

and thus $\inf _{u \in N^{-}} I(u)>0$. Set $m:=\inf _{u \in N^{-}} I(u)$ and let us consider $\left\{u_{n}\right\} \subset N^{-}$, which $\lim _{n \rightarrow \infty} I\left(u_{n}\right)=m$. In this cae, the coercivity of I on $N^{-},\left\{u_{n}\right\}$ would be bounded and so by reflexivity of X, up to subsequence, there exists $u_{0} \in X$ such that u_{n} is weakly convergent to $u_{0},\left(u_{n} \rightharpoonup u_{0}\right)$. Since $u_{n} \rightarrow u_{0}$ in $L^{p}(\Omega)$ and $u_{n} \in N$, then

$$
m=\lim _{n \rightarrow \infty} I\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \lim _{n \rightarrow \infty} B\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) B\left(u_{0}\right)
$$

Thus $B\left(u_{0}\right)>0$ and hence $u_{0} \neq 0$. Moreover, since $a^{+}<\mu_{1}$ we have $A\left(u_{0}\right)>0$. Therefore, a multiple of $u_{0}\left(t_{0} u_{0} ; t_{0}^{p-2}=\frac{A\left(u_{0}\right)}{B\left(u_{0}\right)}\right)$ belongs to N^{-}. If $u_{n} \nrightarrow u_{0}$ in X then $\left\|u_{0}\right\|<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|$ and so

$$
A\left(u_{0}\right)-B\left(u_{0}\right)<\liminf _{n \rightarrow \infty}\left(A\left(u_{n}\right)-B\left(u_{n}\right)\right)=0
$$

Consequently, $t_{0}<1$ and $\varphi_{u_{0}}^{\prime}(1)<0$. Therefore

$$
I\left(t_{0} u_{0}\right)<\liminf _{n \rightarrow \infty} I\left(t_{0} u_{n}\right)=\liminf _{n \rightarrow \infty} \varphi_{u_{n}}\left(t_{0}\right)<\liminf _{n \rightarrow \infty} \varphi_{u_{n}}(1)=\liminf _{n \rightarrow \infty} I\left(u_{n}\right)=m
$$

which is in contrast with $t_{0} u_{0} \in N^{-}$. Hence, $u_{n} \rightarrow u_{0}$ in X and $u_{0} \in N$, since $A\left(u_{0}\right)=B\left(u_{0}\right)$.

Lemma 2.7. There exists $\sigma>0$ in a way that for every $\mu \in\left(\mu_{1}, \mu_{1}+\sigma\right)$ if $\int_{\Omega}\left(|\triangle u|^{2}-\mu|\nabla u|^{2}\right) d x \leq 0$ then $u=k \varphi_{1}$ for some $k \in \mathbb{R}$.

Proof. Suppose the sequences $\left\{\mu_{n}\right\}$ and $\left\{u_{n}\right\}$ are such that $\mu_{n} \rightarrow \mu_{1}^{+}$(i.e., $\mu_{n} \rightarrow \mu_{1}$ and $\left.\mu_{n}>\mu_{1}\right)$ and $\int_{\Omega}\left(\left|\triangle u_{n}\right|^{2}-\mu_{n}\left|\nabla u_{n}\right|^{2}\right) d x \leq 0$. Without loss of generality, let $\left\|u_{n}\right\|=1$. Since $\left\{u_{n}\right\}$ is bounded, there exists $u_{0} \in X$ such that $u_{n} \rightharpoonup u_{0}$. If this convergence is not strong in X then

$$
\int_{\Omega}\left(\left|\triangle u_{0}\right|^{2}-\mu_{1}\left|\nabla u_{0}\right|^{2}\right) d x<\liminf \int_{\Omega}\left(\left|\triangle u_{n}\right|^{2}-\mu_{n}\left|\nabla u_{n}\right|^{2}\right) d x \leq 0
$$

which is impossible. Hence $u_{n} \rightarrow u_{0}$ and so $\left\|u_{0}\right\|=1$. Moreover, we deduce that $\int_{\Omega}\left(\left|\triangle u_{0}\right|^{2}-\mu_{1}\left|\nabla u_{0}\right|^{2}\right) d x \leq 0$ which holds if and only if $u_{0}=k \varphi_{1}$, for some constant k.

Theorem 2.8. Suppose that $B\left(\varphi_{1}\right) \neq 0$ and let $\sigma>0$ as introduced in lemma 2.7. If $\mu_{1}<a^{-} \leq a^{+}<\mu_{1}+\sigma$ then I admits a minimizer on N^{+}.

Proof. Firstly, we show that N^{+}is bounded. Let us argue by contradiction, so assume that there exists an unbounded sequence $\left\{u_{n}\right\} \subseteq N^{+}$, which $\left\|u_{n}\right\| \rightarrow \infty$. Let $v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|}$, thus by boundedness of v_{n}, up to a subsequence, it would be weakly convergent to some $v_{0} \in X$. We have $A\left(u_{n}\right)=B\left(u_{n}\right)$ then

$$
\begin{equation*}
A\left(v_{n}\right)=\left\|u_{n}\right\|^{p-2} B\left(v_{n}\right) \tag{2.5}
\end{equation*}
$$

Moreover, $\left|A\left(v_{n}\right)\right| \leq 1+\left.\left|\int_{\Omega} a(x)\right| \nabla v_{n}\right|^{2} d x \mid<1+C^{2} a^{+}$, so $A\left(v_{n}\right)$ is uniformly bounded and this in conjunction with 2.5 ensures that $\lim _{n \rightarrow \infty} B\left(v_{n}\right)=0$ and since $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$, we get $B\left(v_{0}\right)=0$. If $v_{n} \nrightarrow v_{0}$ in X we have

$$
\begin{equation*}
A\left(v_{0}\right)<\liminf A\left(v_{n}\right) \leq 0 \tag{2.6}
\end{equation*}
$$

therefore by regarding to the lemma 2.7 we deduce $v_{0}=k \varphi_{1}$. Since $B\left(v_{0}\right)=0$, while $B\left(\varphi_{1}\right) \neq 0$, we insert that $k=0$, which contradicts 2.6). Hence $v_{n} \rightarrow v_{0}$ in X and so $\left\|v_{0}\right\|=1$ and further $A\left(v_{0}\right)=\liminf A\left(v_{n}\right) \leq 0$. Due to the lemma 2.7 and since $B\left(v_{0}\right)=0$, we get $v_{0}=0$, which contradicts $\left\|v_{0}\right\|=1$, hence N^{+}is bounded.

Hence, let us suppose $\left\{u_{n}\right\}$ as a bounded minimizer sequence of I on N^{+}and set

$$
m:=\inf I(u)_{u \in N^{+}}=\lim _{n \rightarrow \infty} I\left(u_{n}\right)
$$

Then, up to a subsequence, there exists $u_{0} \in X$ in a way that $u_{n} \rightharpoonup u_{0}$ in X and $u_{n} \rightarrow u_{0}$ in $L^{p}(\Omega)$. Hence

$$
\begin{aligned}
& B\left(u_{0}\right)=\lim _{n \rightarrow \infty} B\left(u_{n}\right)=\left(\frac{2 p}{p-2}\right) m<0 \\
& A\left(u_{0}\right) \leq \liminf A\left(u_{n}\right)=\left(\frac{2 p}{p-2}\right) m<0
\end{aligned}
$$

Consequently, a multiple of $u_{0}\left(t_{0} u_{0} ; t_{0}^{p-2}=\frac{A\left(u_{0}\right)}{B\left(u_{0}\right)}\right)$ belongs to N and since

$$
\varphi_{t_{0} u_{0}}^{\prime \prime}(1)=(2-p) t_{0}^{2} A\left(u_{0}\right)>0
$$

then $t_{0} u_{0} \in N^{+}$. If $u_{0} \nrightarrow u_{0}$ in X, we have

$$
A\left(u_{0}\right)<\liminf A\left(u_{n}\right)=\liminf B\left(u_{n}\right)=B\left(u_{0}\right)
$$

and thus $t_{0}<1$. Therefore
$I\left(t_{0} u_{0}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) t_{0}^{2} A\left(u_{0}\right)<\left(\frac{1}{2}-\frac{1}{p}\right) A\left(u_{0}\right)<\left(\frac{1}{2}-\frac{1}{p}\right) \liminf A\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) m<m ;$ which contradicts $t_{0} u_{0} \in N^{+}$. Hence, we deduce that u_{n} converge strongly to u_{0} in X and $A\left(u_{0}\right)=B\left(u_{0}\right)$, i.e., $u_{0} \in N$ and since $B\left(u_{0}\right)<0$ we derive that $u_{0} \in N^{+}$.

Theorem 2.9. Suppose that $B\left(\varphi_{1}\right)<0$ and let $\sigma>0$ as introduced in lemma 2.7. If $\mu_{1}<a^{-} \leq a^{+}<\mu_{1}+\sigma$ then I admits a minimizer on N^{-}.

Proof. In the first step, by an argument similar to the proof of theorem 2.8, we deduce that every minimizer sequence of I on N^{-}is bounded. In what follows, we will show that $\inf _{u \in N^{-}} I(u) \neq 0$. Let us argue by contradiction. Suppose that, for a bounded minimizer sequence $\left\{u_{n}\right\} \subset N^{-}, A\left(u_{n}\right)=B\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, then $A\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, and for some $v_{0} \in X$, up to a subsequence, $v_{n} \rightharpoonup v_{0}$ in X. If $v_{n} \nrightarrow v_{0}$ then

$$
\begin{equation*}
A\left(v_{0}\right)<\liminf A\left(v_{n}\right)=0 \tag{2.7}
\end{equation*}
$$

Thus, by lemma 2.7, v_{0} is a multiple of φ_{1} such as $v_{0}=k \varphi_{1}$.
Further, $B\left(v_{n}\right) \rightarrow B\left(v_{0}\right)$ which $B\left(v_{n}\right)=\left\|u_{n}\right\|^{-p} B\left(u_{n}\right)>0$, thus $B\left(v_{0}\right) \geq 0$. But since $v_{0}=k \varphi_{1}$ and $B\left(\varphi_{1}\right)<0$ we derive that $k=0$ and so $v_{0}=0$, which gives a contradiction with (2.7), hence $v_{n} \rightarrow v_{0}$ in X and $\left\|v_{0}\right\|=1$.

In addition, if $A\left(v_{0}\right) \leq 0$, by applying lemma 2.7 we deduce $v_{0}=0$, which contradicts $\left\|v_{0}\right\|=1$, hence $\inf _{u \in N^{-}} I(u)>0$. In the sequel we will show that, I achieves its minimum on N^{-}. We insert that $u_{n} \rightharpoonup u_{0}$ for some $u_{0} \in X$. One can derive that $A\left(u_{0}\right) \leq 0$; indeed, if $A\left(u_{0}\right)>0$ by lemma $2.7, u_{0}=k \varphi_{1}$ and yields

$$
|k|^{p} B\left(\varphi_{1}\right)=B\left(u_{0}\right)=\left(\frac{2 p}{p-2}\right) \inf _{u \in N^{-}} I(u)>0
$$

which is not compatible with the assumption $B\left(\varphi_{1}\right)<0$.
Hence $A\left(u_{0}\right)>0$ and so a multiple of $u_{0}\left(t_{0} u_{0} ; t_{0}^{p-2}=\frac{A\left(u_{0}\right)}{B\left(u_{0}\right)}\right)$ belongs to N^{-}. If $u_{n} \nrightarrow u_{0}$ then $A\left(u_{0}\right)<B\left(u_{0}\right)$ and thus $t_{0}<1$, which leads to

$$
\begin{aligned}
I\left(t_{0} u_{0}\right) & <\liminf I\left(t_{0} u_{n}\right)=\liminf \varphi_{u_{n}}\left(t_{0}\right) \\
& \leq \liminf \varphi_{u_{n}}(1)=\liminf E\left(u_{n}\right)=\inf _{u \in N^{-}} I(u)
\end{aligned}
$$

This is in contrast with $t_{0} u_{0} \in N^{-}$, hence u_{0} is a nontrivial weak solution of the problem, which belongs to N^{-}.

References

[1] H. Attouch, G. Buttazzo, G. Michaille; Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, Society for Industrial and Applied Mathematics, 2014.
[2] H. Ben Omrane, S. Khenissy; Positivity preserving results for a biharmonic equation under Dirichlet boundary conditions, Opuscula Math., 34 (2014), no. 3, 601-608.
[3] K. J. Brown, Y. Zhang; The Nehari manifold for a semilinear elliptic equation with a signchanging weight function, J. Differential Equations, 193 (2003), 481-499.
[4] L. Boccardo, L. Orsina; Existence via regularity of solutions for elliptic systems and saddle points of functionals of the calculus of variations, Adv. Nonlinear Anal., 6 (2017), no. 2, 99-120.
[5] M. M. Boureanu, V. Rădulescu, D. Repovš; On a $p(\cdot)$-biharmonic problem with no-flux boundary condition, Comput. Math. Appl., 72 (2016), no. 9, 2505-2515.
[6] C. Cortázar, M. Elgueta, J. García-Melián; Analysis of an elliptic system with infinitely many solutions. Adv. Nonlinear Anal., 6 (2017), no. 1, 1-12.
[7] C.-P. Danet; Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electronic Journal of Qualitative Theory of Differential Equations, 2014.31 (2014): 1-9.
[8] P. Drabek, S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibrering method, Proc. Royal Society Edinburgh, Section A Mathematics, 127 (1997), 703-726.
[9] A. Ferrero, G. Warnault; On a solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal. TMA ,70 (8) (2009) 2889-2902.
[10] H. Gu, T. An; Existence of Multiple Solutions for Fourth-Order Elliptic Problem, Abstract and Applied Analysis, Vol. 2014, Hindawi Publishing Corporation, 2014.
[11] K. Ho, I. Sim; A-priori bounds and existence for solutions of weighted elliptic equations with a convection term, Adv. Nonlinear Anal., 6 (2017), no. 4, 427-445.
[12] K. Kefi, V. Rădulescu; On a $p(x)$-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), no. 4, Art. 80, 13 pp.
[13] L. Kong; Multiple solutions for fourth order elliptic problems with $p(x)$-biharmonic operators, Opuscula Math., 36 (2016), no. 2, 253-264.
[14] A. C. Lazer, P. J. McKenna; Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.
[15] A. M. Micheletti, A. Pistoia; Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis: Theory, Methods \& Applications, 31 (1998), 895-908.
[16] T. G. Myers; Thin films with high surface tension, SIAM Rev., 40 (3) (1998), 441462.
[17] Z. Nehari; On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.
[18] N. Papageorgiou, V. Rădulescu, D. Repovš; On a class of parametric ($p, 2$)-equations, Appl. Math. Optim., 75 (2017), 193-228.
[19] M. Willem; Minimax Theorems, Birkhäuser, Boston, Basel, Berlin, 1996.
[20] J. Xu, , W. Dong, D. O'Regan; Existence of weak solutions for a fourth-order Navier boundary value problem, Applied Mathematics Letters, 37 (2014), 61-66.
[21] G. Xu, J. Zhang; Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003), 633-640.
[22] Y. Pu, X-P Wu, C- L Tang; Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798-813.

Somayeh Saiedinezhad
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

E-mail address: ssaiedinezhad@iust.ac.ir

[^0]: 2010 Mathematics Subject Classification. 35A01, 35J35, 35D30, 35J91.
 Key words and phrases. Bi-Laplacian operator; weak solution; Nehari manifold; fibering map. (C) 2018 Texas State University.

 Submitted July 17, 2017. Published Aapril 28, 2018.

