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OSCILLATION FOR SECOND-ORDER DIFFERENTIAL
EQUATIONS WITH DELAY

BLANKA BACULÍKOVÁ

Abstract. We establishing monotonic properties of non-oscillatory solutions,

and oscillation criteria for the second-order delay differential equation

y′′(t) + p(t)y(τ(t)) = 0.

The criteria obtained fulfil the gap in the oscillation theory and essentially
improves the earlier ones. The progress is illustrated via Euler’s differential

equation. Moreover, we provide upper and lower bounds for the non-oscillatory

solutions.

1. Introduction

We consider the second-order delay differential equation

y′′(t) + p(t)y(τ(t)) = 0, (1.1)

under the following assumptions:
(H1) p ∈ C([t0,∞)) and is positive;
(H2) τ ∈ C([t0,∞)) and τ(t) ≤ t.
By a solution of (1.1) we mean a function y in C2([t0,∞)) that satisfies (1.1) on

[t0,∞). We consider only those solutions that satisfy sup{|y(t)| : t ≥ T} > 0 for all
T ≥ t0. A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all
its solutions are oscillatory.

There are many papers devoted to the oscillation of (1.1) (see e.g. [1]–[15]).
Various techniques have been obtained for investigation of (1.1). We mention here
the pioneering work of Sturm [15] who introduced comparison principle to the
oscillation theory. Later Kneser [11] contribute to the subject. Brands [4] proved
that oscillation of (1.1) with bounded delay is equivalent to oscillation of ordinary
differential equations. A new impetus to the investigation of oscillation was given
by Mahfoud [13] who deduce oscillation of delay equations from that of ordinary
equations.

Theorem 1.1. Let τ ′(t) > 0. If the ordinary differential equation

y′′(t) +
p(τ−1(t))
τ ′(τ−1(t))

y(t) = 0
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is oscillatory, then so does (1.1).

This comparison result permit us to extend any oscillatory criterion from or-
dinary to delay differential equation. Koplatadze et al. [9] elaborated very nice
technique for investigation of (1.1) and presented the following criterion.

Theorem 1.2. Assume that

lim sup
t→∞

{
τ(t)

∫ ∞
t

p(s) ds+
∫ t

τ(t)

τ(s)p(s) ds+
1
τ(t)

∫ τ(t)

t1

sτ(s)p(s) ds
}
> 1.

Then (1.1) is oscillatory.

The aim of this article is to establish new technique that improves criteria ex-
isting for oscillation of (1.1). This fact will be illustrated via Theorems 1.1, 1.2.
Our method is based on new monotonicity properties of possible non-oscillatory
solutions of (1.1).

In this article, we assume that all functional inequalities hold eventually, that is
they are satisfied for all t large enough.

2. Preliminaries

For non-oscillatory solutions of (1.1), we restrict our attention to positive solu-
tions because if y is a solution of so is −y. Next we recall a well-known lemma by
Kiguradze (see [7, 8]) about the structure of non-oscillatory solutions.

Lemma 2.1. If y(t) is a positive solution of (1.1), then

y′(t) > 0 and y′′(t) < 0, (2.1)

eventually.

As a preliminary, from [10, Lemma 4.1] it follows that the condition∫ ∞
t0

τ(s)p(s)ds =∞. (2.2)

is necessary for the oscillation of (1.1). So in what follows, we shall assume that
(2.2) holds.

Lemma 2.2. If y(t) is a positive solution of (1.1), then

y(t)
t
↓ 0 and ty′(t) ≤ y(t). (2.3)

Proof. Assume that (1.1) possesses a positive solution y(t). Then (2.1) is satisfied,
let us say for t ≥ t1. It follows from L’Hospital’s rule that

lim
t→∞

y(t)
t

= lim
t→∞

y′(t).

We claim that (2.2) implies limt→∞ y′(t) = 0. If we admit that limt→∞ y′(t) = ` >
0, then integrating (1.1) yields

y′(t1) ≥
∫ ∞
t1

p(s)y(τ(s))ds ≥
∫ ∞
t1

τ(s)p(s)
y(τ(s))
τ(s)

ds ≥ `
∫ ∞
t1

τ(s)p(s)ds.

This contradicts to (2.2) and we see that limt→∞ y′(t) = 0, which implies

y(t) = y(t1) +
∫ t

t1

y′(s)ds ≥ y(t1)− t1y′(t) + ty′(t) ≥ ty′(t).
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Consequently (
y(t)
t

)′
=
ty′(t)− y(t)

t2
≤ 0.

The proof is complete. �

We recall the following comparison result, which is a particular case of [12,
Theorem 2].

Lemma 2.3. Assume that a(t) ≥ b(t) ≥ 0. If the differential inequality

y′′(t) + a(t)y(t) ≤ 0

has a positive solution, then the equation

y′′(t) + b(t)y(t) = 0

has a positive solution.

Theorem 2.4. Assume that there is a constant a0 such that for t ≥ t0

tτ(t)p(t) ≥ a0 >
1
4
. (2.4)

Then (1.1) is oscillatory.

Proof. On the contrary, assume that (1.1) possesses an eventually positive solution
y(t). Taking the monotonicity of y(t)/t into account, we see that y(t) is also solution
of the inequality

y′′(t) +
τ(t)
t
p(t)y(t) ≤ 0. (2.5)

Lemma 2.3 applied to (2.5) and the Euler differential equation

y′′(t) +
a0

t2
y(t) = 0, (2.6)

guarantees that (2.6) has a positive solution. This is a contradiction since (2.6) is
oscillatory for a0 > 1/4. �

In our next considerations we improve (2.4). In what follows we shall assume
that there exists a constant a0 such that for t ≥ t0

tτ(t)p(t) ≥ a0 > 0 and a0 ≤
1
4
. (2.7)

We denote

β =
1 +
√

1− 4a0

2
. (2.8)

3. Main results

In this section we derive new properties of non-oscillatory solutions of (1.1) that
will be used for establishing new oscillatory criteria.

Lemma 3.1. Assume that y(t) is a positive solution of (1.1). Then for any ε > 0,
the function y(t)/tβ+ε is decreasing.
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Proof. Assume that y(t) > 0 is a solution of (1.1). Then (2.1) holds for t ≥ t1.
Using the monotonicity of y(t)

t into account, it is easy to verify that(
t2β
(y(t)
tβ

)′)′
= y′′(t)tβ − β(β − 1)tβ−2y(t)

= −tβp(t)y(τ(t))− β(β − 1)tβ−2y(t)

≤ tβ−2y(t) (−tτ(t)p(t)− β(β − 1))

≤ tβ−2y(t)
(
− a0 − β(β − 1)

)
= 0,

(3.1)

for t ≥ t1. Therefore, t2β
(
y(t)
tβ

)′
is decreasing. Denote

β̄ = β + ε for ε small enough,

δ = ε(2β − 1) + ε2.

Since −β(β − 1) = a0, it is easy to verify, that −β̄(β̄ − 1) = a0 − δ. Then(
t2β̄
(y(t)
tβ̄

)′)′
≤ tβ̄−2y(t)

(
−a0 − β̄(β̄ − 1)

)
= −tβ̄−2y(t)δ < 0. (3.2)

Since
(
t2β̄
(y(t)

tβ̄

)′)′
< 0, then t2β̄

(y(t)

tβ̄

)′ is decreasing and so either(y(t)
tβ̄

)′
> 0 or

(y(t)
tβ̄

)′
< 0,

eventually.
If we admit that

(y(t)

tβ̄

)′
> 0, then integrating inequality (3.2) from t1 to ∞, we

have

t2β̄1

(y(x)
xβ̄

)′
x=t1

≥ δ
∫ ∞
t1

s2β̄−2 y(s)
sβ̄

ds ≥ δ y(t1)

tβ̄1

∫ ∞
t1

s2β̄−2 ds =∞.

It is a contradiction and we conclude, that
(y(t)

tβ̄

)′
> 0 and so y(t)/tβ+ε is decreasing.

�

Lemma 3.2. Assume that there are constants a1 and ε such that for t ≥ t0,

t2p(t)
(τ(t)

t

)β+ε

≥ a1. (3.3)

If a1 >
1
4 , then (1.1) is oscillatory. If a1 ≤ 1

4 , then for any positive solution y(t)
of (1.1)

y(t)
tβ

is decreasing.

Proof. Assume that y(t) > 0 is a solution of (1.1). The monotonicity of y(t)
tβ+ε implies

that y(t) is a positive solution of the inequality

y′′(t) +
(τ(t)

t

)β+ε

p(t)y(t) ≤ 0. (3.4)

Lemma 2.3 implies that the Euler equation

y′′(t) +
a1

t2
y(t) = 0,

has a positive solution. This contradicts the fact that the Euler equation is oscilla-
tory for a1 > 1/4 and so we conclude that (1.1) is oscillatory.
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Now, we assume, that a1 ≤ 1
4 . Denote

β1 =
1 +
√

1− 4a1

2
.

Let us consider ε > 0, such that β1 + ε ≤ β. It is easy to see that

−(β1 + ε)(β1 + ε− 1) = a1 − δ1,

where δ1 = ε(2β1 − 1) + ε2.
On the other hand, the monotonicity of y(t)/tβ+ε yields

y(τ(t)) ≥
(τ(t)

t

)β+ε

y(t).

Thus,(
t2β1+ε

( y(t)
tβ1+ε

)′)′
= −tβ1+εp(t)y(τ(t))− (β1 + ε)(β1 + ε− 1)tβ1+ε−2y(t)

≤ tβ1+ε−2y(t)
(
− t2p(t)

(τ(t)
t

)β+ε

− (β1 + ε)(β1 + ε− 1)
)

≤ −tβ1+ε−2y(t)δ1.

Proceeding similarly as in proof of Lemma 3.1, we obtain that y(t)
tβ1+ε is decreasing.

Since
β1 + ε ≤ β,

we can conclude that y(t)
tβ

is decreasing too. The proof is complete. �

Now we are ready to provide the oscillatory criterion that improves Theorem 2.4.

Theorem 3.3. Assume that there is a constant a2 such that for t ≥ t0,

t2−β(τ(t))βp(t) ≥ a2 >
1
4
, (3.5)

then (1.1) is oscillatory.

Proof. Assume to the contrary that (1.1) has a positive solution y(t). The mono-
tonicity of y(t)

tβ
implies that y(t) is a solution of the differential inequality

y′′(t) +
(τ(t)

t

)β
p(t)y(t) ≤ 0.

Lemma 2.3 implies that the Euler equation

y′′(t) +
a2

t2
y(t) = 0,

has a positive solution. This contradicts to fact that considered Euler equation is
oscillatory for a2 > 1/4. The proof is complete. �

Remark 3.4. In contrast to results presented in [14] our oscillatory criterion is
easily verifiable and does not require any auxiliary constants and functions. Unlike
to [14] our results will be supported by illustrative example.

We illustrate the novelty and progress of our oscillation criterion via its applica-
tion to Euler differential equations with a delay argument:

y′′(t) +
a

t2
y(λt) = 0, λ ∈ (0, 1). (3.6)
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Corollary 3.5. If

λβa >
1
4
, (3.7)

then (3.6) is oscillatory.

Remark 3.6. By Theorem 1.1, the oscillation of (3.6) follows from the oscillation
of

y′′(t) +
aλ

t2
y(t) = 0, (3.8)

which leads to the condition
λa >

1
4
. (3.9)

What is more, [2, Corollaries 7.5 and 7.6 , and Theorem 7.9] guarantee the oscilla-
tion of (3.6) if (3.9) holds. Evidently criterion (3.7) provides better result.

Our next considerations are intended to essentially improve Theorem 1.2. For
this reason we need the monotonicity which is opposite to that in Lemma 3.2.

Lemma 3.7. Let (2.7) hold and α = 1−
√

1−4a0
2 . Assume that y(t) is a positive

solution of (1.1). Then y(t)/tα is increasing.

Proof. Assume that y(t) is a positive solution of (1.1). Then (2.1) is satisfied for
t ≥ t1. Taking the monotonicity of y(t)

t into account, it is easy to verify that(
t2α
(y(t)
tα

)′)′
= y′′(t)tα − α(α− 1)tα−2y(t)

= −tαp(t)y(τ(t))− α(α− 1)tα−2y(t)

≤ tα−2y(t) (−tτ(t)p(t)− α(α− 1)) ≤ 0.

(3.10)

Therefore t2α
(
y(t)
tα

)′
is decreasing. If we admit that t2α

(
y(t)
tα

)′
< 0 for t ≥ t2 ≥ t1,

then there exists constant k > 0 such that

t2α
(y(t)
tα

)′
< −k < 0

for t > t2. Integrating the last inequality form t2 to t, we have

y(t)
tα

<
y(t2)
tα2
− k

∫ t

t2

s−2α ds→ −∞ for t→∞.

This is a contradiction and we conclude that t2α
(y(t)
tα

)′
> 0. The proof is complete.

�

Lemmas 3.2 and 3.7 provide upper and lower bound for possible non-oscillatory
solutions of (1.1).

Theorem 3.8. Let (2.7) hold, α = 1−
√

1−4a0
2 and β = 1+

√
1−4a0
2 . Then every

positive solution y(t) of (1.1) satisfies

c1t
α ≤ y(t) ≤ c2tβ ,

c1, c2 are constants.

Proof. By Lemma 3.7, the function y(t)/tα is increasing and so for all t ≥ t1,
y(t)
tα
≥ y(t1)

tα1
= c1.

The second part of the theorem can be proved similarly. �
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Now, we present new oscillatory results using both monotonic properties of non-
oscillatory solutions of (1.1) presented in Lemma 3.2 and Lemma 3.7.

Theorem 3.9. Let (2.7) hold, and assume that

lim sup
t→∞

{
τ−β(t)

∫ τ(t)

t1

sτβ(s)p(s) ds

+ τ1−β(t)
∫ t

τ(t)

τβ(s)p(s) ds+ τ1−α(t)
∫ ∞
t

τα(s)p(s) ds
}
> 1.

(3.11)

Then (1.1) is oscillatory.

Proof. On the contrary, assume that (1.1) possesses a positive solution y(t). Then
(2.1) holds for t ≥ t1. Integrating (1.1) twice, we get

y(t) ≥ y(t1) +
∫ t

t1

∫ ∞
u

p(s)y(τ(s)) dsdu

= y(t1) +
∫ t

t1

∫ t

u

p(s)y(τ(s)) dsdu+
∫ t

t1

∫ ∞
t

p(s)y(τ(s)) dsdu

= y(t1) +
∫ t

t1

(s− t1)p(s)y(τ(s)) ds+ (t− t1)
∫ ∞
t

p(s)y(τ(s)) ds

= y(t1)− t1
∫ ∞
t1

p(s)y(τ(s)) ds+
∫ t

t1

sp(s)y(τ(s)) ds

+ t

∫ ∞
t

p(s)y(τ(s)) ds.

(3.12)

On the other hand, an integration of (1.1) yields

y′(t) ≥
∫ ∞
t

p(s)y(τ(s)) ds

which in view of (2.3) implies

y(t1) > t1

∫ ∞
t1

p(s)y(τ(s)) ds.

Employing the last inequality in (3.12), we see that

y(t) ≥
∫ t

t1

sp(s)y(τ(s)) ds+ t

∫ ∞
t

p(s)y(τ(s)) ds. (3.13)

Therefore,

y(τ(t)) ≥
∫ τ(t)

t1

sp(s)y(τ(s)) ds+ τ(t)
∫ ∞
τ(t)

p(s)y(τ(s)) ds

=
∫ τ(t)

t1

sp(s)y(τ(s)) ds+ τ(t)
∫ t

τ(t)

p(s)y(τ(s)) ds

+ τ(t)
∫ ∞
t

p(s)y(τ(s)) ds.

Using that y(t)/tβ is decreasing and y(t)
tα is increasing, we have

1 ≥ τ−β(t)
∫ τ(t)

t1

sτβ(s)p(s) ds+ τ1−β(t)
∫ t

τ(t)

τβ(s)p(s) ds



8 B. BACULÍKOVÁ EJDE-2018/96

+ τ1−α(t)
∫ ∞
t

τα(s)p(s) ds.

Taking limit superior as t→∞ on both sides of the previous inequality, we are led
to contradiction with assumptions of the theorem. The proof is complete. �

Corollary 3.10. Let (2.7) hold, and assume that

lim sup
t→∞

{
t−β

∫ λt

t1

s1+βp(s) ds

+ λt1−β
∫ t

λt

sβp(s) ds+ t1−αλ

∫ ∞
t

sαp(s) ds
}
> 1.

Then
y′′(t) + p(t)y(λt) = 0, λ ∈ (0, 1), (3.14)

is oscillatory.

Proof. Proceeding as in proof of Theorem
refthm3 for τ(t) = λt with λ ∈ (0, 1), we obtain the result. �

Following result is simple consequence of Corollary 3.10 for (3.6)

Corollary 3.11. If {λβ
β

+
λβ − λ
1− β

+
λ

β

}
> 1, (3.15)

then is (3.6) oscillatory.

Remark 3.12. If we employ the additional condition τ ′(t) > 0, it is easy to see that
each term of (3.11) is greater than the corresponding term of the criterion presented
in Theorem 1.2. Consequently Theorem 3.9 essentially improves the result of [9].

We illustrate the results obtained with example.

Example 3.13. We consider the Euler delay equation

y′′(t) +
a

t2
y(λt) = 0, λ ∈ (0, 1).

For λ = 0, 2 and a = 1, 25 criterion (3.15) gives 2, 2361 > 1. On the other hand
criterion [9, (2.5)] gives 0, 9024 ≯ 1. For λ = 0, 8 and a = 0, 3125 our criterion
holds (1, 1180 > 1) and Koplatadze et al. [9] fails since 0, 5558 ≯ 1. So our criterion
essentially improves the known ones.

Acknowledgements. This research was supported by S.G.A. Kega 019-025TUKE-
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