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POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL
STURM-LIOUVILLE SUPERLINEAR p-LAPLACIAN PROBLEM

KHANH DUC CHU, DANG DINH HAI

Communicated by Pavel Drabek

Abstract. We prove the existence of positive classical solutions for the p-
Laplacian problem

−(r(t)φ(u′))′ = f(t, u), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,

where φ(s) = |s|p−2s, p > 1, f : (0, 1)× [0,∞)→ R is a Carathéodory function

satisfying

lim sup
z→0+

f(t, z)

zp−1
< λ1 < lim inf

z→∞

f(t, z)

zp−1

uniformly for a.e. t ∈ (0, 1), where λ1 denotes the principal eigenvalue of

−(r(t)φ(u′))′ with Sturm-Liouville boundary conditions. Our result extends

a previous work by Manásevich, Njoku, and Zanolin to the Sturm-Liouville
boundary conditions with more general operator.

1. Introduction

Consider the one-dimensional p-Laplacian problem
−(r(t)φ(u′))′ = f(t, u) a.e. on (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,
(1.1)

where φ(s) = |s|p−2s, p > 1, a, b, c, d are nonnegative constants with ac+ad+bc > 0,
r : [0, 1]→ (0,∞) and f : (0, 1)× [0,∞)→ R.

We are interested in positive classical solution of (1.1), that is, solutions u ∈
C1[0, 1] with u > 0 on (0, 1), φ(u′) absolutely continuous on [0, 1] and satisfying
(1.1).

Let us look at the literature on problem (1.1) with Dirichlet boundary conditions
i.e. b = d = 0. In the sublinear case, Lan, Yang, and Yang [14] proved the existence
of a classical positive solution to (1.1) when r(t) ≡ 1 and f is nonnegative with

lim sup
z→∞

f(t, z)
zp−1

< λ1 < lim inf
z→0+

f(t, z)
zp−1

≤ ∞ (1.2)

uniformly for a.e. t ∈ (0, 1), where λ1 = 2p(p − 1)(
∫ 1

0
ds

(1−sp)1/p )p is the principal
eigenvalue of −(φ(u′))′ with zero boundary conditions (see [4, 5]). In particular,
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when p = 2 and f : [0,∞)→ [0,∞) is continuous, (1.2) becomes

lim sup
z→∞

f(z)
z

< π2 < lim inf
z→0+

f(z)
z
≤ ∞,

which was used by Webb and Lan [18] to obtain nonnegative solutions to (1.1)
with φ(s) = s. In fact, [18] gave a general method with covered many boundary
conditions including nonlocal ones and included both sublinear and superlinear
types of conditions. In the superlinear case, Manásevich, Njoku, and Zanolin [15]
used time-mapping estimates to prove the existence of a classical positive solution
to (1.1) with Dirichlet boundary conditions when r(t) ≡ 1,

lim sup
z→0+

f(t, z)
zp−1

< λ1 < lim inf
z→∞

f(t, z)
zp−1

≤ ∞ (1.3)

and lim infz→0+
f(t,z)
zp−1 > −∞ uniformly for a.e. t ∈ (0, 1), which improves a previous

result by Kaper, Knapp, and Kwong [11] where the stronger condition

lim
z→0+

f(t, z)
zp−1

= l ≤ 0 and lim
z→∞

f(t, z)
zp−1

=∞

uniformly for t ∈ (0, 1) was used. Note that when p = 2 and f is independent of
t, condition (1.3) together with f(0) = 0 and f ≥ 0 was used in [8] to show the
existence of a positive solution to the PDE problem

−∆u = f(u) in Ω, u = 0 on ∂Ω.

Wang [19] showed the existence of a positive solution to (1.1) under nonlinear
boundary conditions that include the Sturm-Liouville one when f is nonnegative
and satisfies either the sublinear condition

lim
z→0+

f(z)
zp−1

=∞ and lim
z→∞

f(z)
zp−1

= 0,

or the superlinear one

lim
z→0+

f(z)
zp−1

= 0 and lim
z→∞

f(z)
zp−1

=∞,

which extended a previous result by Erbe and Wang [7] when p = 2. Similar results
were established in [9] for singular Sturm-Liouville boundary value problems. Note
that the conditions in [7, 9, 19] do not involve the principal eigenvalue of the
corresponding operator. Existence results in the PDE version of (1.1) involving the
principal eigenvalue of the p-Laplacian operator for p ≥ 2 was studied in [3]. In
particular, the existence of a nontrivial nonnegative weak solution u ∈ W 1,p

0 (Ω) to
the problem

−∆pu = f(u) in Ω,
u = 0 on ∂Ω,

was established for f satisfying |f(z)|((1 + zp−1)−1 bounded on [0,∞) and either

−∞ < lim
z→0+

f(z)
zp−1

< λ1 < lim
z→∞

f(z)
zp−1

<∞,

or

−∞ < lim
z→∞

f(z)
zp−1

< λ1 < lim
z→0+

f(z)
zp−1

<∞
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holds. The approach used in [3] was via the Granas fixed point index (see [6]).
In this paper, we shall extend the result in [15] to include the general Sturm-
Liouville boundary conditions with more general operator e.g. allowing the case
r 6≡ 1. Note that the proof in [15] does not apply to this general context. Since
we do not require that f be non-negative but that there exists η ∈ L1(0, 1) with
η ≥ 0 such that lim infz→0+

f(t,z)
zp−1 ≥ −η(t) uniformly for a.e. t ∈ (0, 1), our result

also improves a corresponding result in [12]. In addition, some estimates on the
principal eigenvalue λ1 for p > 1 are provided (see Lemma 2.7 below). We refer
to [10, 13, 16, 20] for existence results related to (1.1) under suitable sublinear or
superlinear conditions. Our approach is based on a Krasnoselskii type fixed point
theorem in a Banach space.

We shall make the following assumptions:
(A1) r : [0, 1]→ (0,∞) is continuous.
(A2) f : (0, 1) × [0,∞) is a Carathéodory function, that is f(·, z) is measurable

for each z ≥ 0 and f(t, ·) is continuous for a.e. t ∈ (0, 1).
(A3) For each k > 0, there exists γk ∈ L1(0, 1) such that

|f(t, z)| ≤ γk(t)

for a.e. t ∈ (0, 1) and z ∈ [0, k].
(A4) There exists η ∈ L1(0, 1) with η ≥ 0 such that

lim inf
z→0+

f(t, z)
zp−1

≥ −η(t)

uniformly for a.e. t ∈ (0, 1).
(A5)

lim sup
z→0+

f(t, z)
zp−1

< λ1 < lim inf
z→∞

f(t, z)
zp−1

uniformly for a.e. t ∈ (0, 1).
Our main result reads as follows.

Theorem 1.1. Let (A1)–(A5) hold. Then (1.1) has a positive classical solution u

with inft∈(0,1)
u(t)
p(t) > 0, where p(t) = min(at+ b, d+ c(1− t)).

In particular, when f is independent of t, we obtain the following result.

Corollary 1.2. Let r satisfy (A1) and let f : [0,∞)→ R be continuous with

−∞ < lim
z→0+

f(z)
zp−1

< λ1 < lim
z→∞

f(z)
zp−1

≤ ∞.

Then (1.1) has a positive classical solution u with inft∈(0,1)
u(t)
p(t) > 0.

2. Preliminaries

Let AC1[0, 1] = {u ∈ C1[0, 1] : u′ is absolutely continuous on [0, 1]}. We shall
denote the norm in Lq(0, 1) and C1[0, 1] by ‖ · ‖q and | · |C1 respectively. Let λ1 be
the principal eigenvalue of −(r(t)φ(u′))′ on (0, 1) with Sturm-Liouville boundary
conditions, and let φ1 be the corresponding positive, normalized eigenfunction, i.e.
−(r(t)|φ′1|p−2φ′1)′ = λ1φ

p−1
1 a.e. on (0, 1), φ1 > 0 on (0, 1), ‖φ1‖∞ = 1 and φ1

satisfies the Sturm-Liouville boundary conditions in (1.1) (see [2, Theorem 3.1]).
Note that λ1 > 0. We recall the following fixed point theorem of Krasnoselskii type
in a Banach space (see Amann [1, Theorem 12.3]).
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Lemma 2.1. Let E be a Banach space and A : E → E be a completely continuous
operator. Suppose there exist h ∈ E, h 6= 0 and positive constants r,R with r 6= R
such that

(a) If y ∈ E satisfies y = θAy for some θ ∈ (0, 1] then ‖y‖ 6= r,
(b) If y ∈ E satisfies y = Ay + ξh for some ξ ≥ 0 then ‖y‖ 6= R.

Then A has a fixed point y ∈ E with min(r,R) < ‖y‖ < max(r,R).

Lemma 2.2. Let t0, t1, α, β be constants with 0 ≤ t0 < t1 ≤ 1, and h ∈ L1(t0, t1).
Then the problem

−(r(t)φ(u′))′ = h a.e. on (t0, t1),

au(t0)− bφ−1(r(t0))u′(t0) = α, cu(t1) + dφ−1(r(t1))u′(t1) = β
(2.1)

has a unique solution u = Th ∈ AC1[t0, t1]. Furthermore T : L1(t0, t1)→ C[t0, t1]
is completely continuous.

Proof. By integrating, it follows that (2.1) has a unique solution u ∈ AC1[t0, t1]
given by

u(t) = C +
∫ t

t0

φ−1
(D − ∫ s

t0
h

r(s)

)
ds,

where C and D are constants satisfying

aC − bφ−1(D) = α,

c
(
C +

∫ t1

t0

φ−1(
D −

∫ s
t0
h

r(s)
)ds
)

+ dφ−1
(
D −

∫ t1

t0

h
)

= β.
(2.2)

In what follows, we shall see, in particular, that C,D are uniquely determined. We
shall denote by Ki, i = 0, 1, 2, . . . , positive constants independent of u and h.
Case 1: a = 0. Then b, c > 0, D = −φ(α/b) and

C =
β − dφ−1

(
D −

∫ t1
t0
h
)

c
−
∫ t1

t0

φ−1
(D − ∫ s

t0
h

r(s)

)
ds.

Using the inequality

(x+ y)q ≤ m(xq + yq) for x, y ≥ 0, q > 0, (2.3)

where m = 2(q−1)+ , we deduce that |C| ≤ K1 +K2φ
−1(‖h‖1), which implies

‖u‖∞ ≤ K3 +K4φ
−1(‖h‖1).

Case 2: a > 0. Then (2.2) is equivalent to C = α+bφ−1(D)
a , where D is the solution

of

γ(D) ≡ cbφ−1(D)
a

+ c

∫ t1

t0

φ−1
(D − ∫ s

t0
h

r(s)

)
ds+ dφ−1

(
D −

∫ t1

t0

h
)

= β − αc

a
.

Note that D is uniquely determined since γ(D) is increasing in D, limD→∞ γ(D) =
∞ and limD→−∞ γ(D) = −∞.

If c = 0 then d > 0 and it follows that |D| ≤ ‖h‖1 +φ(|β|/d), while if c > 0 then

|D| ≤ ‖h‖1 + ‖r‖∞φ
( 1
c(t1 − t0)

|β − αc

a
|
)
.
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Hence in both cases,

|u|C1[t0,t1] = ‖u‖∞ + ‖u′‖∞ ≤ K5 +K0φ
−1(‖h‖1).

i.e. T maps bounded sets in L1(t0, t1) into bounded sets in C1[t0, t1]. To show that
T is continuous, let ε > 0, hi ∈ L1(t0, t1) and ui = Thi, i = 1, 2. We shall show that
there exists a constant δ > 0 depending on ε and an upper bound of ‖hi‖L1(t0,t1),
i = 1, 2, such that

‖h1 − h2‖L1(t0,t1) < δ =⇒ |u1 − u2|C1[t0,t1] < ε. (2.4)

Note that

ui(t) = Ci +
∫ t

t0

φ−1
(Di −

∫ s
t0
hi

r(s)

)
ds,

and from the above calculation we obtain

|Di| ≤ max
i=1,2

‖hi‖L1(t0,t1) +K ≡M0

for i = 1, 2, where K > 0 independent of ui and hi. This implies

|Di −
∫ s

t0

hi|, |
Di −

∫ s
t0
hi

r(s)
| ≤ 2M0 max(r−1

0 , 1) ≡M

for all s ∈ [t0, t1], i = 1, 2, where r0 = min[0,1] r > 0. Since φ−1 is uniformly
continuous on I = [−M,M ], it follows from the formulas for Ci, Di, and the fact
that |D1 − D2| ≤ ‖h1 − h2‖L1(t0,t1) that there exists a constant δ > 0 such that
(2.4) holds. This completes the proof. �

Remark 2.3. If α = β = 0 then Lemma 2.2 is reduced to [9, Lemma 3.1]. Note
that in this case K5 = 0 in the above proof i.e. |u|C1[t0,t1] ≤ K0φ

−1(‖h‖1) for all u
satisfying (2.1).

Lemma 2.4. Let t0, t1, α, β be constants with 0 ≤ t0 < t1 ≤ 1, and γ, h ∈ L1(t0, t1)
with γ ≥ 0. Then the problem

−(r(t)φ(u′))′ + γ(t)φ(u) = h(t) a.e. on (t0, t1),

au(t0)− bφ−1(r(t0))u′(t0) = α, cu(t1) + dφ−1(r(t1))u′(t1) = β
(2.5)

has a unique solution u ≡ T0h ∈ AC1[t0, t1]. Furthermore T0 : L1(t0, t1)→ C[t0, t1]
is completely continuous.

Proof. Let E = C[t0, t1] be equipped with norm ‖u‖ = sup[t0,t1]
|u|. By Lemma

2.2, for each v ∈ E, the problem

−(r(t)φ(u′))′ = h(t)− γ(t)φ(v) a.e. on (t0, t1),

au(t0)− bφ−1(r(t0))u′(t0) = α, cu(t1) + dφ−1(r(t1))u′(t1) = β

has a unique solution u = Sv ∈ AC1[t0, t1] and S : E → E is completely continuous.
Let u ∈ E satisfy u = θSu for some θ ∈ (0, 1]. Then

−(r(t)φ(u′))′ + θp−1γ(t)φ(u) = θp−1h(t) a.e. on (t0, t1),

au(t0)− bφ−1(r(t0))u′(t0) = θα, cu(t1) + dφ−1(r(t1))u′(t1) = θβ
(2.6)

By integrating (2.6), we obtain

φ(u′(t)) =
r(t1)φ(u′(t1)) + θp−1

∫ t1
t

(h− γφ(u))ds
r(t)

(2.7)
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for t ∈ [t0, t1]. Multiplying the equation in (2.6) by u and integrating gives

− r(t1)φ(u′(t1))u(t1) + r(t0)φ(u′(t0))u(t0) +
∫ t1

t0

r(t)|u′|p ≤
∫ t1

t0

|hu|. (2.8)

We shall consider two cases.

Case 1. b = 0 or d = 0. Without loss of generality, we suppose b = 0. Then
u(t0) = θα/a ≡ θα0. By the mean value theorem,

‖u‖ ≤ |α0|+
∫ t1

t0

|u′|. (2.9)

Suppose first that d = 0. Then u(t1) = θβ/c ≡ θβ0. Let ξ(t) = θ(At + B),
where A,B are constants such that ξ(t0) = θα0, ξ(t1) = θβ0 i.e. A = β0−α0

t1−t0 , B =
α0t1−β0t0
t1−t0 . In what follows, we shall denote by Ri, i = 0, 1, . . . , positive constants

independent of u and θ.
Multiplying the equation in (2.6) by (u− ξ) and integrating, we obtain

r0

∫ t1

t0

|u′|p ≤ |A‖|r‖∞
∫ t1

t0

|u′|p−1 + (|A|+ |B|)|
(∫ t1

t0

γ
)
‖u‖p−1

+ (‖u‖+A+B)
∫ t1

t0

h.

This, together with (2.9), implies
∫ t1
t0
|u′|p ≤ R0.

Suppose next that d > 0. Then from the boundary condition at t1, we obtain
u′(t1) = θβ−cu(t1)

dφ−1(r(t1))
. Hence if c = 0 then u′(t1) = θβ

dφ−1(r(t1))
≡ θβ1 from which (2.7)

and (2.9) imply

‖u′‖ ≤ R1

(
1 +

∫ t1

t0

|u′|
)
. (2.10)

Consequently, (2.8) gives∫ t1

t0

r(t)|u′|p ≤ ‖r‖∞ (|β1|p−1|‖u‖+ |α0‖|u′‖p−1) +
(∫ t1

t0

|h|
)
‖u‖,

which, together with (2.9) and (2.10), implies that
∫ t1
t0
|u′|p ≤ R2.

If c > 0, then

− r(t1)φ(u′(t1))u(t1)

= r(t1)φ
( cu(t1)− θβ
dφ−1(r(t1))

)
u(t1)

= r(t1)φ
( cu(t1)− θβ
dφ−1(r(t1))

)(( cu(t1)− θβ
dφ−1(r(t1))

)(dφ−1(r(t1))
c

)
+
θβ

c

)
≥ R2

∣∣∣ cu(t1)− θβ
dφ−1(r(t1))

∣∣∣p −R3.

(2.11)

By (2.7) and (2.9),

|φ(u′(t0)| ≤ 1
r0

(
‖r‖∞|

cu(t1)− θβ
dφ−1(r(t1))

|p−1 +
∫ t1

t0

|h| + (
∫ t1

t0

γ)‖u‖p−1
)
. (2.12)
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Using (2.9), (2.11) and (2.12) together with u(t0) = θα0 in (2.8), we deduce that∫ t1
t0
|u′|p ≤ R4. Hence in either case

∫ t1
t0
|u′|p ≤ R5, where R5 = max(R0, R2, R4)

and so ‖u‖ ≤ |α0|+R
1/p
5 .

Case 2. b > 0, d > 0. Then u′(t0) = αu(t0)−θα
bφ−1(r(t0))

and u′(t1) = θβ−cu(t1)
dφ−1(r(t1))

. Hence
(2.8) and (2.9) give

r(t1)φ
( cu(t1)− θβ
dφ−1(r(t1))

)
u(t1) + r(t0)φ

(αu(t0)− θα
bφ−1(r(t0))

)
u(t0) +

∫ t1

t0

r(t)|u′|p

≤
(∫ t1

t0

|h|
)
‖u‖.

(2.13)

Since a+ c > 0, we can assume without loss of generality that c > 0. Then

‖u‖ ≤ |u(t1)|+
∫ t1

t0

|u′|

≤ dφ−1(r(t1))
c

| cu(t1)− θβ
dφ−1(r(t1))

|+ |β|
c

+
∫ t1

t0

|u′|,

which, together with (2.11) and (2.13), imply∣∣∣ cu(t1)− θβ
dφ−1(r(t1))

∣∣∣p +
∫ t1

t0

|u′|p ≤ R6.

Consequently, ‖u‖ < R8. Thus, we have shown that in both cases that ‖u‖ is
bounded by a constant independent of u and θ. By the Leray-Schauder fixed point
theorem, S has a fixed point u, which is a solution of (2.5) in AC1[t0, t1]. To show
uniqueness, let u, v be solutions of (2.5). Then

− (r(t)(φ(u′)− φ(v′))′ + γ(t)(φ(u)− φ(v)) = 0 a.e. on (t0, t1). (2.14)

We claim that (φ(u′(t0)) − φ(v′(t0))(u(t0 − v(t0) ≥ 0. This is true when b = 0
since u(t0) = α/a = v(t0) in this case. If b > 0 then u′(t0) = au(t0)−α

bφ−1(r(t0))
, v′(t0) =

av(t0)−α
bφ−1(r(t0))

, which implies

(φ(u′(t0))− φ(v′(t0))(u(t0)− v(t0)

=
(
φ
( au(t0)− α
bφ−1(r(t0))

)
− φ

( av(t0)− α
bφ−1(r(t0))

))
(u(t0 − v(t0) ≥ 0.

Similarly, (φ(u′(t1))−φ(v′(t1))(u(t1−v(t1) ≤ 0. Hence, multiplying (2.14) by u−v
and integrating, we get∫ t1

t0

r(t)(φ(u′)− φ(v′))(u′ − v′)dt ≤ 0,

which implies u′ = v′ on (t1, t2). Hence there exists a constant k such that u(t) =
v(t) + k for all t ∈ [t1, t2]. The boundary conditions then give ak = ck = 0. Hence
k = 0, which completes the proof. �

Next, we prove a comparison principle, which extends [9, Lemma 3.2] to the case
γ ≥ 0, γ 6≡ 0.
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Lemma 2.5. Let γ, hi ∈ L1(t0, t1), i = 1, 2, with γ ≥ 0 and h1 ≥ h2. Let
ui ∈ AC1[t0, t1], i = 1, 2 satisfy

−(r(t)φ(u′i))
′ + γ(t)φ(ui) = hi a.e. on (t0, t1),

au1(t0)− bφ−1(r(t0))u′1(t0) ≥ au2(t0)− bφ−1(r(t0))u′2(t0),

cu1(t1) + dφ−1(r(t1))u′1(t1) ≥ cu2(t1) + dφ−1(r(t1))u′2(t1).

Then u1 ≥ u2 on [t0, t1].

Proof. Suppose on the contrary that there exists t̃ ∈ (t0, t1) such that u1(t̃) < u2(t̃).
Let (α, β) ⊂ (t0, t1) be the largest open interval containing t̃ such that u1 < u2 on
(α, β). Hence

(r(t)(φ(u′1)− φ(u′2))′ ≤ 0 a.e. on (α, β), (2.15)

Case 1. u1(α) = u2(α) or u1(β) = u2(β). Suppose u1(α) = u2(α). Then
u′1(α) ≤ u′2(α). Hence (2.15) implies u′1 ≤ u′2 on (α, β). If u1(β) = u2(β) then this
gives u1 ≥ u2 on (α, β), a contradiction. If u1(β) < u2(β) then β = t1 and from
the boundary condition at t1, we get d(u′2(t1) − u′1(t1)) ≤ 0. Hence if d > 0 we
get u′2(t1) ≤ u′1(t1) from which (2.15) gives u′1 ≥ u′2 on (α, β) and so u1 ≥ u2 on
(α, β), a contradiction. On the other hand, if d = 0 then c(u1(t1) − u2(t1)) ≥ 0,
which implies u1(t1) ≥ u2(t1), a contradiction. Similarly, we get a contradiction if
u1(β) = u2(β).
Case 2. u1 < u2 on [α, β] i.e. α = t0 and β = t1. Suppose min[α,β](u1 − u2) =
u1(τ) − u2(τ) < 0 for some τ ∈ [α, β]. If τ ∈ (t0, t1) then u′1(τ) = u′2(τ) and it
follows from (2.15) that there exists a constant k < 0 such that u1 = u2 + k on
[t0, t1]. Using the boundary conditions, we deduce that ak, ck ≥ 0, a contradiction.
Suppose τ = t0. Then

a(u1(t0)− u2(t0)) ≥ bφ−1(r(t0))(u′1(t0)− u′2(t0)) ≥ 0,

which implies a = 0. Hence b > 0 and the boundary condition at t0 imply u′1(t0)−
u′2(t0) ≤ 0, from which (2.15) gives u′1 ≤ u′2 on (t0, t1). Consequently, u1 = u2+k̃ on
(t0, t1) for some constant k̃ < 0, a contradiction. Similarly, we reach a contradiction
when τ = t1, which completes the proof. �

The next result plays an important role in the proof of the main result. When
γ ≡ 0, it was obtained in [9, Lemma 3.4] but the proof there does not apply to the
case γ 6≡ 0.

Lemma 2.6. Let γ ∈ L1(0, 1) with γ ≥ 0 and let u ∈ AC1[0, 1] satisfy

−(r(t)(φ(u′))′ + γ(t)φ(u) ≥ 0 a.e. on (0, 1),

au(0)− bφ−1(r(0))u′(0) ≥ 0, cu(1) + dφ−1(r(1))u′(1) ≥ 0.

Then there exists a constant κ > 0 independent of u such that for all t ∈ [0, 1],

u(t) ≥ κ‖u‖∞p(t).

Proof. By Lemma 2.5, u ≥ 0 on [0, 1]. Suppose ‖u‖∞ = u(τ) for some τ ∈ (0, 1).
By Lemma 2.4, the problem

−(r(t)φ(z′))′ + γ(t)φ(z) = 0 a.e. on (0, τ),

az(0)− bφ−1(r(0))z′(0) = 0, z(τ) = ‖u‖∞
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has a unique solution z ∈ AC1[0, τ ]. By Lemma 2.5, u ≥ z ≥ 0 on [0, τ ], from
which the boundary condition on z at 0 gives z′(0) ≥ 0. Note that

z(t) = z(0) +
∫ t

0

φ−1
(r(0)φ(z′(0)) +

∫ s
0
γ(ξ)φ(z)dξ

r(s)

)
ds,

from which (2.3) gives

z(t) ≤ z(0) +m0

(
z′(0) + φ−1(

∫ t

0

γ(s)φ(z)ds)
)
,

where m0 > 0 is a constant independent of u. Hence using (2.3) again, it follows
that

φ(z(t)) ≤ m1

(
φ(z(0) + z′(0)) +

∫ t

0

γ(s)φ(z)ds
)

for t ∈ [0, τ ], wherem1 > 0 is a constant independent of u. By Gronwall’s inequality,

φ(z(t) ≤ m1φ
(
z(0) + z′(0)

)
em1

R t
0 γ(s)ds

for t ∈ [0, τ ]. In particular when t = τ , we obtain

z(0) + z′(0) ≥ κ0‖u‖∞, (2.16)

where κ0 = (e−m1‖γ‖1/m1)1/(p−1). Since (r(t)φ(z′))′ = γ(t)φ(z) ≥ 0 on (0, τ), it
follows that r(t)φ(z′) ≥ r(0)φ(z′(0)), which implies

z′(t) ≥ (r(0)/‖r‖∞)1/(p−1)z′(0).

If b = 0 then z(0) = 0 and (2.16) give

z(t) =
∫ t

0

z′ ≥
( r(0)
‖r‖∞

) 1
p−1

κ0‖u‖∞t = κ1(at+ b)‖u‖∞ (2.17)

for t ∈ [0, τ ], where κ1 = a−1(r(0)/‖r‖∞)1/(p−1)κ0.
On the other hand, if b > 0 then z′(0) = a

bφ−1(r(0))z(0) and (2.16) becomes
z(0) ≥ κ̃1‖u‖∞, where κ̃1 = κ0(1 + a

bφ−1(r(0)) )−1. Hence

z(t) ≥ z(0) ≥ κ̃1‖u‖∞ ≥ κ2(at+ b)‖u‖∞ (2.18)

for t ∈ [0, τ ], where κ2 = κ̃1/(a + b). Combining (2.17) and (2.18), we obtain
z(t) ≥ κ3(at+ b)‖u‖∞ for t ∈ [0, τ ], where κ3 > 0 is independent of u, λ, h.

Next, let w ∈ AC1[τ, 1] be the unique solution of

−(r(t)φ(w′))′ + γ(t)φ(w) = 0 a.e. on (τ, 1),

w(τ) = ‖u‖∞, cw(1) + dφ−1(r(1))w′(1) = 0.

Then u ≥ w ≥ 0 on [τ, 1] and the boundary condition on w at 1 gives w′(1) ≤ 0.
Using the integral formula

w(t) = w(1)−
∫ 1

t

φ−1
(r(1)φ(w′(1))−

∫ 1

s
γ(ξ)φ(w)dξ

r(s)

)
ds

for t ∈ [τ, 1] and using similar arguments as above, we obtain w(t) ≥ κ4(d+ c(1−
t))‖u‖∞ for t ∈ [τ, 1], where κ4 > 0 is a constant independent of u. If τ = 0 then
u ≥ w on [0, 1] while if τ = 1 then u ≥ z on [0, 1]. Thus u(t) ≥ κ‖u‖∞p(t) for
t ∈ [0, 1], where κ = min(κ3, κ4), which completes the proof. �

The next result provides some estimates on λ1 for p > 1.
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Lemma 2.7. Suppose b+ d > 0 and r ≡ 1. If d > 0 then
min(A1, 1)

2(p−1)+
≤ λ1 ≤ (A1 + (m1 + 2)pem1p)(2p+ 1), (2.19)

where A1 = (c/d)p−1,m1 = (c+ 2d)/d, while if b > 0, then
min(B1, 1)

2(p−1)+
≤ λ1 ≤ (B1 + (m2 + 2)pem2p(2p+ 1), (2.20)

where B1 = (a/b)p−1, m2 = (a+ 2b)/b.

Proof. Using the Rayleigh quotient, we obtain

λ1 = inf
u∈V

φ(u′(0))u(0)− φ(u′(1))u(1) +
∫ 1

0
|u′|pdt∫ 1

0
|u|pdt

(2.21)

where V = {u ∈ C1[0, 1] : au(0)− bu′(0) = 0, cu(1) + du′(1) = 0}.
Suppose d > 0. Then u′(1) = −(c/d)u(1) and φ(u′(0)u(0) ≥ 0 for u ∈ V . Hence

λ1 = inf
u∈V

φ(u′(0))u(0) +A1|u(1)|p +
∫ 1

0
|u′|pdt∫ 1

0
|u|pdt

≥ inf
u∈V

A1|u(1)|p +
∫ 1

0
|u′|pdt∫ 1

0
|u|pdt

.

(2.22)

Let u ∈ V . Then

|u(t)| ≤ |u(1)|+
∫ 1

0

|u′|dt,

which implies ∫ 1

0

|u|pdt ≤ 2(p−1)+
(
|u(1)|p +

∫ 1

0

|u′|pdt
)

≤ 2(p−1)+

min(A1, 1)

(
A1|u(1)|p +

∫ 1

0

|u′|pdt
)
.

Consequently, (2.22) gives λ1 ≥ min(A1,1)

2(p−1)+ .
Next, we choose u(t) = t2em1(1−t), where m1 = (c+ 2d)/d. Then u ∈ V and

u(t) ≥ t2,

|u′(t)| = tem1(1−t)|2−m1t| ≤ (m1 + 2)em1

for t ∈ [0, 1]. Hence∫ 1

0

|u|pdt ≥ 1
2p+ 1

,

∫ 1

0

|u′|pdt ≤ (m1 + 2)pem1p. (2.23)

Since u(0) = 0, u(1) = 1, it follows from (2.23) and the equality in (2.22) that

λ1 ≤ (A1 + (m1 + 2)pem1p)(2p+ 1)

i.e. (2.19) holds. Suppose next that b > 0. Then

λ1 = inf
u∈V

B1|u(0)|p − φ(u′(1))u(1) +
∫ 1

0
|u′|pdt∫ 1

0
|u|pdt

≥ inf
u∈V

B1|u(0)|p +
∫ 1

0
|u′|pdt∫ 1

0
|u|pdt

.

(2.24)
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Using the inequality

|u(t)| ≤ |u(0)|+
∫ 1

0

|u′|dt,

it follows that ∫ 1

0

|u|pdt ≤ 2(p−1)+

min(B1, 1)

(
B1|u(0)|p +

∫ 1

0

|u′|pdt
)
,

from which (2.24) implies λ1 ≥ min(B1,1)

2(p−1)+ . By choosing u(t) = (1 − t)2em2t, where
m2 = (a+ 2b)/b, we see that u ∈ V and the equality in (2.24) gives

λ1 ≤ (B1 + (m2 + 2)pem2p)(2p+ 1),

which establishes (2.20). This completes the proof. �

Example 2.8. It follows from (2.19) that the principal eigenvalue λ1 of −(φ(u′))′

with boundary conditions u(0)− u′(0) = 0 = u(1) + u′(1) satisfies

1
2(p−1)+

≤ λ1 ≤ (1 + 5pe3p)(2p+ 1)

3. Proof of main results

Proof of Theorem 1.1. In view of (A2)–(A5), there exist constants r, r1, λ̄ > 0 with
r < r1 and λ̄ < λ1 such that for a.e. t ∈ (0, 1),

f(t, z) ≤ λ̄zp−1, f(t, z) + (η(t) + 1)zp−1 ≥ 0 (3.1)

for z ≤ r;
|f(t, z)| ≤ γr1(t) ≤ γr1(t)(z/r)p−1

for r < z < r1, and f(t, z) > 0 for z > r1 and a.e. t. Hence

f(t, z) + γ(t)zp−1 ≥ 0

for a.e. t ∈ (0, 1) and all z ≥ 0, where γ(t) = max(η(t) + 1, γr1(t)/rp−1). For
v ∈ E = C[0, 1], we have f(t, |v|) + γ(t)|v|p−1 ∈ L1(0, 1) in view of (A3). Hence by
Lemma 2.4, the problem

−(r(t)φ(u′))′ + γ(t)φ(u) = f(t, |v|) + γ(t)|v|p−1 a.e. on (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,

has a unique solution u = Av ∈ C1[0, 1]. Since A = T0 ◦ S0, where S0 : C[0, 1] →
L1(0, 1) is defined by (S0v)(t) = f(t, |v|) + γ(t)|v|p−1 and T0 is defined in Lemma
2.4 with α = β = 0, we see that A : E → E is completely continuous. We shall
verify that

(i) u = θAu, θ ∈ (0, 1] =⇒ ‖u‖∞ 6= r.
Indeed, let u ∈ E satisfy u = θAu for some θ ∈ (0, 1] and suppose ‖u‖∞ = r. Then
u ∈ AC1[0, 1] and

−(r(t)φ(u′))′ + γ(t)φ(u) = θp−1(f(t, |u|) + γ(t)|u|p−1) ≥ 0 a.e. on (0, 1),

which implies u ≥ 0 on (0, 1) by Lemma 2.6. Hence

− (r(t)φ(u′))′ = θp−1f(t, u)− (1− θp−1)γ(t)up−1 ≤ θp−1f(t, u) (3.2)

a.e. on (0, 1).
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By [10, Lemma 2.1], there exists a constant k0 > 0 such that |z(t)| ≤ k0|z|C1p(t)
for all t ∈ [0, 1] and z ∈ C1[0, 1] satisfying the Sturm-Liouville boundary conditions
in (1.1). In particular, supt∈(0,1)

u(t)
p(t) <∞. Since

−(r(t)φ(φ′1)′) = λ1φ
p−1
1 > 0 a.e. on (0, 1),

it follows from Lemma 2.6 (with γ ≡ 0) that inft∈(0,1)
φ1(t)
p(t) > 0. Hence there exists

a smallest positive constant δ0 such that u ≤ δ0φ1 on [0, 1]. Then it follows from
(3.1) and (3.2) that

−(r(t)φ(u′))′ ≤ λ̄up−1 ≤ λ̄δp−1
0 φp−1

1 a.e. on (0, 1),

from which the weak comparison principle (see [9, Lemma 3.2], [17, Lemma A2])
gives

u ≤ (λ̄δp−1
0 /λ1)

1
p−1φ1

on [0, 1], a contradiction with the definition of δ0. Thus ‖u‖∞ 6= r i.e. (i) holds.
Next, we claim that
(ii) There exists a constant R > r such that u = Au + ξ, ξ ≥ 0 implies
‖u‖∞ 6= R.

Let u ∈ E satisfy u = Au+ ξ for some ξ ∈ [0,∞). Then u− ξ = Au and therefore

−(r(t)φ(u′))′ + γ(t)φ(u− ξ) = f(t, |u|) + γ(t)|u|p−1 a.e. on (0, 1),

which implies

− (r(t)φ(u′))′ + γ(t)φ(u) ≥ f(t, |u|) + γ(t)|u|p−1 ≥ 0 a.e. on (0, 1). (3.3)

Since lim infz→∞
f(t,z)
zp−1 > λ1 uniformly for a.e. t ∈ (0, 1), there exist positive

constants L, λ̃, λ0 with λ̃ > λ0 > λ1 such that f(t, z) ≥ λ̃zp−1 for a.e. t ∈ (0, 1)
and z > L.

Let ε = (k0l)−1
(

(λ̃/λ1)
1

p−1 − (λ0/λ1)
1

p−1

)
, where l = supt∈(0,1)

p(t)
φ1(t)

∈ (0,∞),
and let δ be given by (2.4).Choose I = [α, β] ⊂ [0, 1] such that∫

[0,1\I
(λ̃+ γL(t)) < δ,

where γL is defined by (A3). Let R > max(r,
1
κl0

,
L

κmin[α,β] p
), where l0 =

inf(0,1)
p
φ1

> 0 and κ is defined in Lemma 2.6. We claim that ‖u‖∞ 6= R. In-
deed, suppose ‖u‖∞ = R. Then it follows from (3.3) and Lemma 2.6 that u(t) ≥
κ‖u‖∞p(t) for t ∈ (0, 1). In particular, (3.3) becomes

− (r(t)φ(u′))′ ≥ f(t, u) on (0, 1), (3.4)

and
u(t) ≥ κRp(t) ≥ κRmin

[α,β]
p > L

for t ∈ I. Hence f(t, u) ≥ λ̃up−1 for a.e. t ∈ I. Let δ1 be the largest positive
number such that u ≥ δ1φ1 on (0, 1). Then δ1 ≥ κl0R > 1 and

−
(
r(t)φ(

u′

δ1
)
)′
≥

{
λ̃φ1

p−1 if t ∈ I,
−γL(t) if t /∈ I.
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Let u1, u2 ∈ AC1[0, 1] satisfy

−(r(t)φ(u′1))′ =

{
λ̃φ1

p−1 if t ∈ I,
−γL(t) if t /∈ I

≡ h1 a.e. on (0, 1),

and
−(r(t)φ(u′2))′ = λ̃φ1

p−1 ≡ h2 a.e. on (0, 1).

with Sturm-Liouville boundary conditions. Note that u2 = (λ̃/λ1)
1

p−1φ1 and u ≥
δ1u1 on (0, 1). Since

‖h1 − h2‖1 ≤
∫

[0,1]\I
(λ̃+ γL(t)) < δ,

it follows from (2.4) that |u1 − u2|C1 < ε. Hence

u1 ≥ u2 − k0εp ≥ u2 − k0lεφ1

=
(
λ̃/λ1

) 1
p−1

φ1 −
(

(λ̃/λ1)
1

p−1 − (λ0/λ1)
1

p−1

)
φ1

= (λ0/λ1)
1

p−1φ1 on (0, 1),

and consequently, u ≥ δ1(λ0/λ1)
1

p−1φ1 on (0, 1), a contradiction with the definition
of δ1. Thus ‖u‖∞ 6= R, as claimed i.e. (ii) holds.

By Lemma 2.1, operator A has a fixed point u ∈ E with ‖u‖∞ > r, which is a
classical positive solution of (1.1) in view of Lemmas 2.4 and 2.6. This completes
the proof. �
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