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POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL
STURM-LIOUVILLE SUPERLINEAR p-LAPLACIAN PROBLEM

KHANH DUC CHU, DANG DINH HAI

Communicated by Pavel Drabek

ABSTRACT. We prove the existence of positive classical solutions for the p-
Laplacian problem
—(r®)eo(u) = f(t,u), te€(0,1),
au(0) = bp ! (r(0))u’(0) = 0, cu(1) +dé~ ' (r(1))u'(1) =0,
where ¢(s) = |s|P72s,p > 1, f: (0,1) x[0,00) — R is a Carathéodory function

satisfying

e 1(2) f(t,2)

imsup ——=

0t 2p—1 2p—1
uniformly for a.e. ¢ € (0,1), where A1 denotes the principal eigenvalue of
—(r(t)¢(v’))’ with Sturm-Liouville boundary conditions. Our result extends
a previous work by Mandsevich, Njoku, and Zanolin to the Sturm-Liouville
boundary conditions with more general operator.

< A1 < liminf
Z2—00

1. INTRODUCTION

Consider the one-dimensional p-Laplacian problem
—(r(t)p(u) = f(t,u) a.e. on (0,1),
au(0) — b~ (r(0))u'(0) = 0, cu(1) +do~ (r(1))u/(1) = 0,
where ¢(s) = |s|P~2s, p > 1, a, b, ¢, d are nonnegative constants with ac+ad+bc > 0,
r:[0,1] — (0,00) and f: (0,1) x [0,00) — R.
We are interested in positive classical solution of (1.1)), that is, solutions u €
C1[0,1] with w > 0 on (0,1), ¢(u') absolutely continuous on [0, 1] and satisfying

T1).

Let us look at the literature on problem (|1.1)) with Dirichlet boundary conditions
i.e. b =d = 0. In the sublinear case, Lan, Yang, and Yang [I4] proved the existence
of a classical positive solution to (1.1)) when r(¢) = 1 and f is nonnegative with

(1.1)

imsup 202 < 3y < timint L83 < o (1.2)
200 2PT1 20t zZP71
uniformly for a.e. ¢ € (0,1), where A\; = 2P(p — 1)([01 (kjﬁ)p is the principal

eigenvalue of —(¢(u'))’ with zero boundary conditions (see [4, [5]). In particular,
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when p =2 and f : [0,00) — [0,00) is continuous, (|1.2]) becomes
f(2) f(2)

limsup —= < 72 < liminf 222 < 0,
z—00 z z—0t z
which was used by Webb and Lan [I8] to obtain nonnegative solutions to
with ¢(s) = s. In fact, [I8] gave a general method with covered many boundary
conditions including nonlocal ones and included both sublinear and superlinear
types of conditions. In the superlinear case, Mandsevich, Njoku, and Zanolin [15]
used time-mapping estimates to prove the existence of a classical positive solution
to with Dirichlet boundary conditions when r(t) = 1,

t t
lim sup I ’?) < A1 < liminf ft,2) < o0 (1.3)
ZHO‘*' pr zZ—00 Zp71
and liminf,_ g+ ]; (,:Lzl) > —oo uniformly for a.e. t € (0, 1), which improves a previous

result by Kaper, Knapp, and Kwong [I1] where the stronger condition
) o 1(62)

Lo =[1<0 and =
z—0 z

zZ—00 2 -1

uniformly for ¢ € (0,1) was used. Note that when p = 2 and f is independent of
t, condition (1.3]) together with f(0) = 0 and f > 0 was used in [8] to show the
existence of a positive solution to the PDE problem

—Au = f(u) in Q, u=0on 0.

Wang [19] showed the existence of a positive solution to (I.1) under nonlinear
boundary conditions that include the Sturm-Liouville one when f is nonnegative
and satisfies either the sublinear condition

lim 1) =00 and lim 1) =0,
2—0+ ZP*]- Z—00 prl

or the superlinear one
lim 1) =0 and lim 1) = 00,
2—0+ 2P~ 1 z—o00 zP—1

which extended a previous result by Erbe and Wang [7] when p = 2. Similar results
were established in [9] for singular Sturm-Liouville boundary value problems. Note
that the conditions in [7, [0, 19] do not involve the principal eigenvalue of the
corresponding operator. Existence results in the PDE version of involving the
principal eigenvalue of the p-Laplacian operator for p > 2 was studied in [3]. In
particular, the existence of a nontrivial nonnegative weak solution u € VVO1 P(Q) to
the problem

—Apu= f(u) inQ,

u=0 on J9,
was established for f satisfying |f(2)|((1+ 2P~1)~! bounded on [0, 00) and either
—o0o < lim 1(z) <A < lim M<oo,
2—0+ 2P~ 1 z—o00 zP—1
or
—oo < lim 1(z) <A1 < lim f(z) < 00

z—o0 zP—1 2—0+ zP—1
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holds. The approach used in [3] was via the Granas fixed point index (see [6]).
In this paper, we shall extend the result in [I5] to include the general Sturm-
Liouville boundary conditions with more general operator e.g. allowing the case
r Z 1. Note that the proof in [I5] does not apply to this general context. Since
we do not require that f be non-negative but that there exists n € L*(0,1) with
1 > 0 such that liminf, o+ fz(fﬁ) > —n(t) uniformly for a.e. ¢ € (0,1), our result
also improves a corresponding result in [12]. In addition, some estimates on the
principal eigenvalue Ay for p > 1 are provided (see Lemma below). We refer
to [10} 13}, 16, 20] for existence results related to under suitable sublinear or
superlinear conditions. Our approach is based on a Krasnoselskii type fixed point
theorem in a Banach space.
We shall make the following assumptions:

(A1) r:[0,1] — (0,00) is continuous.

(A2) f:(0,1) x [0,00) is a Carathéodory function, that is f(:, z) is measurable
for each z > 0 and f(t,-) is continuous for a.e. ¢ € (0,1).

(A3) For each k > 0, there exists v, € L'(0,1) such that

[F(t2)] < m(t)
for a.e. t € (0,1) and z € [0, k].
(A4) There exists n € L'(0,1) with n > 0 such that

[ 2)
lim i 2 2 (1)

uniformly for a.e. t € (0,1).

(A5)
f(t,2)

p—1

f(t,2)

< A1 < liminf
p—1

z—0o0 2

lim sup
z—0t Z

uniformly for a.e. t € (0,1).

Our main result reads as follows.
Theorem 1.1. Let (A1)—(A5) hold. Then (1.1)) has a positive classical solution u
with infye o) % > 0, where p(t) = min(at + b, d + ¢(1 —t)).

In particular, when f is independent of ¢, we obtain the following result.

Corollary 1.2. Let r satisfy (Al) and let f :[0,00) — R be continuous with

—o00 < lim f(z) <A < lim Mgoo
z—07t Zp71 2—00 prl

Then (L.1)) has a positive classical solution u with inf,cq 1) % > 0.

2. PRELIMINARIES

Let ACY0,1] = {u € C[0,1] : ¥/ is absolutely continuous on [0,1]}. We shall
denote the norm in L?(0,1) and C*[0,1] by | - ||, and | - |c1 respectively. Let Ay be
the principal eigenvalue of —(r(t)¢(u’))’ on (0,1) with Sturm-Liouville boundary
conditions, and let ¢; be the corresponding positive, normalized eigenfunction, i.e.
—(r(t)|¢,[P726,) = AP ae. on (0,1),41 > 0 on (0,1), [|$1]lec = 1 and ¢y
satisfies the Sturm-Liouville boundary conditions in (see [2, Theorem 3.1]).
Note that A\; > 0. We recall the following fixed point theorem of Krasnoselskii type
in a Banach space (see Amann [I, Theorem 12.3]).
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Lemma 2.1. Let F be a Banach space and A : E — E be a completely continuous
operator. Suppose there exist h € E h # 0 and positive constants r, R with r # R
such that

(a) Ify € E satisfies y = 0 Ay for some 0 € (0,1] then |ly|| #r,
(b) If y € E satisfies y = Ay + £h for some £ > 0 then |ly|| # R.

Then A has a fized point y € E with min(r, R) < ||y|| < max(r, R).

Lemma 2.2. Let tg,t1,a, 3 be constants with 0 < tq < t; <1, and h € L*(to,t1).
Then the problem

—(r(t)p(u)) =h a.e. on (to,t1),
au(ty) — b1 (r(to))u/ (to) = a, cu(ty) +do (r(t))u' (t1) = 3

has a unique solution u = Th € AC[to,t1]. Furthermore T : L(to,t1) — Clto, 1]
is completely continuous.

(2.1)

Proof. By integrating, it follows that (2.1) has a unique solution u € AC'[ty, ]

given by
wn=c+ [ o(% fo)

0
where C' and D are constants satisfying

aC —bp~ (D) = a,

C+/ ¢! fto )ergbl(D/ttlh)ﬂ. (22)

0

In what follows, we shall see, in partlcular, that C, D are uniquely determined. We
shall denote by K;,i=0,1,2,..., positive constants independent of u and h.

Case 1: a =0. Then b,c¢ >0, D = —¢(«/b) and

o B—de~' (D — [ h) _/tt d)l(D—fi,h)d&

¢ r(s)

Using the inequality
(z+y)? <m(z?+y?) for z,y > 0,9 > 0, (2.3)
where m = 2@~ we deduce that |C| < K1 + K¢~ Y(]|h]]1), which implies
[ulloo < K+ K¢~ ([[2]]1).

Case 2: a > 0. Then ({2.2)) is equivalent to C' = M, where D is the solution

of
b~ (D t1 D—[°h t1
2(D) = (D) —|—c/ d)l(ft“)ds+d¢>1<D—/ B)=B-
a to r(s) to a
Note that D is uniquely determined since (D) is increasing in D, limp_ 7(D) =
oo and limp_, o y(D) = —o0.

If ¢ = 0 then d > 0 and it follows that |D| < ||h||1 + ¢(]|8|/d), while if ¢ > 0 then

IM<HWrHMM¢(( 18-
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Hence in both cases,
[l ety 0] = lulloo + |4/ [loo < K5+ Kod ™ ([[A]1)-

i.e. T maps bounded sets in L1 (g, 1) into bounded sets in C[tg,t1]. To show that
T is continuous, let € > 0, h; € L(tg,t1) and u; = Th;,i = 1,2. We shall show that
there exists a constant § > 0 depending on ¢ and an upper bound of [|h;|[ 1 (4y,¢,),
i =1, 2, such that

A1 = hall L1 (to,00) < 0 = |ur — uz|cfey 1) < €. (2.4)
Note that [
k Di— [ hi
i(t) =C; e —)d
wlt) = Ot [ o7 (T

and from the above calculation we obtain

1Dy < max (il o) + K = My

for i = 1,2, where K > 0 independent of u; and h;. This implies

¥ Di— [ hi L
|D; — [ hil, | ——2—] < 2Mymax(r, ,1) =M
to r(s)
for all s € [to,t1],i = 1,2, where 79 = ming ;7 > 0. Since ¢~! is uniformly

]
continuous on I = [—M, M], it follows from the formulas for C;, D;, and the fact
that |Dy — Do| < [[h1 — hal|p1(zy,¢,) that there exists a constant 6 > 0 such that
(2.4) holds. This completes the proof. O

Remark 2.3. If o = § = 0 then Lemma is reduced to [9, Lemma 3.1]. Note
that in this case K5 = 0 in the above proof i.e. |u|cif4,] < Koo~ ([|]]1) for all u

satisfying (2.1).

Lemma 2.4. Let to,ty,a, 3 be constants with 0 <ty < t; < 1, and v,h € L' (to,t1)
with v > 0. Then the problem

—(rt)p(u) +y(t)p(u) = h(t) a.e. on (to,t1),
au(ty) — bp L (r(to))u/ (to) = o, cu(ty) +do (r(t))u' (t1) = 3

has a unique solution u = Toh € AC[tg,t1]. Furthermore Ty : L' (to,t1) — Clto, 1]
is completely continuous.

(2.5)

Proof. Let E = Clto,t1] be equipped with norm |ju|| = SUD(1, 1, |u|. By Lemma
for each v € E, the problem

—(r(t)p(u)" = h(t) —y(t)p(v) ae. on (to,t1),
au(ty) — bo~ 1 (r(to))u (to) = a,  cu(ty) +do™ L (r(t))u (t) = 3

has a unique solution u = Sv € AC'[ty,t;] and S : E — E is completely continuous.
Let u € E satisfy u = 0Su for some 6 € (0,1]. Then

—(r(t)p(u)) + 0P y(t)p(u) = 0P~ h(t) a.e. on (to,t1),
au(ty) — bd~ (r(to))u' (to) = O, cu(ty) +do~  (r(t))u/(t1) = 08
By integrating , we obtain
() (1)) + 0771 [ (h — g (u))ds

Ol (1)) = . (27)

(2.6)
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for ¢ € [to,t1]. Multiplying the equation in (2.6) by v and integrating gives

t1

—T(t1)¢(U'(t1))U(t1)+7‘(to)¢(U'(to))U(to)+/IT(t)IU’IpS/ |hul. (2.8)

to to
We shall consider two cases.

Case 1. b =0 or d = 0. Without loss of generality, we suppose b = 0. Then
u(tp) = Ba/a = Bap. By the mean value theorem,

t1

Jull < ool + [ 1 (2.9
to

Suppose first that d = 0. Then u(t;) = 068/c = 08y. Let £(t) = 0(At + B),

where A, B are constants such that &(tg) = fag, £(t1) = 08y ie. A== B —

t1—to ?
aoxf_g’“to. In what follows, we shall denote by R;, i = 0,1,..., positive constants

independent of u and 6.
Multiplying the equation in (2.6)) by (u — &) and integrating, we obtain

t1 t1 ty
m [ <Al [ QAL+ B )
0 t

0 0

t1
+ ([lull +A+B)/ .

to

This, together with (2.9)), implies fttol [u/|P < Ry.
Suppose next that d > 0. Then from the boundary condition at ¢;, we obtain

u'(t) = ;f%f((;l))). Hence if ¢ = 0 then v/(t1) = % = 6, from which (2.7)
and (2.9)) imply
t1
/]| < 31(1 +/ |u'|). (2.10)
to

Consequently, (2.8) gives
t] tl
-1 -1
| e <l Q8=+ ool + ([ 181)
to tO

which, together with and (2.10)), implies that f:ol [v/|P < Rs.
If ¢ > 0, then
—r(t)p(u'(t))u(t)
cu(ty) — 68
= r(t1)¢(m)u(tl)
cu(ty) — 08 ((cu(ty) — 08 (do~t(r(t1))\ = 68 (2.11)
- T(tl)gb(daﬁ*l(r(tl))) ((dw(r(tl)))( ¢ ) + 7)
cu(t;) — 648
do=(r(t1))

By (3 and (3.

o000 < - (Il G [+ ([t ). 22

p
ZRQ ’ *Rg.
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Using (2.9), (2.11) and (2.12)) together with u(tg) = fag in (2.8)), we deduce that

f;l |o/|P < Ry4. Hence in either case ﬁ? |w/|P < Ry, where Rs = max(Ry, Ra, Ry)
and so ||ul| < |ag| + RE” .
Case 2. b > 0,d > 0. Then u/(ty) = 2llo)=0% 4nd o/ (t)) = 225ct) Hence

bg=I(r(to)) d¢=1(r(t1)) "
(2.8) and (2.9) give

cu(ty) — 68 au(ty) — o " p
()0 Gty e + rito)o (S S Jutto) + [ e

< ()l

Since a + ¢ > 0, we can assume without loss of generality that ¢ > 0. Then

(2.13)

ty
Jull < futen)| + [

dp~(r(t1)) cu(tr) — 08

< ) =0y B [
c dp=t(r(t1))" ¢ Jy
which, together with (2.11]) and (2.13)), imply

cu(ty) — 68 P " /\p
d¢_1(r(t1))) +/to /P < Re.

Consequently, |lu]| < Rg. Thus, we have shown that in both cases that |ju|| is
bounded by a constant independent of u and 6. By the Leray-Schauder fixed point
theorem, S has a fixed point u, which is a solution of in AC'[tg,t1]. To show
uniqueness, let u, v be solutions of . Then

= (r®)(¢(w) — p(v")) +v(t)(d(u) — ¢(v)) =0 a.e. on (to,t1). (2.14)

We claim that (¢(u/(to)) — ¢(v'(to))(u(to — v(to) > 0. This is true when b = 0
since u(ty) = a/a = v(tp) in this case. If b > 0 then u/(ty) = %,v’(?ﬁo) =

av(tg)—a

261 (r(io))’ which implies
(6(u (t0)) — (v (to))(u(to) — v(to)
_ au(t)—a av(t)—a
o (gb(m) - ¢(m))(u(to —v(ty) > 0.

Similarly, (¢(w'(t1)) — d(v'(t1))(u(ts —v(t1) < 0. Hence, multiplying (2.14) by v —wv
and integrating, we get

[ e - s — v <o,

to

which implies v’ = v" on (¢1,2). Hence there exists a constant k such that u(t) =
v(t) + k for all ¢ € [t1,t2]. The boundary conditions then give ak = ck = 0. Hence
k = 0, which completes the proof. ([l

Next, we prove a comparison principle, which extends [9], Lemma 3.2] to the case
7=>0,7#0.
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Lemma 2.5. Let v,h; € L'(to,t1), i = 1,2, with v > 0 and hy > hy. Let
u; € AC[tg, t1], i = 1,2 satisfy
—(r(t)p(u;)) +v(t)p(ui) = hi a.e. on (to, 1),
aui (to) — b~ (r(to) ) (to) > aus(to) — bo™" (r(to))us(to),
cu (t1) +de™  (r(t))ui (t) = cuz(ts) +do™  (r(t) Juz(t)-
Then uy > ug on [to, t1].

Proof. Suppose on the contrary that there exists ¢ € (t,t1) such that uy (£) < ua(%).
Let (o, 3) C (to,t1) be the largest open interval containing  such that u; < uy on
(ar, B). Hence

(r(t)(op(uy) — d(uy)) <0 a.e. on (o, 8), (2.15)

Case 1. uj(a) = us(a) or ui(8) = u2(B). Suppose uj(a) = uz(a). Then
u) (@) < uh(a). Hence implies v} < uh on (o, B). If uy(8) = ua(B) then this
gives u; > ug on («, ), a contradiction. If uy(5) < uz(B) then f = ¢; and from
the boundary condition at ¢, we get d(u5(t1) — uj(t1)) < 0. Hence if d > 0 we
get uh(ty) < w)(ty) from which gives uj > uh on (o, ) and so u; > uy on
(o, B), a contradiction. On the other hand, if d = 0 then c(us(t1) — u2(t1)) > 0,
which implies uq(¢1) > ua(t1), a contradiction. Similarly, we get a contradiction if
ur(B) = u2(B).

Case 2. u; < up on [, 3] i.e. a =1y and = t;. Suppose miny, g(u1 — uz) =
ui (1) — uz(r) < 0 for some 7 € [, B]. If 7 € (tg,t1) then uf(7) = u)h(7) and it
follows from that there exists a constant £ < 0 such that u; = up + % on
[to, t1]. Using the boundary conditions, we deduce that ak, ck > 0, a contradiction.
Suppose 7 = to. Then

a(ui(to) — ua(to)) = by~ (r(to)) (uy (o) — us(t)) 2 0,
which implies a = 0. Hence b > 0 and the boundary condition at ¢y imply ul(to)
ub(tp) < 0, from which ([2.15) - gives u} < ufy on (to,t;). Consequently, u; = ug+k on

(to, t1) for some constant k < 0, a contradiction. Similarly, we reach a contradiction
when 7 = t;, which completes the proof. [

The next result plays an important role in the proof of the main result. When
~v = 0, it was obtained in [0, Lemma 3.4] but the proof there does not apply to the
case v Z 0.

Lemma 2.6. Lety € L'(0,1) with v > 0 and let u € AC*[0,1] satisfy
—(r@)(@(u)) +v(t)¢(u) >0 a.e. on (0,1),
au(0) — b~ (r(0))u’(0) >0, cu(l) +de*(r(1))d/(1) > 0.
Then there exists a constant £ > 0 independent of u such that for all t € [0,1],
u(t) = kl[ulloop(t).

Proof. By Lemma 2.5, u > 0 on [0,1]. Suppose |ulls = u(r) for some 7 € (0,1).
By Lemma, the problem

—(r()e(z)" +7(1)p(2) =0 ae. on (0,7),
az(0) = by~ (r(0))2'(0) = 0, 2(7) = [|ullo



EJDE-2018/92 STURM-LIOUVILLE SUPERLINEAR p-LAPLACIAN PROBLEM 9

has a unique solution z € AC'[0,7]. By Lemma u >z > 0 on [0,7], from
which the boundary condition on z at 0 gives 2’(0) > 0. Note that

-0+ [ o (r(0)¢(2/(0))7«+(8f>0 ),

from which (2.3) gives

<(t) < 20) + mo (20 + 67! | S (0(s)),

where mg > 0 is a constant independent of u. Hence using (2.3)) again, it follows
that

t
0(:(0) < i (0(:00) + £ O) + [ +()0(2)ds)
for t € [0, 7], where m; > 0 is a constant independent of u. By Gronwall’s inequality,
9(=(t) < m1g(=(0) + 2'(0))em fo ()45
for t € [0, 7]. In particular when ¢t = 7, we obtain
2(0) +2(0) = rollulloo, (2.16)
where kg = (e~ /m )/ =1 Since (r(t)p(2')) = ~v(t)p(z) > 0 on (0,7), it
follows that r(t)¢(z") > r(0)¢(2'(0)), which implies
2(t) = (r(0)/r]loe) /7D (0).

If b =0 then z(0) = 0 and give

z(t) = /t 2> (T(?) )ﬁfﬁoﬂuﬂwt = k1(at + b)||ullco (2.17)

|
for t € [0, 7], where k1 = a=(7(0)/||7l00) @~V k.
On the other hand, if b > 0 then 2/(0) = %2(0) and (2.16) becomes

Z(O) > ;‘%1||’u||oo7 where k1 = Iio(l + m)_l- Hence

2(t) = 2(0) = Fallulloc = ra(at + b)IIUHoo (2.18)

for t € [0,7], where k2 = R1/(a + b). Combining (2.17) and (2.18), we obtain
z(t) > ka(at + b)||u||w for t € [0, 7], where k3 > 0 is mdependent of u, A, h.
Next, let w € ACY[r,1] be the unique solution of

—(r®)o(w")) +~(t)p(w) =0 ae. on (7,1),
w(T) = [ulloo, cw(1)+dep (r(1))w' (1) = 0.

Then u > w > 0 on [r,1] and the boundary condition on w at 1 gives w’(1) < 0.
Using the integral formula

wt) =iy - [ g (WL Aoty ,

for t € [r,1] and using similar arguments as above, we obtain w(t) > k4(d + (1 —
t))|lu||eo for t € [7,1], where k4 > 0 is a constant independent of u. If 7 = 0 then
u > w on [0,1] while if 7 = 1 then u > z on [0,1]. Thus u(t) > &||u|eop(t) for

€ [0,1], where k = min(ks, k4), which completes the proof. O

The next result provides some estimates on A\; for p > 1.
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Lemma 2.7. Suppose b+d >0 andr =1. Ifd > 0 then

min(Aq,1 -
# <A< (A + (my +2)Pe™P)(2p + 1), (2.19)
where Ay = (¢/d)P~1,my = (¢ + 2d)/d, while if b> 0, then
in(By,1
% <\ < (Bi+ (mg +2)Pe™P(2p + 1), (2.20)

where By = (a/b)P~t, ma = (a + 2b)/b.
Proof. Using the Rayleigh quotient, we obtain

M — inf (' (0))u(0) — p(u' (1)u(1) + Jy |w'|7dt
uev Jo luldt

where V = {u € C1[0,1] : au(0) — bu’(0) = 0, cu(1) + du’(1) = 0}.
Suppose d > 0. Then /(1) = —(¢/d)u(1) and ¢(u'(0)u(0) > 0 for u € V. Hence

$(u' (0))u(0) + Aru(1)| + [ [o/|Pdt

(2.21)

)\1 = inf

ueV fol \u|Pdt (2 22)
A u(D|P + [ |/ |Pdt '
o MOP e
A

Let u € V. Then )
u(®)] < u()| + [ [o'|ar,
0

which implies

1 n 1
/ julPdt < 2V (|u(1)|p+/ 't
0 0

o(p—1)7" A ) 1 oy
G — .
~ min(41,1) ( iu(@)] +/0 [l t)

Consequently, (2.22) gives A\; > %
Next, we choose u(t) = t2¢™ (1=t where m; = (¢ + 2d)/d. Then u € V and
u(t) > 2,
[/ (t)| = te™ D12 —myt] < (my + 2)e™
for t € [0,1]. Hence
1 1 1
ulPdt > ———, u|Pdt < (mq + 2)Pe™P, 2.23
[ > o [ < 42 (223
Since u(0) = 0,u(1) = 1, it follows from (2.23]) and the equality in (2.22)) that
A1 < (Ay + (my +2)Pe™P)(2p + 1)
i.e. (2.19) holds. Suppose next that b > 0. Then
e Bilu(O)] — o (1)u(1) + [y [ "t
uevV fOl ‘u|Pdt
1
By |u(0)P "|Pdt
g BAHOP [
ueV fo |ulPdt

A =
(2.24)
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Using the inequality

1
()] < u(0)] + / |t

2(p=1)" L
ulPdt < Bu0p+/ u'|Pdt ),
[ a2 (o + [ ura)

from which (2.24) implies A; > 225D By choosing u(t) = (1 — t)2e™2¢, where

2(p—1)t

ma = (a + 2b)/b, we see that u € V and the equality in (2.24) gives
A1 < (By + (ma2 +2)Pe™P)(2p + 1),
which establishes (2.20). This completes the proof. O

it follows that

Example 2.8. It follows from (2.19) that the principal eigenvalue Ay of —(¢(u’))’
with boundary conditions u(0) — «/(0) = 0 = u(1) 4+ «/(1) satisfies
1

ST <M < (L+57e)(2p + 1)

3. PROOF OF MAIN RESULTS

Proof of Theorem[1.1. In view of (A2)~(A5), there exist constants r,71, A > 0 with
r <7 and A < A; such that for a.e. ¢t € (0,1),

Flt.2) < AP f(t2) 4+ (n(t) +1)2P71 2 0 (3.1)

for z < r;
[F(t )] <y () < v () (2/m)P
for r < z <1y, and f(t,2z) > 0 for 2 > r; and a.e. . Hence
ft.2)+9(1)2" >0
for a.e. t € (0,1) and all z > 0, where y(t) = max(n(t) + 1,7, (t)/r?~!). For
v € E =C|0,1], we have f(t,|v]) +~(t)|v|P~* € L'(0,1) in view of (A3). Hence by
Lemma [2-4] the problem
=)o) +y(t)d(u) = f(t, [v]) +(B)[o[P~"  ae. on (0,1),
au(0) — bo~H (r(0))u'(0) =0, cu(1) +dop~ (r(1))u'(1) = 0,

has a unique solution u = Av € C[0,1]. Since A = Ty o Sy, where Sy : C[0,1] —
L1(0,1) is defined by (Sov)(t) = f(t,|v|) +v(t)|v|P~! and Ty is defined in Lemma
24 with « = 3 = 0, we see that A : E — E is completely continuous. We shall
verify that

(i) u=0Au, 6 € (0,1] = [Juloc # .

Indeed, let u € E satisfy u = 8 Au for some 6 € (0, 1] and suppose ||u|/s = r. Then
u € AC'[0,1] and

—(r(®)o(u)) +v()g(u) = 077 (f(t, |ul) + v(O)|u’~) = 0 ae. on (0,1),
which implies u > 0 on (0,1) by Lemma[2.6f Hence
= (rMe()) = 0" f(tuw) = (1= P (e~ <P f(Bw)  (3.2)
a.e. on (0,1).
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By [10, Lemma 2.1], there exists a constant ko > 0 such that |z(¢)| < ko|z|c1p(t)
for all t € [0,1] and z € C[0, 1] satisfying the Sturm-Liouville boundary conditions

in (L.1I). In particular, SUPye (0,1 pE ? < 00. Since

—(r(®)p(¢})) = M’ >0 ae. on (0,1),

it follows from Lemma (with v = 0) that infyc (1) Q;l(—(tt)) > 0. Hence there exists

a smallest positive constant dy such that u < dp¢; on [0,1]. Then it follows from
(B.1) and (2) that
—(r(t)p(u)) < AP < AET'ETY ae. on (0,1),
from which the weak comparison principle (see [0, Lemma 3.2], [I7, Lemma A2])
gives
w < (A5 /A0) 7 6y
on [0, 1], a contradiction with the definition of §y. Thus ||ul|eo # 7 i.e. (i) holds.
Next, we claim that

(ii) There exists a constant R > r such that v = Au + £, £ > 0 implies
[ulloc # R
Let u € E satisfy u = Au + £ for some £ € [0,00). Then u — { = Au and therefore
—(r(OeW)) +1(B)o(u—€) = f(t,[ul) +v(B)ul’T"  ae. on (0,1),

which implies

= (re() +v(t)p(u) > f(t,|ul) +7(t)\UIp71 >0 a.e. on (0,1). (3.3)
Since liminf,_, fz pt Zl) > A; uniformly for a.e. e (0, ) there exist positive
constants L, \, \o with A > X9 > A\; such that f(t 7z) 2P~ for a.e. t € (0,1)

and z > L.
Let ¢ = (kol)~ ((/\/Al)p T (o/M)PT ) where | = supye o1y 2445 € (0,00),
and let § be given by (2.4).Choose I = [, 8] C [0,1] such that

/ A+ 7u(t) < 6.
[0,1\1

L
where ~yr is defined by (A3). Let R > max(r,

ko’ Kming, g p
info,1) £~ > 0 and & is defined in Lemma We claim that ||u|. # R. In-

deed, suppose lu]loc = R. Then it follows from and Lemma [2.6] that u(t) >
n||u\|oop(t) for t € (0,1). In particular, (3.3 becomes

= (rHe(u))" = f(t,u) on (0,1), (3-4)

), where lp =

and

u(t) > kRp(t) > kR [minp > L
for t € I. Hence f(t,u) > MuP~1 for a.e. t € I. Let &; be the largest positive
number such that u > d;¢; on (0,1). Then d; > lpR > 1 and

W N\ APt iftel,
_(T(t)‘z’(ﬁ)) = {%(t) ift ¢l
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Let uy,us € ACY[0, 1] satisfy

and

APl iftel,
—(t) iftgl
hi ae. on (0,1),

—(r(H)o(u))" =

—(r(t)p(uy)) = Ap1?™" =hy ae. on (0,1).

with Sturm-Liouville boundary conditions. Note that us = (5\/ Al)ﬁ(bl and u >
d1ug on (0,1). Since

T s/ Gt y2t) <6,
[0,1\1

it follows from (2.4) that |u; — us|c1 < e. Hence

Uy > Uz — koep > ug — koleg
= (W) o= (AA)7T = Qo/M)7 )
= (Ao/M)7T g1 on (0,1),

and consequently, u > d1(A\o/ )\1)P1j¢1 on (0,1), a contradiction with the definition
of 1. Thus ||ulje # R, as claimed i.e. (ii) holds.

By Lemma operator A has a fixed point v € F with ||u|lc > r, which is a
classical positive solution of in view of Lemmas and This completes
the proof. O
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