Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 92, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL STURM-LIOUVILLE SUPERLINEAR *p*-LAPLACIAN PROBLEM

KHANH DUC CHU, DANG DINH HAI

Communicated by Pavel Drabek

ABSTRACT. We prove the existence of positive classical solutions for the p-Laplacian problem

$$-(r(t)\phi(u'))' = f(t,u), \quad t \in (0,1),$$

$$au(0) - b\phi^{-1}(r(0))u'(0) = 0, \ cu(1) + d\phi^{-1}(r(1))u'(1) = 0,$$

where $\phi(s)=|s|^{p-2}s,\,p>1,\,f:(0,1)\times[0,\infty)\to\mathbb{R}$ is a Carathéodory function satisfying

$$\limsup_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} < \lambda_1 < \liminf_{z \to \infty} \frac{f(t,z)}{z^{p-1}}$$

uniformly for a.e. $t \in (0,1)$, where λ_1 denotes the principal eigenvalue of $-(r(t)\phi(u'))'$ with Sturm-Liouville boundary conditions. Our result extends a previous work by Manásevich, Njoku, and Zanolin to the Sturm-Liouville boundary conditions with more general operator.

1. INTRODUCTION

Consider the one-dimensional p-Laplacian problem

$$-(r(t)\phi(u'))' = f(t,u) \quad \text{a.e. on } (0,1),$$

$$au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0,$$

(1.1)

where $\phi(s) = |s|^{p-2}s$, p > 1, a, b, c, d are nonnegative constants with ac+ad+bc > 0, $r: [0,1] \to (0,\infty)$ and $f: (0,1) \times [0,\infty) \to \mathbb{R}$.

We are interested in positive classical solution of (1.1), that is, solutions $u \in C^1[0,1]$ with u > 0 on (0,1), $\phi(u')$ absolutely continuous on [0,1] and satisfying (1.1).

Let us look at the literature on problem (1.1) with Dirichlet boundary conditions i.e. b = d = 0. In the sublinear case, Lan, Yang, and Yang [14] proved the existence of a classical positive solution to (1.1) when $r(t) \equiv 1$ and f is nonnegative with

$$\limsup_{z \to \infty} \frac{f(t,z)}{z^{p-1}} < \lambda_1 < \liminf_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} \le \infty$$
(1.2)

uniformly for a.e. $t \in (0,1)$, where $\lambda_1 = 2^p (p-1) (\int_0^1 \frac{ds}{(1-s^p)^{1/p}})^p$ is the principal eigenvalue of $-(\phi(u'))'$ with zero boundary conditions (see [4, 5]). In particular,

²⁰¹⁰ Mathematics Subject Classification. 34B15, 34B18.

Key words and phrases. p-Laplacian; superlinear; positive solutions.

^{©2018} Texas State University.

Submitted February 12, 2018. Published April 17, 2018.

when p = 2 and $f: [0, \infty) \to [0, \infty)$ is continuous, (1.2) becomes

$$\limsup_{z \to \infty} \frac{f(z)}{z} < \pi^2 < \liminf_{z \to 0^+} \frac{f(z)}{z} \le \infty,$$

which was used by Webb and Lan [18] to obtain nonnegative solutions to (1.1) with $\phi(s) = s$. In fact, [18] gave a general method with covered many boundary conditions including nonlocal ones and included both sublinear and superlinear types of conditions. In the superlinear case, Manásevich, Njoku, and Zanolin [15] used time-mapping estimates to prove the existence of a classical positive solution to (1.1) with Dirichlet boundary conditions when $r(t) \equiv 1$,

$$\limsup_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} < \lambda_1 < \liminf_{z \to \infty} \frac{f(t,z)}{z^{p-1}} \le \infty$$
(1.3)

and $\liminf_{z\to 0^+} \frac{f(t,z)}{z^{p-1}} > -\infty$ uniformly for a.e. $t \in (0,1)$, which improves a previous result by Kaper, Knapp, and Kwong [11] where the stronger condition

$$\lim_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} = l \le 0 \quad \text{and} \quad \lim_{z \to \infty} \frac{f(t,z)}{z^{p-1}} = \infty$$

uniformly for $t \in (0,1)$ was used. Note that when p = 2 and f is independent of t, condition (1.3) together with f(0) = 0 and $f \ge 0$ was used in [8] to show the existence of a positive solution to the PDE problem

$$-\Delta u = f(u)$$
 in Ω , $u = 0$ on $\partial \Omega$.

Wang [19] showed the existence of a positive solution to (1.1) under nonlinear boundary conditions that include the Sturm-Liouville one when f is nonnegative and satisfies either the sublinear condition

$$\lim_{z \to 0^+} \frac{f(z)}{z^{p-1}} = \infty \text{ and } \lim_{z \to \infty} \frac{f(z)}{z^{p-1}} = 0,$$

or the superlinear one

$$\lim_{z \to 0^+} \frac{f(z)}{z^{p-1}} = 0 \text{ and } \lim_{z \to \infty} \frac{f(z)}{z^{p-1}} = \infty,$$

which extended a previous result by Erbe and Wang [7] when p = 2. Similar results were established in [9] for singular Sturm-Liouville boundary value problems. Note that the conditions in [7, 9, 19] do not involve the principal eigenvalue of the corresponding operator. Existence results in the PDE version of (1.1) involving the principal eigenvalue of the *p*-Laplacian operator for $p \ge 2$ was studied in [3]. In particular, the existence of a nontrivial nonnegative weak solution $u \in W_0^{1,p}(\Omega)$ to the problem

$$-\Delta_p u = f(u) \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega,$$

was established for f satisfying $|f(z)|((1+z^{p-1})^{-1})$ bounded on $[0,\infty)$ and either

$$-\infty < \lim_{z \to 0^+} \frac{f(z)}{z^{p-1}} < \lambda_1 < \lim_{z \to \infty} \frac{f(z)}{z^{p-1}} < \infty,$$

or

$$-\infty < \lim_{z \to \infty} \frac{f(z)}{z^{p-1}} < \lambda_1 < \lim_{z \to 0^+} \frac{f(z)}{z^{p-1}} < \infty$$

holds. The approach used in [3] was via the Granas fixed point index (see [6]). In this paper, we shall extend the result in [15] to include the general Sturm-Liouville boundary conditions with more general operator e.g. allowing the case $r \neq 1$. Note that the proof in [15] does not apply to this general context. Since we do not require that f be non-negative but that there exists $\eta \in L^1(0,1)$ with $\eta \geq 0$ such that $\liminf_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} \geq -\eta(t)$ uniformly for a.e. $t \in (0,1)$, our result also improves a corresponding result in [12]. In addition, some estimates on the principal eigenvalue λ_1 for p > 1 are provided (see Lemma 2.7 below). We refer to [10, 13, 16, 20] for existence results related to (1.1) under suitable sublinear or superlinear conditions. Our approach is based on a Krasnoselskii type fixed point theorem in a Banach space.

We shall make the following assumptions:

- (A1) $r: [0,1] \to (0,\infty)$ is continuous.
- (A2) $f: (0,1) \times [0,\infty)$ is a Carathéodory function, that is $f(\cdot, z)$ is measurable for each $z \ge 0$ and $f(t, \cdot)$ is continuous for a.e. $t \in (0, 1)$.
- (A3) For each k > 0, there exists $\gamma_k \in L^1(0,1)$ such that

$$|f(t,z)| \le \gamma_k(t)$$

for a.e. $t \in (0, 1)$ and $z \in [0, k]$.

(A4) There exists $\eta \in L^1(0,1)$ with $\eta \ge 0$ such that

$$\liminf_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} \ge -\eta(t)$$

uniformly for a.e. $t \in (0, 1)$.

(A5)

$$\limsup_{z \to 0^+} \frac{f(t,z)}{z^{p-1}} < \lambda_1 < \liminf_{z \to \infty} \frac{f(t,z)}{z^{p-1}}$$

uniformly for a.e. $t \in (0, 1)$. Our main result reads as follows.

Theorem 1.1. Let (A1)–(A5) hold. Then (1.1) has a positive classical solution u with $\inf_{t \in (0,1)} \frac{u(t)}{p(t)} > 0$, where $p(t) = \min(at + b, d + c(1 - t))$.

In particular, when f is independent of t, we obtain the following result.

Corollary 1.2. Let r satisfy (A1) and let $f : [0, \infty) \to \mathbb{R}$ be continuous with

$$-\infty < \lim_{z \to 0^+} \frac{f(z)}{z^{p-1}} < \lambda_1 < \lim_{z \to \infty} \frac{f(z)}{z^{p-1}} \le \infty.$$

Then (1.1) has a positive classical solution u with $\inf_{t \in (0,1)} \frac{u(t)}{p(t)} > 0$.

2. Preliminaries

Let $AC^1[0,1] = \{u \in C^1[0,1] : u' \text{ is absolutely continuous on } [0,1]\}$. We shall denote the norm in $L^q(0,1)$ and $C^1[0,1]$ by $\|\cdot\|_q$ and $|\cdot|_{C^1}$ respectively. Let λ_1 be the principal eigenvalue of $-(r(t)\phi(u'))'$ on (0,1) with Sturm-Liouville boundary conditions, and let ϕ_1 be the corresponding positive, normalized eigenfunction, i.e. $-(r(t)|\phi_1'|^{p-2}\phi_1')' = \lambda_1\phi_1^{p-1}$ a.e. on $(0,1), \phi_1 > 0$ on $(0,1), \|\phi_1\|_{\infty} = 1$ and ϕ_1 satisfies the Sturm-Liouville boundary conditions in (1.1) (see [2, Theorem 3.1]). Note that $\lambda_1 > 0$. We recall the following fixed point theorem of Krasnoselskii type in a Banach space (see Amann [1, Theorem 12.3]). **Lemma 2.1.** Let E be a Banach space and $A : E \to E$ be a completely continuous operator. Suppose there exist $h \in E, h \neq 0$ and positive constants r, R with $r \neq R$ such that

- (a) If $y \in E$ satisfies $y = \theta Ay$ for some $\theta \in (0, 1]$ then $||y|| \neq r$,
- (b) If $y \in E$ satisfies $y = Ay + \xi h$ for some $\xi \ge 0$ then $||y|| \ne R$.

Then A has a fixed point $y \in E$ with $\min(r, R) < ||y|| < \max(r, R)$.

Lemma 2.2. Let t_0, t_1, α, β be constants with $0 \le t_0 < t_1 \le 1$, and $h \in L^1(t_0, t_1)$. Then the problem

$$-(r(t)\phi(u'))' = h \quad a.e. \ on \ (t_0, t_1),$$

$$au(t_0) - b\phi^{-1}(r(t_0))u'(t_0) = \alpha, \quad cu(t_1) + d\phi^{-1}(r(t_1))u'(t_1) = \beta$$
(2.1)

has a unique solution $u = Th \in AC^{1}[t_{0}, t_{1}]$. Furthermore $T : L^{1}(t_{0}, t_{1}) \rightarrow C[t_{0}, t_{1}]$ is completely continuous.

Proof. By integrating, it follows that (2.1) has a unique solution $u \in AC^{1}[t_{0}, t_{1}]$ given by

$$u(t) = C + \int_{t_0}^t \phi^{-1} \Big(\frac{D - \int_{t_0}^s h}{r(s)} \Big) ds,$$

where C and D are constants satisfying

$$aC - b\phi^{-1}(D) = \alpha,$$

$$c\left(C + \int_{t_0}^{t_1} \phi^{-1}\left(\frac{D - \int_{t_0}^s h}{r(s)}\right) ds\right) + d\phi^{-1}\left(D - \int_{t_0}^{t_1} h\right) = \beta.$$
(2.2)

In what follows, we shall see, in particular, that C, D are uniquely determined. We shall denote by $K_i, i = 0, 1, 2, ...$, positive constants independent of u and h. **Case 1:** a = 0. Then b, c > 0, $D = -\phi(\alpha/b)$ and

$$C = \frac{\beta - d\phi^{-1} \left(D - \int_{t_0}^{t_1} h \right)}{c} - \int_{t_0}^{t_1} \phi^{-1} \left(\frac{D - \int_{t_0}^{s} h}{r(s)} \right) ds.$$

Using the inequality

$$(x+y)^q \le m(x^q+y^q) \text{ for } x, y \ge 0, q > 0,$$
 (2.3)

where $m = 2^{(q-1)^+}$, we deduce that $|C| \le K_1 + K_2 \phi^{-1}(||h||_1)$, which implies $||u||_{\infty} \le K_3 + K_4 \phi^{-1}(||h||_1).$

Case 2: a > 0. Then (2.2) is equivalent to $C = \frac{\alpha + b\phi^{-1}(D)}{a}$, where D is the solution of

$$\gamma(D) \equiv \frac{cb\phi^{-1}(D)}{a} + c\int_{t_0}^{t_1} \phi^{-1}\Big(\frac{D - \int_{t_0}^s h}{r(s)}\Big)ds + d\phi^{-1}\Big(D - \int_{t_0}^{t_1} h\Big) = \beta - \frac{\alpha c}{a}.$$

Note that D is uniquely determined since $\gamma(D)$ is increasing in D, $\lim_{D\to\infty} \gamma(D) = \infty$ and $\lim_{D\to-\infty} \gamma(D) = -\infty$.

If c = 0 then d > 0 and it follows that $|D| \leq ||h||_1 + \phi(|\beta|/d)$, while if c > 0 then

$$|D| \le ||h||_1 + ||r||_{\infty} \phi \Big(\frac{1}{c(t_1 - t_0)} |\beta - \frac{\alpha c}{a}| \Big).$$

Hence in both cases,

$$|u|_{C^{1}[t_{0},t_{1}]} = ||u||_{\infty} + ||u'||_{\infty} \le K_{5} + K_{0}\phi^{-1}(||h||_{1}).$$

i.e. T maps bounded sets in $L^1(t_0, t_1)$ into bounded sets in $C^1[t_0, t_1]$. To show that T is continuous, let $\varepsilon > 0$, $h_i \in L^1(t_0, t_1)$ and $u_i = Th_i$, i = 1, 2. We shall show that there exists a constant $\delta > 0$ depending on ε and an upper bound of $||h_i||_{L^1(t_0, t_1)}$, i = 1, 2, such that

$$\|h_1 - h_2\|_{L^1(t_0, t_1)} < \delta \Longrightarrow \|u_1 - u_2\|_{C^1[t_0, t_1]} < \varepsilon.$$
(2.4)

Note that

$$u_i(t) = C_i + \int_{t_0}^t \phi^{-1} \Big(\frac{D_i - \int_{t_0}^s h_i}{r(s)} \Big) ds,$$

and from the above calculation we obtain

$$|D_i| \le \max_{i=1,2} ||h_i||_{L^1(t_0,t_1)} + K \equiv M_0$$

for i = 1, 2, where K > 0 independent of u_i and h_i . This implies

$$|D_i - \int_{t_0}^s h_i|, \ |\frac{D_i - \int_{t_0}^s h_i}{r(s)}| \le 2M_0 \max(r_0^{-1}, 1) \equiv M$$

for all $s \in [t_0, t_1]$, i = 1, 2, where $r_0 = \min_{[0,1]} r > 0$. Since ϕ^{-1} is uniformly continuous on I = [-M, M], it follows from the formulas for C_i, D_i , and the fact that $|D_1 - D_2| \leq ||h_1 - h_2||_{L^1(t_0, t_1)}$ that there exists a constant $\delta > 0$ such that (2.4) holds. This completes the proof.

Remark 2.3. If $\alpha = \beta = 0$ then Lemma 2.2 is reduced to [9, Lemma 3.1]. Note that in this case $K_5 = 0$ in the above proof i.e. $|u|_{C^1[t_0,t_1]} \leq K_0 \phi^{-1}(||h||_1)$ for all u satisfying (2.1).

Lemma 2.4. Let t_0, t_1, α, β be constants with $0 \le t_0 < t_1 \le 1$, and $\gamma, h \in L^1(t_0, t_1)$ with $\gamma \ge 0$. Then the problem

$$-(r(t)\phi(u'))' + \gamma(t)\phi(u) = h(t) \quad a.e. \text{ on } (t_0, t_1),$$

$$au(t_0) - b\phi^{-1}(r(t_0))u'(t_0) = \alpha, \quad cu(t_1) + d\phi^{-1}(r(t_1))u'(t_1) = \beta$$
(2.5)

has a unique solution $u \equiv T_0 h \in AC^1[t_0, t_1]$. Furthermore $T_0 : L^1(t_0, t_1) \to C[t_0, t_1]$ is completely continuous.

Proof. Let $E = C[t_0, t_1]$ be equipped with norm $||u|| = \sup_{[t_0, t_1]} |u|$. By Lemma 2.2, for each $v \in E$, the problem

$$-(r(t)\phi(u'))' = h(t) - \gamma(t)\phi(v) \quad \text{a.e. on } (t_0, t_1),$$

$$au(t_0) - b\phi^{-1}(r(t_0))u'(t_0) = \alpha, \quad cu(t_1) + d\phi^{-1}(r(t_1))u'(t_1) = \beta$$

has a unique solution $u = Sv \in AC^1[t_0, t_1]$ and $S : E \to E$ is completely continuous. Let $u \in E$ satisfy $u = \theta Su$ for some $\theta \in (0, 1]$. Then

$$-(r(t)\phi(u'))' + \theta^{p-1}\gamma(t)\phi(u) = \theta^{p-1}h(t) \quad \text{a.e. on } (t_0, t_1),$$

$$au(t_0) - b\phi^{-1}(r(t_0))u'(t_0) = \theta\alpha, \quad cu(t_1) + d\phi^{-1}(r(t_1))u'(t_1) = \theta\beta$$
(2.6)

By integrating (2.6), we obtain

$$\phi(u'(t)) = \frac{r(t_1)\phi(u'(t_1)) + \theta^{p-1} \int_t^{t_1} (h - \gamma\phi(u)) ds}{r(t)}$$
(2.7)

for $t \in [t_0, t_1]$. Multiplying the equation in (2.6) by u and integrating gives

$$-r(t_1)\phi(u'(t_1))u(t_1) + r(t_0)\phi(u'(t_0))u(t_0) + \int_{t_0}^{t_1} r(t)|u'|^p \le \int_{t_0}^{t_1} |hu|.$$
(2.8)

We shall consider two cases.

Case 1. b = 0 or d = 0. Without loss of generality, we suppose b = 0. Then $u(t_0) = \theta \alpha / a \equiv \theta \alpha_0$. By the mean value theorem,

$$||u|| \le |\alpha_0| + \int_{t_0}^{t_1} |u'|.$$
(2.9)

Suppose first that d = 0. Then $u(t_1) = \theta \beta/c \equiv \theta \beta_0$. Let $\xi(t) = \theta(At + B)$, where A, B are constants such that $\xi(t_0) = \theta \alpha_0, \xi(t_1) = \theta \beta_0$ i.e. $A = \frac{\beta_0 - \alpha_0}{t_1 - t_0}, B =$ $\frac{\alpha_0 t_1 - \beta_0 t_0}{t_1 - t_0}$. In what follows, we shall denote by R_i , $i = 0, 1, \ldots$, positive constants independent of u and θ .

Multiplying the equation in (2.6) by $(u - \xi)$ and integrating, we obtain

$$r_0 \int_{t_0}^{t_1} |u'|^p \le |A| ||r||_{\infty} \int_{t_0}^{t_1} |u'|^{p-1} + (|A| + |B|) | \left(\int_{t_0}^{t_1} \gamma \right) ||u||^{p-1} + (||u|| + A + B) \int_{t_0}^{t_1} h.$$

This, together with (2.9), implies $\int_{t_0}^{t_1} |u'|^p \leq R_0$. Suppose next that d > 0. Then from the boundary condition at t_1 , we obtain $u'(t_1) = \frac{\theta\beta - cu(t_1)}{d\phi^{-1}(r(t_1))}$. Hence if c = 0 then $u'(t_1) = \frac{\theta\beta}{d\phi^{-1}(r(t_1))} \equiv \theta\beta_1$ from which (2.7) and (2.0) imply and (2.9) imply

$$||u'|| \le R_1 \Big(1 + \int_{t_0}^{t_1} |u'| \Big).$$
(2.10)

Consequently, (2.8) gives

$$\int_{t_0}^{t_1} r(t) |u'|^p \le ||r||_{\infty} (|\beta_1|^{p-1}|||u|| + |\alpha_0|||u'||^{p-1}) + \left(\int_{t_0}^{t_1} |h|\right) ||u||,$$

which, together with (2.9) and (2.10), implies that $\int_{t_0}^{t_1} |u'|^p \leq R_2$. If c > 0, then

$$- r(t_{1})\phi(u'(t_{1}))u(t_{1})$$

$$= r(t_{1})\phi\Big(\frac{cu(t_{1}) - \theta\beta}{d\phi^{-1}(r(t_{1}))}\Big)u(t_{1})$$

$$= r(t_{1})\phi\Big(\frac{cu(t_{1}) - \theta\beta}{d\phi^{-1}(r(t_{1}))}\Big)\Big(\Big(\frac{cu(t_{1}) - \theta\beta}{d\phi^{-1}(r(t_{1}))}\Big)\Big(\frac{d\phi^{-1}(r(t_{1}))}{c}\Big) + \frac{\theta\beta}{c}\Big)$$

$$\ge R_{2}\Big|\frac{cu(t_{1}) - \theta\beta}{d\phi^{-1}(r(t_{1}))}\Big|^{p} - R_{3}.$$

$$(2.11)$$

By (2.7) and (2.9),

$$|\phi(u'(t_0)| \le \frac{1}{r_0} \Big(\|r\|_{\infty} |\frac{cu(t_1) - \theta\beta}{d\phi^{-1}(r(t_1))}|^{p-1} + \int_{t_0}^{t_1} |h| + (\int_{t_0}^{t_1} \gamma) \|u\|^{p-1} \Big).$$
(2.12)

Using (2.9), (2.11) and (2.12) together with $u(t_0) = \theta \alpha_0$ in (2.8), we deduce that $\int_{t_0}^{t_1} |u'|^p \leq R_4$. Hence in either case $\int_{t_0}^{t_1} |u'|^p \leq R_5$, where $R_5 = \max(R_0, R_2, R_4)$ and so $||u|| \leq |\alpha_0| + R_5^{1/p}$.

Case 2. b > 0, d > 0. Then $u'(t_0) = \frac{\alpha u(t_0) - \theta \alpha}{b \phi^{-1}(r(t_0))}$ and $u'(t_1) = \frac{\theta \beta - c u(t_1)}{d \phi^{-1}(r(t_1))}$. Hence (2.8) and (2.9) give

$$r(t_{1})\phi\Big(\frac{cu(t_{1})-\theta\beta}{d\phi^{-1}(r(t_{1}))}\Big)u(t_{1})+r(t_{0})\phi\Big(\frac{\alpha u(t_{0})-\theta\alpha}{b\phi^{-1}(r(t_{0}))}\Big)u(t_{0})+\int_{t_{0}}^{t_{1}}r(t)|u'|^{p}$$

$$\leq \Big(\int_{t_{0}}^{t_{1}}|h|\Big)\|u\|.$$
(2.13)

Since a + c > 0, we can assume without loss of generality that c > 0. Then

$$\begin{aligned} |u|| &\leq |u(t_1)| + \int_{t_0}^{t_1} |u'| \\ &\leq \frac{d\phi^{-1}(r(t_1))}{c} |\frac{cu(t_1) - \theta\beta}{d\phi^{-1}(r(t_1))}| + \frac{|\beta|}{c} + \int_{t_0}^{t_1} |u'|, \end{aligned}$$

which, together with (2.11) and (2.13), imply

$$\left|\frac{cu(t_1) - \theta\beta}{d\phi^{-1}(r(t_1))}\right|^p + \int_{t_0}^{t_1} |u'|^p \le R_6.$$

Consequently, $||u|| < R_8$. Thus, we have shown that in both cases that ||u|| is bounded by a constant independent of u and θ . By the Leray-Schauder fixed point theorem, S has a fixed point u, which is a solution of (2.5) in $AC^1[t_0, t_1]$. To show uniqueness, let u, v be solutions of (2.5). Then

$$-(r(t)(\phi(u') - \phi(v'))' + \gamma(t)(\phi(u) - \phi(v)) = 0 \quad \text{a.e. on } (t_0, t_1).$$
(2.14)

We claim that $(\phi(u'(t_0)) - \phi(v'(t_0))(u(t_0 - v(t_0)) \ge 0)$. This is true when b = 0since $u(t_0) = \alpha/a = v(t_0)$ in this case. If b > 0 then $u'(t_0) = \frac{au(t_0) - \alpha}{b\phi^{-1}(r(t_0))}, v'(t_0) = \frac{av(t_0) - \alpha}{b\phi^{-1}(r(t_0))}$, which implies

$$\begin{aligned} (\phi(u'(t_0)) - \phi(v'(t_0))(u(t_0) - v(t_0)) \\ &= \Big(\phi\Big(\frac{au(t_0) - \alpha}{b\phi^{-1}(r(t_0))}\Big) - \phi\Big(\frac{av(t_0) - \alpha}{b\phi^{-1}(r(t_0))}\Big)\Big)(u(t_0 - v(t_0) \ge 0. \end{aligned}$$

Similarly, $(\phi(u'(t_1)) - \phi(v'(t_1)))(u(t_1 - v(t_1) \le 0$. Hence, multiplying (2.14) by u - v and integrating, we get

$$\int_{t_0}^{t_1} r(t)(\phi(u') - \phi(v'))(u' - v')dt \le 0,$$

which implies u' = v' on (t_1, t_2) . Hence there exists a constant k such that u(t) = v(t) + k for all $t \in [t_1, t_2]$. The boundary conditions then give ak = ck = 0. Hence k = 0, which completes the proof.

Next, we prove a comparison principle, which extends [9, Lemma 3.2] to the case $\gamma \ge 0, \gamma \ne 0$.

Lemma 2.5. Let $\gamma, h_i \in L^1(t_0, t_1)$, i = 1, 2, with $\gamma \ge 0$ and $h_1 \ge h_2$. Let $u_i \in AC^1[t_0, t_1]$, i = 1, 2 satisfy

$$-(r(t)\phi(u'_i))' + \gamma(t)\phi(u_i) = h_i \quad a.e. \text{ on } (t_0, t_1),$$

$$au_1(t_0) - b\phi^{-1}(r(t_0))u'_1(t_0) \ge au_2(t_0) - b\phi^{-1}(r(t_0))u'_2(t_0),$$

$$cu_1(t_1) + d\phi^{-1}(r(t_1))u'_1(t_1) \ge cu_2(t_1) + d\phi^{-1}(r(t_1))u'_2(t_1).$$

Then $u_1 \ge u_2$ on $[t_0, t_1]$.

Proof. Suppose on the contrary that there exists $\tilde{t} \in (t_0, t_1)$ such that $u_1(\tilde{t}) < u_2(\tilde{t})$. Let $(\alpha, \beta) \subset (t_0, t_1)$ be the largest open interval containing \tilde{t} such that $u_1 < u_2$ on (α, β) . Hence

$$(r(t)(\phi(u'_1) - \phi(u'_2)))' \le 0$$
 a.e. on $(\alpha, \beta),$ (2.15)

Case 1. $u_1(\alpha) = u_2(\alpha)$ or $u_1(\beta) = u_2(\beta)$. Suppose $u_1(\alpha) = u_2(\alpha)$. Then $u'_1(\alpha) \leq u'_2(\alpha)$. Hence (2.15) implies $u'_1 \leq u'_2$ on (α, β) . If $u_1(\beta) = u_2(\beta)$ then this gives $u_1 \geq u_2$ on (α, β) , a contradiction. If $u_1(\beta) < u_2(\beta)$ then $\beta = t_1$ and from the boundary condition at t_1 , we get $d(u'_2(t_1) - u'_1(t_1)) \leq 0$. Hence if d > 0 we get $u'_2(t_1) \leq u'_1(t_1)$ from which (2.15) gives $u'_1 \geq u'_2$ on (α, β) and so $u_1 \geq u_2$ on (α, β) , a contradiction. On the other hand, if d = 0 then $c(u_1(t_1) - u_2(t_1)) \geq 0$, which implies $u_1(t_1) \geq u_2(t_1)$, a contradiction. Similarly, we get a contradiction if $u_1(\beta) = u_2(\beta)$.

Case 2. $u_1 < u_2$ on $[\alpha, \beta]$ i.e. $\alpha = t_0$ and $\beta = t_1$. Suppose $\min_{[\alpha,\beta]}(u_1 - u_2) = u_1(\tau) - u_2(\tau) < 0$ for some $\tau \in [\alpha, \beta]$. If $\tau \in (t_0, t_1)$ then $u'_1(\tau) = u'_2(\tau)$ and it follows from (2.15) that there exists a constant k < 0 such that $u_1 = u_2 + k$ on $[t_0, t_1]$. Using the boundary conditions, we deduce that $ak, ck \ge 0$, a contradiction. Suppose $\tau = t_0$. Then

$$a(u_1(t_0) - u_2(t_0)) \ge b\phi^{-1}(r(t_0))(u_1'(t_0) - u_2'(t_0)) \ge 0,$$

which implies a = 0. Hence b > 0 and the boundary condition at t_0 imply $u'_1(t_0) - u'_2(t_0) \le 0$, from which (2.15) gives $u'_1 \le u'_2$ on (t_0, t_1) . Consequently, $u_1 = u_2 + \tilde{k}$ on (t_0, t_1) for some constant $\tilde{k} < 0$, a contradiction. Similarly, we reach a contradiction when $\tau = t_1$, which completes the proof.

The next result plays an important role in the proof of the main result. When $\gamma \equiv 0$, it was obtained in [9, Lemma 3.4] but the proof there does not apply to the case $\gamma \not\equiv 0$.

Lemma 2.6. Let $\gamma \in L^1(0,1)$ with $\gamma \geq 0$ and let $u \in AC^1[0,1]$ satisfy

$$\begin{aligned} &-(r(t)(\phi(u'))'+\gamma(t)\phi(u)\geq 0 \quad a.e. \ on \ (0,1),\\ &au(0)-b\phi^{-1}(r(0))u'(0)\geq 0, \quad cu(1)+d\phi^{-1}(r(1))u'(1)\geq 0. \end{aligned}$$

Then there exists a constant $\kappa > 0$ independent of u such that for all $t \in [0, 1]$,

$$u(t) \ge \kappa \|u\|_{\infty} p(t).$$

Proof. By Lemma 2.5, $u \ge 0$ on [0, 1]. Suppose $||u||_{\infty} = u(\tau)$ for some $\tau \in (0, 1)$. By Lemma 2.4, the problem

$$-(r(t)\phi(z'))' + \gamma(t)\phi(z) = 0 \quad \text{a.e. on } (0,\tau),$$

$$az(0) - b\phi^{-1}(r(0))z'(0) = 0, \quad z(\tau) = ||u||_{\infty}$$

has a unique solution $z \in AC^1[0, \tau]$. By Lemma 2.5, $u \ge z \ge 0$ on $[0, \tau]$, from which the boundary condition on z at 0 gives $z'(0) \ge 0$. Note that

$$z(t) = z(0) + \int_0^t \phi^{-1} \Big(\frac{r(0)\phi(z'(0)) + \int_0^s \gamma(\xi)\phi(z)d\xi}{r(s)} \Big) ds,$$

from which (2.3) gives

$$z(t) \le z(0) + m_0 \Big(z'(0) + \phi^{-1} (\int_0^t \gamma(s) \phi(z) ds) \Big),$$

where $m_0 > 0$ is a constant independent of u. Hence using (2.3) again, it follows that

$$\phi(z(t)) \le m_1 \Big(\phi(z(0) + z'(0)) + \int_0^t \gamma(s)\phi(z)ds \Big)$$

for $t \in [0, \tau]$, where $m_1 > 0$ is a constant independent of u. By Gronwall's inequality,

$$\phi(z(t) \le m_1 \phi(z(0) + z'(0)) e^{m_1 \int_0^t \gamma(s) ds}$$

for $t \in [0, \tau]$. In particular when $t = \tau$, we obtain

$$z(0) + z'(0) \ge \kappa_0 ||u||_{\infty}, \qquad (2.16)$$

where $\kappa_0 = (e^{-m_1 \|\gamma\|_1}/m_1)^{1/(p-1)}$. Since $(r(t)\phi(z'))' = \gamma(t)\phi(z) \ge 0$ on $(0,\tau)$, it follows that $r(t)\phi(z') \ge r(0)\phi(z'(0))$, which implies

$$z'(t) \ge (r(0)/||r||_{\infty})^{1/(p-1)} z'(0).$$

If b = 0 then z(0) = 0 and (2.16) give

$$z(t) = \int_0^t z' \ge \left(\frac{r(0)}{\|r\|_{\infty}}\right)^{\frac{1}{p-1}} \kappa_0 \|u\|_{\infty} t = \kappa_1 (at+b) \|u\|_{\infty}$$
(2.17)

for $t \in [0, \tau]$, where $\kappa_1 = a^{-1} (r(0)/||r||_{\infty})^{1/(p-1)} \kappa_0$.

On the other hand, if b > 0 then $z'(0) = \frac{a}{b\phi^{-1}(r(0))}z(0)$ and (2.16) becomes $z(0) \ge \tilde{\kappa}_1 ||u||_{\infty}$, where $\tilde{\kappa}_1 = \kappa_0 (1 + \frac{a}{b\phi^{-1}(r(0))})^{-1}$. Hence

$$z(t) \ge z(0) \ge \tilde{\kappa}_1 \|u\|_{\infty} \ge \kappa_2 (at+b) \|u\|_{\infty}$$

$$(2.18)$$

for $t \in [0, \tau]$, where $\kappa_2 = \tilde{\kappa}_1/(a+b)$. Combining (2.17) and (2.18), we obtain $z(t) \ge \kappa_3(at+b) \|u\|_{\infty}$ for $t \in [0, \tau]$, where $\kappa_3 > 0$ is independent of u, λ, h .

Next, let $w \in AC^1[\tau, 1]$ be the unique solution of

$$-(r(t)\phi(w'))' + \gamma(t)\phi(w) = 0 \quad \text{a.e. on } (\tau, 1),$$

$$w(\tau) = \|u\|_{\infty}, \quad cw(1) + d\phi^{-1}(r(1))w'(1) = 0.$$

Then $u \ge w \ge 0$ on $[\tau, 1]$ and the boundary condition on w at 1 gives $w'(1) \le 0$. Using the integral formula

$$w(t) = w(1) - \int_{t}^{1} \phi^{-1} \Big(\frac{r(1)\phi(w'(1)) - \int_{s}^{1} \gamma(\xi)\phi(w)d\xi}{r(s)} \Big) ds$$

for $t \in [\tau, 1]$ and using similar arguments as above, we obtain $w(t) \ge \kappa_4(d + c(1 - t)) \|u\|_{\infty}$ for $t \in [\tau, 1]$, where $\kappa_4 > 0$ is a constant independent of u. If $\tau = 0$ then $u \ge w$ on [0, 1] while if $\tau = 1$ then $u \ge z$ on [0, 1]. Thus $u(t) \ge \kappa \|u\|_{\infty} p(t)$ for $t \in [0, 1]$, where $\kappa = \min(\kappa_3, \kappa_4)$, which completes the proof.

The next result provides some estimates on λ_1 for p > 1.

Lemma 2.7. Suppose b + d > 0 and $r \equiv 1$. If d > 0 then

$$\frac{\min(A_1,1)}{2^{(p-1)^+}} \le \lambda_1 \le (A_1 + (m_1 + 2)^p e^{m_1 p})(2p+1),$$
(2.19)

where $A_1 = (c/d)^{p-1}, m_1 = (c+2d)/d$, while if b > 0, then min(B, 1)

$$\frac{\min(B_1, 1)}{2^{(p-1)^+}} \le \lambda_1 \le (B_1 + (m_2 + 2)^p e^{m_2 p} (2p+1)),$$
(2.20)

where $B_1 = (a/b)^{p-1}$, $m_2 = (a+2b)/b$.

Proof. Using the Rayleigh quotient, we obtain

$$\lambda_1 = \inf_{u \in V} \frac{\phi(u'(0))u(0) - \phi(u'(1))u(1) + \int_0^1 |u'|^p dt}{\int_0^1 |u|^p dt}$$
(2.21)

where $V = \{ u \in C^1[0,1] : au(0) - bu'(0) = 0, cu(1) + du'(1) = 0 \}.$ Suppose d > 0. Then u'(1) = -(c/d)u(1) and $\phi(u'(0)u(0) \ge 0$ for $u \in V$. Hence

$$\lambda_{1} = \inf_{u \in V} \frac{\phi(u'(0))u(0) + A_{1}|u(1)|^{p} + \int_{0}^{1} |u'|^{p}dt}{\int_{0}^{0} |u|^{p}dt}$$

$$\geq \inf_{u \in V} \frac{A_{1}|u(1)|^{p} + \int_{0}^{1} |u'|^{p}dt}{\int_{0}^{1} |u|^{p}dt}.$$
(2.22)

Let $u \in V$. Then

$$|u(t)| \le |u(1)| + \int_0^1 |u'| dt,$$

which implies

$$\begin{split} \int_0^1 |u|^p dt &\leq 2^{(p-1)^+} \Big(|u(1)|^p + \int_0^1 |u'|^p dt \Big) \\ &\leq \frac{2^{(p-1)^+}}{\min(A_1,1)} \Big(A_1 |u(1)|^p + \int_0^1 |u'|^p dt \Big). \end{split}$$

Consequently, (2.22) gives $\lambda_1 \geq \frac{\min(A_1,1)}{2^{(p-1)+}}$. Next, we choose $u(t) = t^2 e^{m_1(1-t)}$, where $m_1 = (c+2d)/d$. Then $u \in V$ and $u(t) \ge t^2,$

$$|u'(t)| = te^{m_1(1-t)}|2 - m_1t| \le (m_1 + 2)e^{m_1}$$

for $t \in [0, 1]$. Hence

$$\int_0^1 |u|^p dt \ge \frac{1}{2p+1}, \quad \int_0^1 |u'|^p dt \le (m_1+2)^p e^{m_1 p}.$$
(2.23)

Since u(0) = 0, u(1) = 1, it follows from (2.23) and the equality in (2.22) that

$$\lambda_1 \le (A_1 + (m_1 + 2)^p e^{m_1 p})(2p + 1)$$

i.e. (2.19) holds. Suppose next that b > 0. Then

$$\lambda_{1} = \inf_{u \in V} \frac{B_{1}|u(0)|^{p} - \phi(u'(1))u(1) + \int_{0}^{1} |u'|^{p} dt}{\int_{0}^{1} |u|^{p} dt}$$

$$\geq \inf_{u \in V} \frac{B_{1}|u(0)|^{p} + \int_{0}^{1} |u'|^{p} dt}{\int_{0}^{1} |u|^{p} dt}.$$
(2.24)

Using the inequality

$$|u(t)| \le |u(0)| + \int_0^1 |u'| dt,$$

it follows that

$$\int_0^1 |u|^p dt \le \frac{2^{(p-1)^+}}{\min(B_1, 1)} \Big(B_1 |u(0)|^p + \int_0^1 |u'|^p dt \Big),$$

from which (2.24) implies $\lambda_1 \geq \frac{\min(B_1,1)}{2^{(p-1)+}}$. By choosing $u(t) = (1-t)^2 e^{m_2 t}$, where $m_2 = (a+2b)/b$, we see that $u \in V$ and the equality in (2.24) gives

$$\lambda_1 \le (B_1 + (m_2 + 2)^p e^{m_2 p})(2p + 1),$$

which establishes (2.20). This completes the proof.

Example 2.8. It follows from (2.19) that the principal eigenvalue λ_1 of $-(\phi(u'))'$ with boundary conditions u(0) - u'(0) = 0 = u(1) + u'(1) satisfies

$$\frac{1}{2^{(p-1)^+}} \le \lambda_1 \le (1+5^p e^{3p})(2p+1)$$

3. Proof of main results

Proof of Theorem 1.1. In view of (A2)–(A5), there exist constants $r, r_1, \bar{\lambda} > 0$ with $r < r_1$ and $\bar{\lambda} < \lambda_1$ such that for a.e. $t \in (0, 1)$,

$$f(t,z) \le \bar{\lambda} z^{p-1}, \quad f(t,z) + (\eta(t)+1) z^{p-1} \ge 0$$
 (3.1)

for $z \leq r$;

$$|f(t,z)| \le \gamma_{r_1}(t) \le \gamma_{r_1}(t)(z/r)^{p-1}$$

for $r < z < r_1$, and f(t, z) > 0 for $z > r_1$ and a.e. t. Hence

$$f(t,z) + \gamma(t)z^{p-1} \ge 0$$

for a.e. $t \in (0,1)$ and all $z \ge 0$, where $\gamma(t) = \max(\eta(t) + 1, \gamma_{r_1}(t)/r^{p-1})$. For $v \in E = C[0,1]$, we have $f(t,|v|) + \gamma(t)|v|^{p-1} \in L^1(0,1)$ in view of (A3). Hence by Lemma 2.4, the problem

$$-(r(t)\phi(u'))' + \gamma(t)\phi(u) = f(t,|v|) + \gamma(t)|v|^{p-1} \quad \text{a.e. on } (0,1),$$

$$au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0,$$

has a unique solution $u = Av \in C^1[0, 1]$. Since $A = T_0 \circ S_0$, where $S_0 : C[0, 1] \to L^1(0, 1)$ is defined by $(S_0v)(t) = f(t, |v|) + \gamma(t)|v|^{p-1}$ and T_0 is defined in Lemma 2.4 with $\alpha = \beta = 0$, we see that $A : E \to E$ is completely continuous. We shall verify that

(i) $u = \theta A u, \theta \in (0, 1] \Longrightarrow ||u||_{\infty} \neq r.$

Indeed, let $u \in E$ satisfy $u = \theta A u$ for some $\theta \in (0, 1]$ and suppose $||u||_{\infty} = r$. Then $u \in AC^{1}[0, 1]$ and

$$-(r(t)\phi(u'))' + \gamma(t)\phi(u) = \theta^{p-1}(f(t,|u|) + \gamma(t)|u|^{p-1}) \ge 0 \quad \text{a.e. on } (0,1),$$

which implies $u \ge 0$ on (0, 1) by Lemma 2.6. Hence

$$-(r(t)\phi(u'))' = \theta^{p-1}f(t,u) - (1-\theta^{p-1})\gamma(t)u^{p-1} \le \theta^{p-1}f(t,u)$$
(3.2)

a.e. on (0, 1).

11

By [10, Lemma 2.1], there exists a constant $k_0 > 0$ such that $|z(t)| \le k_0 |z|_{C^1} p(t)$ for all $t \in [0, 1]$ and $z \in C^1[0, 1]$ satisfying the Sturm-Liouville boundary conditions in (1.1). In particular, $\sup_{t \in (0,1)} \frac{u(t)}{p(t)} < \infty$. Since

$$-(r(t)\phi(\phi'_1)') = \lambda_1 \phi_1^{p-1} > 0$$
 a.e. on $(0,1),$

it follows from Lemma 2.6 (with $\gamma \equiv 0$) that $\inf_{t \in (0,1)} \frac{\phi_1(t)}{p(t)} > 0$. Hence there exists a smallest positive constant δ_0 such that $u \leq \delta_0 \phi_1$ on [0,1]. Then it follows from (3.1) and (3.2) that

$$-(r(t)\phi(u'))' \le \bar{\lambda}u^{p-1} \le \bar{\lambda}\delta_0^{p-1}\phi_1^{p-1}$$
 a.e. on $(0,1),$

from which the weak comparison principle (see [9, Lemma 3.2], [17, Lemma A2]) gives

$$u \le (\bar{\lambda}\delta_0^{p-1}/\lambda_1)^{\frac{1}{p-1}}\phi_1$$

on [0, 1], a contradiction with the definition of δ_0 . Thus $||u||_{\infty} \neq r$ i.e. (i) holds. Next, we claim that

(ii) There exists a constant R > r such that $u = Au + \xi$, $\xi \ge 0$ implies $||u||_{\infty} \ne R$.

Let $u \in E$ satisfy $u = Au + \xi$ for some $\xi \in [0, \infty)$. Then $u - \xi = Au$ and therefore

$$-(r(t)\phi(u'))' + \gamma(t)\phi(u-\xi) = f(t,|u|) + \gamma(t)|u|^{p-1} \quad \text{a.e. on } (0,1),$$

which implies

$$-(r(t)\phi(u'))' + \gamma(t)\phi(u) \ge f(t,|u|) + \gamma(t)|u|^{p-1} \ge 0 \text{ a.e. on } (0,1).$$
(3.3)

Since $\liminf_{z\to\infty} \frac{f(t,z)}{z^{p-1}} > \lambda_1$ uniformly for a.e. $t \in (0,1)$, there exist positive constants $L, \tilde{\lambda}, \lambda_0$ with $\tilde{\lambda} > \lambda_0 > \lambda_1$ such that $f(t,z) \ge \tilde{\lambda} z^{p-1}$ for a.e. $t \in (0,1)$ and z > L.

Let $\varepsilon = (k_0 l)^{-1} \left((\tilde{\lambda}/\lambda_1)^{\frac{1}{p-1}} - (\lambda_0/\lambda_1)^{\frac{1}{p-1}} \right)$, where $l = \sup_{t \in (0,1)} \frac{p(t)}{\phi_1(t)} \in (0,\infty)$, and let δ be given by (2.4). Choose $I = [\alpha, \beta] \subset [0,1]$ such that

$$\int_{[0,1\backslash I} (\tilde{\lambda} + \gamma_L(t)) < \delta,$$

where γ_L is defined by (A3). Let $R > \max(r, \frac{1}{\kappa l_0}, \frac{L}{\kappa \min_{[\alpha,\beta]} p})$, where $l_0 = \inf_{(0,1)} \frac{p}{\phi_1} > 0$ and κ is defined in Lemma 2.6. We claim that $||u||_{\infty} \neq R$. Indeed, suppose $||u||_{\infty} = R$. Then it follows from (3.3) and Lemma 2.6 that $u(t) \geq \kappa ||u||_{\infty} p(t)$ for $t \in (0, 1)$. In particular, (3.3) becomes

$$-(r(t)\phi(u'))' \ge f(t,u) \quad \text{on } (0,1), \tag{3.4}$$

and

$$u(t) \ge \kappa Rp(t) \ge \kappa R\min_{[\alpha,\beta]} p > L$$

for $t \in I$. Hence $f(t, u) \geq \tilde{\lambda} u^{p-1}$ for a.e. $t \in I$. Let δ_1 be the largest positive number such that $u \geq \delta_1 \phi_1$ on (0, 1). Then $\delta_1 \geq \kappa l_0 R > 1$ and

$$-\left(r(t)\phi(\frac{u'}{\delta_1})\right)' \ge \begin{cases} \tilde{\lambda}\phi_1^{p-1} & \text{if } t \in I, \\ -\gamma_L(t) & \text{if } t \notin I. \end{cases}$$

Let $u_1, u_2 \in AC^1[0, 1]$ satisfy

$$-(r(t)\phi(u_1'))' = \begin{cases} \tilde{\lambda}\phi_1^{p-1} & \text{if } t \in I, \\ -\gamma_L(t) & \text{if } t \notin I \end{cases}$$
$$\equiv h_1 \quad \text{a.e. on } (0,1),$$

and

$$-(r(t)\phi(u'_2))' = \tilde{\lambda}\phi_1^{p-1} \equiv h_2$$
 a.e. on (0,1).

with Sturm-Liouville boundary conditions. Note that $u_2 = (\tilde{\lambda}/\lambda_1)^{\frac{1}{p-1}} \phi_1$ and $u \ge \delta_1 u_1$ on (0, 1). Since

$$||h_1 - h_2||_1 \le \int_{[0,1]\setminus I} (\tilde{\lambda} + \gamma_L(t)) < \delta,$$

it follows from (2.4) that $|u_1 - u_2|_{C^1} < \varepsilon$. Hence

$$u_1 \ge u_2 - k_0 \varepsilon p \ge u_2 - k_0 \ell \varepsilon \phi_1$$

= $\left(\tilde{\lambda}/\lambda_1\right)^{\frac{1}{p-1}} \phi_1 - \left((\tilde{\lambda}/\lambda_1)^{\frac{1}{p-1}} - (\lambda_0/\lambda_1)^{\frac{1}{p-1}}\right) \phi_1$
= $(\lambda_0/\lambda_1)^{\frac{1}{p-1}} \phi_1$ on $(0,1),$

and consequently, $u \ge \delta_1(\lambda_0/\lambda_1)^{\frac{1}{p-1}}\phi_1$ on (0,1), a contradiction with the definition of δ_1 . Thus $\|u\|_{\infty} \ne R$, as claimed i.e. (ii) holds.

By Lemma 2.1, operator A has a fixed point $u \in E$ with $||u||_{\infty} > r$, which is a classical positive solution of (1.1) in view of Lemmas 2.4 and 2.6. This completes the proof.

References

- H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach Spaces, SIAM Rev. 18 (1976), 620-709.
- [2] P. Binding, P. Drábek; Sturm-Liouville theory for the p-Laplacian, Studia Sci. Math. Hunga., 40 (2003), no. 4, 375-396.
- [3] A. Ćwiszewski, M. Maciejewski; Positive stationary solutions for p-Laplacian problems with nonpositive perturbation, J. Differential Equations, 254 (2013), 1120-1136.
- [4] M. del Pino, M. Elgueta, R. Manásevich; A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')' + f(t,u) = 0, u(0) = u(T) = 0, p > 1. J.$ Differential Equations, 80 (1989), no. 1, 1–13.
- [5] P. Drábek; Ranges of a -homogeneous operators and their perturbations, *Casopis Pest. Mat.*, 105 (1980), 167-183.
- [6] J. Dugundji, A. Granas; Fixed Point Theory, Springer-Verlag, 2004.
- [7] L. Erbe, H. Wang; On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), no. 3, 743–748.
- [8] D. G. de Figueiredo, P. L. Lions, R. D. Nusbaum; Estimations a priori pour les solutions positives de problèmes elliptiques superlinéaires. (French) C. R. Acad. Sci. Paris S ér. A-B, 290 (1980), no. 5, 217–220.
- D. D. Hai; On singular Sturm-Liouville boundary-value problems. Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), no. 1, 49–63.
- [10] D. D. Hai; Existence of positive solutions for singular p-Laplacian Sturm-Liouville boundary value problems, *Electron. J. Differential Equations* (2016), Paper No. 260, 9 pp.
- [11] H. G. Kaper, M. Knaap, M. K. Kwong; Existence theorems for second order boundary value problems, *Differential Integral Equations*, 4 (1991), no. 3, 543–554.
- [12] Q. Kong, M. Wang; Positive solutions of boundary value problems with p-Laplacian, Electron. J. Differential Equations, 2010, No. 126, 16pp.

- [13] Q. Kong, X. Wang; Nonlinear boundary value problems with p-Laplacian, Commun. Appl. Anal. 15 (2011), no. 1, 25-45.
- [14] K. Lan, X. Yang, G. Yang; Positive solutions of one-dimensional p-Laplacian equations and applications to population models of one species, *Topol. Methods Nonlinear Anal.*, 46 (2015), 431-445.
- [15] R. Manásevich, F. I. Njoku, F. Zanolin; Positive solutions for the one-dimensional p-Laplacian. Differential Integral Equations 8 (1995), 213–222.
- [16] B. P. Rynne; Eigenvalue criteria for existence of positive solutions of second-order, multipoint, p-Laplacian boundary value problems, *Topol. Methods Nonlinear Anal.*, **36** (2010), no. 2, 311-326.
- [17] S. Sakaguchi; Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. pisa Cl. Sci., (4) 14 (1987), 403-421.
- [18] J. R. L. Webb, K. Q. Lan; Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, *Topol. Methods Nonlinear Anal.*, 27 (2006), 91-116.
- [19] J. Wang; The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275-2283.
- [20] G. C. Yang, P. F. Zhou; A new existence results of positive solutions for the Sturm-Liouville boundary value problem, Appl. Math. Letters, 23 (2010), 1401-1406.

Khanh Duc Chu

FACULTY OF MATHEMATICS AND STATISTICS, TON DUC THANG UNIVERSITY, HO CHI MINH CITY, VIETNAM

E-mail address: chuduckhanh@tdt.edu.vn

Dang Dinh Hai

Department of Mathematics and Statistics, Mississippi state University, Mississippi State, MS 39762, USA

E-mail address: dang@math.msstate.edu

14