Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 92, pp. 1-14.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL STURM-LIOUVILLE SUPERLINEAR p-LAPLACIAN PROBLEM

KHANH DUC CHU, DANG DINH HAI
Communicated by Pavel Drabek

Abstract

We prove the existence of positive classical solutions for the p Laplacian problem $$
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=f(t, u), \quad t \in(0,1)
$$ $$
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0
$$ where $\phi(s)=|s|^{p-2} s, p>1, f:(0,1) \times[0, \infty) \rightarrow \mathbb{R}$ is a Carathéodory function satisfying $$
\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}<\lambda_{1}<\liminf _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}
$$ uniformly for a.e. $t \in(0,1)$, where λ_{1} denotes the principal eigenvalue of $-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}$ with Sturm-Liouville boundary conditions. Our result extends a previous work by Manásevich, Njoku, and Zanolin to the Sturm-Liouville boundary conditions with more general operator.

1. Introduction

Consider the one-dimensional p-Laplacian problem

$$
\begin{align*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime} & =f(t, u) \quad \text { a.e. on }(0,1) \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0) & =0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0, \tag{1.1}
\end{align*}
$$

where $\phi(s)=|s|^{p-2} s, p>1, a, b, c, d$ are nonnegative constants with $a c+a d+b c>0$, $r:[0,1] \rightarrow(0, \infty)$ and $f:(0,1) \times[0, \infty) \rightarrow \mathbb{R}$.

We are interested in positive classical solution of 1.1 , that is, solutions $u \in$ $C^{1}[0,1]$ with $u>0$ on $(0,1), \phi\left(u^{\prime}\right)$ absolutely continuous on $[0,1]$ and satisfying (1.1).

Let us look at the literature on problem (1.1) with Dirichlet boundary conditions i.e. $b=d=0$. In the sublinear case, Lan, Yang, and Yang [14] proved the existence of a classical positive solution to 1.1 when $r(t) \equiv 1$ and f is nonnegative with

$$
\begin{equation*}
\limsup _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}<\lambda_{1}<\liminf _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}} \leq \infty \tag{1.2}
\end{equation*}
$$

uniformly for a.e. $t \in(0,1)$, where $\lambda_{1}=2^{p}(p-1)\left(\int_{0}^{1} \frac{d s}{\left(1-s^{p}\right)^{1 / p}}\right)^{p}$ is the principal eigenvalue of $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$ with zero boundary conditions (see [4, 5]). In particular,

[^0]when $p=2$ and $f:[0, \infty) \rightarrow[0, \infty)$ is continuous, 1.2 becomes
$$
\limsup _{z \rightarrow \infty} \frac{f(z)}{z}<\pi^{2}<\liminf _{z \rightarrow 0^{+}} \frac{f(z)}{z} \leq \infty
$$
which was used by Webb and Lan [18] to obtain nonnegative solutions to 1.1) with $\phi(s)=s$. In fact, 18 gave a general method with covered many boundary conditions including nonlocal ones and included both sublinear and superlinear types of conditions. In the superlinear case, Manásevich, Njoku, and Zanolin [15] used time-mapping estimates to prove the existence of a classical positive solution to 1.1 with Dirichlet boundary conditions when $r(t) \equiv 1$,
\[

$$
\begin{equation*}
\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}<\lambda_{1}<\liminf _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}} \leq \infty \tag{1.3}
\end{equation*}
$$

\]

and $\liminf _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}>-\infty$ uniformly for a.e. $t \in(0,1)$, which improves a previous result by Kaper, Knapp, and Kwong [11] where the stronger condition

$$
\lim _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}=l \leq 0 \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}=\infty
$$

uniformly for $t \in(0,1)$ was used. Note that when $p=2$ and f is independent of t, condition (1.3) together with $f(0)=0$ and $f \geq 0$ was used in [8 to show the existence of a positive solution to the PDE problem

$$
-\Delta u=f(u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

Wang [19] showed the existence of a positive solution to (1.1) under nonlinear boundary conditions that include the Sturm-Liouville one when f is nonnegative and satisfies either the sublinear condition

$$
\lim _{z \rightarrow 0^{+}} \frac{f(z)}{z^{p-1}}=\infty \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{f(z)}{z^{p-1}}=0
$$

or the superlinear one

$$
\lim _{z \rightarrow 0^{+}} \frac{f(z)}{z^{p-1}}=0 \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{f(z)}{z^{p-1}}=\infty
$$

which extended a previous result by Erbe and Wang [7] when $p=2$. Similar results were established in 9 for singular Sturm-Liouville boundary value problems. Note that the conditions in [7, 9, 19] do not involve the principal eigenvalue of the corresponding operator. Existence results in the PDE version of (1.1) involving the principal eigenvalue of the p-Laplacian operator for $p \geq 2$ was studied in 3]. In particular, the existence of a nontrivial nonnegative weak solution $u \in W_{0}^{1, p}(\Omega)$ to the problem

$$
\begin{gathered}
-\Delta_{p} u=f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

was established for f satisfying $|f(z)|\left(\left(1+z^{p-1}\right)^{-1}\right.$ bounded on $[0, \infty)$ and either

$$
-\infty<\lim _{z \rightarrow 0^{+}} \frac{f(z)}{z^{p-1}}<\lambda_{1}<\lim _{z \rightarrow \infty} \frac{f(z)}{z^{p-1}}<\infty
$$

or

$$
-\infty<\lim _{z \rightarrow \infty} \frac{f(z)}{z^{p-1}}<\lambda_{1}<\lim _{z \rightarrow 0^{+}} \frac{f(z)}{z^{p-1}}<\infty
$$

holds. The approach used in [3] was via the Granas fixed point index (see [6]). In this paper, we shall extend the result in [15] to include the general SturmLiouville boundary conditions with more general operator e.g. allowing the case $r \not \equiv 1$. Note that the proof in [15] does not apply to this general context. Since we do not require that f be non-negative but that there exists $\eta \in L^{1}(0,1)$ with $\eta \geq 0$ such that $\liminf _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}} \geq-\eta(t)$ uniformly for a.e. $t \in(0,1)$, our result also improves a corresponding result in [12]. In addition, some estimates on the principal eigenvalue λ_{1} for $p>1$ are provided (see Lemma 2.7 below). We refer to [10, 13, 16, 20] for existence results related to (1.1) under suitable sublinear or superlinear conditions. Our approach is based on a Krasnoselskii type fixed point theorem in a Banach space.

We shall make the following assumptions:
(A1) $r:[0,1] \rightarrow(0, \infty)$ is continuous.
(A2) $f:(0,1) \times[0, \infty)$ is a Carathéodory function, that is $f(\cdot, z)$ is measurable for each $z \geq 0$ and $f(t, \cdot)$ is continuous for a.e. $t \in(0,1)$.
(A3) For each $k>0$, there exists $\gamma_{k} \in L^{1}(0,1)$ such that

$$
|f(t, z)| \leq \gamma_{k}(t)
$$

for a.e. $t \in(0,1)$ and $z \in[0, k]$.
(A4) There exists $\eta \in L^{1}(0,1)$ with $\eta \geq 0$ such that

$$
\liminf _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}} \geq-\eta(t)
$$

uniformly for a.e. $t \in(0,1)$.
(A5)

$$
\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}<\lambda_{1}<\liminf _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}
$$

uniformly for a.e. $t \in(0,1)$.
Our main result reads as follows.
Theorem 1.1. Let (A1)-(A5) hold. Then (1.1) has a positive classical solution u with $\inf _{t \in(0,1)} \frac{u(t)}{p(t)}>0$, where $p(t)=\min (a t+b, d+c(1-t))$.

In particular, when f is independent of t, we obtain the following result.
Corollary 1.2. Let r satisfy (A1) and let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous with

$$
-\infty<\lim _{z \rightarrow 0^{+}} \frac{f(z)}{z^{p-1}}<\lambda_{1}<\lim _{z \rightarrow \infty} \frac{f(z)}{z^{p-1}} \leq \infty .
$$

Then (1.1) has a positive classical solution u with $\inf _{t \in(0,1)} \frac{u(t)}{p(t)}>0$.

2. Preliminaries

Let $A C^{1}[0,1]=\left\{u \in C^{1}[0,1]: u^{\prime}\right.$ is absolutely continuous on $\left.[0,1]\right\}$. We shall denote the norm in $L^{q}(0,1)$ and $C^{1}[0,1]$ by $\|\cdot\|_{q}$ and $|\cdot|_{C^{1}}$ respectively. Let λ_{1} be the principal eigenvalue of $-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}$ on $(0,1)$ with Sturm-Liouville boundary conditions, and let ϕ_{1} be the corresponding positive, normalized eigenfunction, i.e. $-\left(r(t)\left|\phi_{1}^{\prime}\right|^{p-2} \phi_{1}^{\prime}\right)^{\prime}=\lambda_{1} \phi_{1}^{p-1}$ a.e. on $(0,1), \phi_{1}>0$ on $(0,1),\left\|\phi_{1}\right\|_{\infty}=1$ and ϕ_{1} satisfies the Sturm-Liouville boundary conditions in 1.1) (see [2, Theorem 3.1]). Note that $\lambda_{1}>0$. We recall the following fixed point theorem of Krasnoselskii type in a Banach space (see Amann [1, Theorem 12.3]).

Lemma 2.1. Let E be a Banach space and $A: E \rightarrow E$ be a completely continuous operator. Suppose there exist $h \in E, h \neq 0$ and positive constants r, R with $r \neq R$ such that
(a) If $y \in E$ satisfies $y=\theta A y$ for some $\theta \in(0,1]$ then $\|y\| \neq r$,
(b) If $y \in E$ satisfies $y=A y+\xi h$ for some $\xi \geq 0$ then $\|y\| \neq R$.

Then A has a fixed point $y \in E$ with $\min (r, R)<\|y\|<\max (r, R)$.
Lemma 2.2. Let $t_{0}, t_{1}, \alpha, \beta$ be constants with $0 \leq t_{0}<t_{1} \leq 1$, and $h \in L^{1}\left(t_{0}, t_{1}\right)$. Then the problem

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=h \quad \text { a.e. on }\left(t_{0}, t_{1}\right) \tag{2.1}\\
a u\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right)=\alpha, \quad c u\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u^{\prime}\left(t_{1}\right)=\beta
\end{gather*}
$$

has a unique solution $u=T h \in A C^{1}\left[t_{0}, t_{1}\right]$. Furthermore $T: L^{1}\left(t_{0}, t_{1}\right) \rightarrow C\left[t_{0}, t_{1}\right]$ is completely continuous.
Proof. By integrating, it follows that (2.1) has a unique solution $u \in A C^{1}\left[t_{0}, t_{1}\right]$ given by

$$
u(t)=C+\int_{t_{0}}^{t} \phi^{-1}\left(\frac{D-\int_{t_{0}}^{s} h}{r(s)}\right) d s
$$

where C and D are constants satisfying

$$
\begin{gather*}
a C-b \phi^{-1}(D)=\alpha \\
c\left(C+\int_{t_{0}}^{t_{1}} \phi^{-1}\left(\frac{D-\int_{t_{0}}^{s} h}{r(s)}\right) d s\right)+d \phi^{-1}\left(D-\int_{t_{0}}^{t_{1}} h\right)=\beta \tag{2.2}
\end{gather*}
$$

In what follows, we shall see, in particular, that C, D are uniquely determined. We shall denote by $K_{i}, i=0,1,2, \ldots$, positive constants independent of u and h.
Case 1: $a=0$. Then $b, c>0, D=-\phi(\alpha / b)$ and

$$
C=\frac{\beta-d \phi^{-1}\left(D-\int_{t_{0}}^{t_{1}} h\right)}{c}-\int_{t_{0}}^{t_{1}} \phi^{-1}\left(\frac{D-\int_{t_{0}}^{s} h}{r(s)}\right) d s
$$

Using the inequality

$$
\begin{equation*}
(x+y)^{q} \leq m\left(x^{q}+y^{q}\right) \text { for } x, y \geq 0, q>0 \tag{2.3}
\end{equation*}
$$

where $m=2^{(q-1)^{+}}$, we deduce that $|C| \leq K_{1}+K_{2} \phi^{-1}\left(\|h\|_{1}\right)$, which implies

$$
\|u\|_{\infty} \leq K_{3}+K_{4} \phi^{-1}\left(\|h\|_{1}\right)
$$

Case 2: $a>0$. Then 2.2) is equivalent to $C=\frac{\alpha+b \phi^{-1}(D)}{a}$, where D is the solution of

$$
\gamma(D) \equiv \frac{c b \phi^{-1}(D)}{a}+c \int_{t_{0}}^{t_{1}} \phi^{-1}\left(\frac{D-\int_{t_{0}}^{s} h}{r(s)}\right) d s+d \phi^{-1}\left(D-\int_{t_{0}}^{t_{1}} h\right)=\beta-\frac{\alpha c}{a} .
$$

Note that D is uniquely determined since $\gamma(D)$ is increasing in $D, \lim _{D \rightarrow \infty} \gamma(D)=$ ∞ and $\lim _{D \rightarrow-\infty} \gamma(D)=-\infty$.

If $c=0$ then $d>0$ and it follows that $|D| \leq\|h\|_{1}+\phi(|\beta| / d)$, while if $c>0$ then

$$
|D| \leq\|h\|_{1}+\|r\|_{\infty} \phi\left(\frac{1}{c\left(t_{1}-t_{0}\right)}\left|\beta-\frac{\alpha c}{a}\right|\right)
$$

Hence in both cases,

$$
|u|_{C^{1}\left[t_{0}, t_{1}\right]}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty} \leq K_{5}+K_{0} \phi^{-1}\left(\|h\|_{1}\right)
$$

i.e. T maps bounded sets in $L^{1}\left(t_{0}, t_{1}\right)$ into bounded sets in $C^{1}\left[t_{0}, t_{1}\right]$. To show that T is continuous, let $\varepsilon>0, h_{i} \in L^{1}\left(t_{0}, t_{1}\right)$ and $u_{i}=T h_{i}, i=1,2$. We shall show that there exists a constant $\delta>0$ depending on ε and an upper bound of $\left\|h_{i}\right\|_{L^{1}\left(t_{0}, t_{1}\right)}$, $i=1,2$, such that

$$
\begin{equation*}
\left\|h_{1}-h_{2}\right\|_{L^{1}\left(t_{0}, t_{1}\right)}<\delta \Longrightarrow\left|u_{1}-u_{2}\right|_{C^{1}\left[t_{0}, t_{1}\right]}<\varepsilon \tag{2.4}
\end{equation*}
$$

Note that

$$
u_{i}(t)=C_{i}+\int_{t_{0}}^{t} \phi^{-1}\left(\frac{D_{i}-\int_{t_{0}}^{s} h_{i}}{r(s)}\right) d s
$$

and from the above calculation we obtain

$$
\left|D_{i}\right| \leq \max _{i=1,2}\left\|h_{i}\right\|_{L^{1}\left(t_{0}, t_{1}\right)}+K \equiv M_{0}
$$

for $i=1,2$, where $K>0$ independent of u_{i} and h_{i}. This implies

$$
\left|D_{i}-\int_{t_{0}}^{s} h_{i}\right|,\left|\frac{D_{i}-\int_{t_{0}}^{s} h_{i}}{r(s)}\right| \leq 2 M_{0} \max \left(r_{0}^{-1}, 1\right) \equiv M
$$

for all $s \in\left[t_{0}, t_{1}\right], i=1,2$, where $r_{0}=\min _{[0,1]} r>0$. Since ϕ^{-1} is uniformly continuous on $I=[-M, M]$, it follows from the formulas for C_{i}, D_{i}, and the fact that $\left|D_{1}-D_{2}\right| \leq\left\|h_{1}-h_{2}\right\|_{L^{1}\left(t_{0}, t_{1}\right)}$ that there exists a constant $\delta>0$ such that (2.4) holds. This completes the proof.

Remark 2.3. If $\alpha=\beta=0$ then Lemma 2.2 is reduced to [9, Lemma 3.1]. Note that in this case $K_{5}=0$ in the above proof i.e. $|u|_{C^{1}\left[t_{0}, t_{1}\right]} \leq K_{0} \phi^{-1}\left(\|h\|_{1}\right)$ for all u satisfying 2.1.
Lemma 2.4. Let $t_{0}, t_{1}, \alpha, \beta$ be constants with $0 \leq t_{0}<t_{1} \leq 1$, and $\gamma, h \in L^{1}\left(t_{0}, t_{1}\right)$ with $\gamma \geq 0$. Then the problem

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u)=h(t) \quad \text { a.e. on }\left(t_{0}, t_{1}\right), \\
a u\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right)=\alpha, \quad c u\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u^{\prime}\left(t_{1}\right)=\beta \tag{2.5}
\end{gather*}
$$

has a unique solution $u \equiv T_{0} h \in A C^{1}\left[t_{0}, t_{1}\right]$. Furthermore $T_{0}: L^{1}\left(t_{0}, t_{1}\right) \rightarrow C\left[t_{0}, t_{1}\right]$ is completely continuous.

Proof. Let $E=C\left[t_{0}, t_{1}\right]$ be equipped with norm $\|u\|=\sup _{\left[t_{0}, t_{1]}\right.}|u|$. By Lemma 2.2 , for each $v \in E$, the problem

$$
\begin{array}{r}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=h(t)-\gamma(t) \phi(v) \quad \text { a.e. on }\left(t_{0}, t_{1}\right) \\
a u\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right)=\alpha, \quad c u\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u^{\prime}\left(t_{1}\right)=\beta
\end{array}
$$

has a unique solution $u=S v \in A C^{1}\left[t_{0}, t_{1}\right]$ and $S: E \rightarrow E$ is completely continuous. Let $u \in E$ satisfy $u=\theta S u$ for some $\theta \in(0,1]$. Then

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\theta^{p-1} \gamma(t) \phi(u)=\theta^{p-1} h(t) \quad \text { a.e. on }\left(t_{0}, t_{1}\right) \\
a u\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right)=\theta \alpha, \quad c u\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u^{\prime}\left(t_{1}\right)=\theta \beta \tag{2.6}
\end{gather*}
$$

By integrating (2.6), we obtain

$$
\begin{equation*}
\phi\left(u^{\prime}(t)\right)=\frac{r\left(t_{1}\right) \phi\left(u^{\prime}\left(t_{1}\right)\right)+\theta^{p-1} \int_{t}^{t_{1}}(h-\gamma \phi(u)) d s}{r(t)} \tag{2.7}
\end{equation*}
$$

for $t \in\left[t_{0}, t_{1}\right]$. Multiplying the equation in 2.6 by u and integrating gives

$$
\begin{equation*}
-r\left(t_{1}\right) \phi\left(u^{\prime}\left(t_{1}\right)\right) u\left(t_{1}\right)+r\left(t_{0}\right) \phi\left(u^{\prime}\left(t_{0}\right)\right) u\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} r(t)\left|u^{\prime}\right|^{p} \leq \int_{t_{0}}^{t_{1}}|h u| \tag{2.8}
\end{equation*}
$$

We shall consider two cases.
Case 1. $b=0$ or $d=0$. Without loss of generality, we suppose $b=0$. Then $u\left(t_{0}\right)=\theta \alpha / a \equiv \theta \alpha_{0}$. By the mean value theorem,

$$
\begin{equation*}
\|u\| \leq\left|\alpha_{0}\right|+\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right| \tag{2.9}
\end{equation*}
$$

Suppose first that $d=0$. Then $u\left(t_{1}\right)=\theta \beta / c \equiv \theta \beta_{0}$. Let $\xi(t)=\theta(A t+B)$, where A, B are constants such that $\xi\left(t_{0}\right)=\theta \alpha_{0}, \xi\left(t_{1}\right)=\theta \beta_{0}$ i.e. $A=\frac{\beta_{0}-\alpha_{0}}{t_{1}-t_{0}}, B=$ $\frac{\alpha_{0} t_{1}-\beta_{0} t_{0}}{t_{1}-t_{0}}$. In what follows, we shall denote by $R_{i}, i=0,1, \ldots$, positive constants independent of u and θ.

Multiplying the equation in 2.6 by $(u-\xi)$ and integrating, we obtain

$$
\begin{aligned}
r_{0} \int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq & |A|\|r\|_{\infty} \int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p-1}+(|A|+|B|) \mid\left(\int_{t_{0}}^{t_{1}} \gamma\right)\|u\|^{p-1} \\
& +(\|u\|+A+B) \int_{t_{0}}^{t_{1}} h
\end{aligned}
$$

This, together with 2.9 , implies $\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq R_{0}$.
Suppose next that $d>0$. Then from the boundary condition at t_{1}, we obtain $u^{\prime}\left(t_{1}\right)=\frac{\theta \beta-c u\left(t_{1}\right)}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}$. Hence if $c=0$ then $u^{\prime}\left(t_{1}\right)=\frac{\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)} \equiv \theta \beta_{1}$ from which 2.7) and 2.9 imply

$$
\begin{equation*}
\left\|u^{\prime}\right\| \leq R_{1}\left(1+\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|\right) \tag{2.10}
\end{equation*}
$$

Consequently, 2.8 gives

$$
\int_{t_{0}}^{t_{1}} r(t)\left|u^{\prime}\right|^{p} \leq\|r\|_{\infty}\left(| \beta _ { 1 } | ^ { p - 1 } \left|\|u\|+\left|\alpha_{0}\left\|\mid u^{\prime}\right\|^{p-1}\right)+\left(\int_{t_{0}}^{t_{1}}|h|\right)\|u\|\right.\right.
$$

which, together with 2.9 and 2.10 , implies that $\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq R_{2}$.
If $c>0$, then

$$
\begin{align*}
& -r\left(t_{1}\right) \phi\left(u^{\prime}\left(t_{1}\right)\right) u\left(t_{1}\right) \\
& =r\left(t_{1}\right) \phi\left(\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right) u\left(t_{1}\right) \\
& =r\left(t_{1}\right) \phi\left(\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right)\left(\left(\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right)\left(\frac{d \phi^{-1}\left(r\left(t_{1}\right)\right)}{c}\right)+\frac{\theta \beta}{c}\right) \tag{2.11}\\
& \geq R_{2}\left|\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right|^{p}-R_{3} .
\end{align*}
$$

By (2.7) and 2.9,

$$
\begin{equation*}
\left\lvert\, \phi\left(u^{\prime}\left(t_{0}\right) \left\lvert\, \leq \frac{1}{r_{0}}\left(\|r\|_{\infty}\left|\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right|^{p-1}+\int_{t_{0}}^{t_{1}}|h|+\left(\int_{t_{0}}^{t_{1}} \gamma\right)\|u\|^{p-1}\right)\right.\right.\right. \tag{2.12}
\end{equation*}
$$

Using 2.9, 2.11 and 2.12 together with $u\left(t_{0}\right)=\theta \alpha_{0}$ in 2.8), we deduce that $\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq R_{4}$. Hence in either case $\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq R_{5}$, where $R_{5}=\max \left(R_{0}, R_{2}, R_{4}\right)$ and so $\|u\| \leq\left|\alpha_{0}\right|+R_{5}^{1 / p}$.
Case 2. $b>0, d>0$. Then $u^{\prime}\left(t_{0}\right)=\frac{\alpha u\left(t_{0}\right)-\theta \alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}$ and $u^{\prime}\left(t_{1}\right)=\frac{\theta \beta-c u\left(t_{1}\right)}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}$. Hence (2.8) and 2.9) give

$$
\begin{align*}
& r\left(t_{1}\right) \phi\left(\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right) u\left(t_{1}\right)+r\left(t_{0}\right) \phi\left(\frac{\alpha u\left(t_{0}\right)-\theta \alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}\right) u\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} r(t)\left|u^{\prime}\right|^{p} \tag{2.13}\\
& \leq\left(\int_{t_{0}}^{t_{1}}|h|\right)\|u\|
\end{align*}
$$

Since $a+c>0$, we can assume without loss of generality that $c>0$. Then

$$
\begin{aligned}
\|u\| & \leq\left|u\left(t_{1}\right)\right|+\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right| \\
& \leq \frac{d \phi^{-1}\left(r\left(t_{1}\right)\right)}{c}\left|\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right|+\frac{|\beta|}{c}+\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|
\end{aligned}
$$

which, together with 2.11 and 2.13, imply

$$
\left|\frac{c u\left(t_{1}\right)-\theta \beta}{d \phi^{-1}\left(r\left(t_{1}\right)\right)}\right|^{p}+\int_{t_{0}}^{t_{1}}\left|u^{\prime}\right|^{p} \leq R_{6}
$$

Consequently, $\|u\|<R_{8}$. Thus, we have shown that in both cases that $\|u\|$ is bounded by a constant independent of u and θ. By the Leray-Schauder fixed point theorem, S has a fixed point u, which is a solution of 2.5 in $A C^{1}\left[t_{0}, t_{1}\right]$. To show uniqueness, let u, v be solutions of 2.5. Then

$$
\begin{equation*}
-\left(r(t)\left(\phi\left(u^{\prime}\right)-\phi\left(v^{\prime}\right)\right)^{\prime}+\gamma(t)(\phi(u)-\phi(v))=0 \quad \text { a.e. on }\left(t_{0}, t_{1}\right)\right. \tag{2.14}
\end{equation*}
$$

We claim that $\left(\phi\left(u^{\prime}\left(t_{0}\right)\right)-\phi\left(v^{\prime}\left(t_{0}\right)\right)\left(u\left(t_{0}-v\left(t_{0}\right) \geq 0\right.\right.\right.$. This is true when $b=0$ since $u\left(t_{0}\right)=\alpha / a=v\left(t_{0}\right)$ in this case. If $b>0$ then $u^{\prime}\left(t_{0}\right)=\frac{a u\left(t_{0}\right)-\alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}, v^{\prime}\left(t_{0}\right)=$ $\frac{a v\left(t_{0}\right)-\alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}$, which implies

$$
\begin{aligned}
& \left(\phi\left(u^{\prime}\left(t_{0}\right)\right)-\phi\left(v^{\prime}\left(t_{0}\right)\right)\left(u\left(t_{0}\right)-v\left(t_{0}\right)\right.\right. \\
& =\left(\phi\left(\frac{a u\left(t_{0}\right)-\alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}\right)-\phi\left(\frac{a v\left(t_{0}\right)-\alpha}{b \phi^{-1}\left(r\left(t_{0}\right)\right)}\right)\right)\left(u \left(t_{0}-v\left(t_{0}\right) \geq 0\right.\right.
\end{aligned}
$$

Similarly, $\left(\phi\left(u^{\prime}\left(t_{1}\right)\right)-\phi\left(v^{\prime}\left(t_{1}\right)\right)\left(u\left(t_{1}-v\left(t_{1}\right) \leq 0\right.\right.\right.$. Hence, multiplying 2.14 by $u-v$ and integrating, we get

$$
\int_{t_{0}}^{t_{1}} r(t)\left(\phi\left(u^{\prime}\right)-\phi\left(v^{\prime}\right)\right)\left(u^{\prime}-v^{\prime}\right) d t \leq 0
$$

which implies $u^{\prime}=v^{\prime}$ on $\left(t_{1}, t_{2}\right)$. Hence there exists a constant k such that $u(t)=$ $v(t)+k$ for all $t \in\left[t_{1}, t_{2}\right]$. The boundary conditions then give $a k=c k=0$. Hence $k=0$, which completes the proof.

Next, we prove a comparison principle, which extends [9, Lemma 3.2] to the case $\gamma \geq 0, \gamma \not \equiv 0$.

Lemma 2.5. Let $\gamma, h_{i} \in L^{1}\left(t_{0}, t_{1}\right)$, $i=1,2$, with $\gamma \geq 0$ and $h_{1} \geq h_{2}$. Let $u_{i} \in A C^{1}\left[t_{0}, t_{1}\right], i=1,2$ satisfy

$$
\begin{aligned}
& -\left(r(t) \phi\left(u_{i}^{\prime}\right)\right)^{\prime}+\gamma(t) \phi\left(u_{i}\right)=h_{i} \quad \text { a.e. on }\left(t_{0}, t_{1}\right) \\
& a u_{1}\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u_{1}^{\prime}\left(t_{0}\right) \geq a u_{2}\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u_{2}^{\prime}\left(t_{0}\right), \\
& c u_{1}\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u_{1}^{\prime}\left(t_{1}\right) \geq c u_{2}\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u_{2}^{\prime}\left(t_{1}\right) .
\end{aligned}
$$

Then $u_{1} \geq u_{2}$ on $\left[t_{0}, t_{1}\right]$.
Proof. Suppose on the contrary that there exists $\tilde{t} \in\left(t_{0}, t_{1}\right)$ such that $u_{1}(\tilde{t})<u_{2}(\tilde{t})$. Let $(\alpha, \beta) \subset\left(t_{0}, t_{1}\right)$ be the largest open interval containing \tilde{t} such that $u_{1}<u_{2}$ on (α, β). Hence

$$
\begin{equation*}
\left(r(t)\left(\phi\left(u_{1}^{\prime}\right)-\phi\left(u_{2}^{\prime}\right)\right)^{\prime} \leq 0 \quad \text { a.e. on }(\alpha, \beta),\right. \tag{2.15}
\end{equation*}
$$

Case 1. $u_{1}(\alpha)=u_{2}(\alpha)$ or $u_{1}(\beta)=u_{2}(\beta)$. Suppose $u_{1}(\alpha)=u_{2}(\alpha)$. Then $u_{1}^{\prime}(\alpha) \leq u_{2}^{\prime}(\alpha)$. Hence 2.15 implies $u_{1}^{\prime} \leq u_{2}^{\prime}$ on (α, β). If $u_{1}(\beta)=u_{2}(\beta)$ then this gives $u_{1} \geq u_{2}$ on (α, β), a contradiction. If $u_{1}(\beta)<u_{2}(\beta)$ then $\beta=t_{1}$ and from the boundary condition at t_{1}, we get $d\left(u_{2}^{\prime}\left(t_{1}\right)-u_{1}^{\prime}\left(t_{1}\right)\right) \leq 0$. Hence if $d>0$ we get $u_{2}^{\prime}\left(t_{1}\right) \leq u_{1}^{\prime}\left(t_{1}\right)$ from which (2.15) gives $u_{1}^{\prime} \geq u_{2}^{\prime}$ on (α, β) and so $u_{1} \geq u_{2}$ on (α, β), a contradiction. On the other hand, if $d=0$ then $c\left(u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right) \geq 0$, which implies $u_{1}\left(t_{1}\right) \geq u_{2}\left(t_{1}\right)$, a contradiction. Similarly, we get a contradiction if $u_{1}(\beta)=u_{2}(\beta)$.
Case 2. $u_{1}<u_{2}$ on $[\alpha, \beta]$ i.e. $\alpha=t_{0}$ and $\beta=t_{1}$. Suppose $\min _{[\alpha, \beta]}\left(u_{1}-u_{2}\right)=$ $u_{1}(\tau)-u_{2}(\tau)<0$ for some $\tau \in[\alpha, \beta]$. If $\tau \in\left(t_{0}, t_{1}\right)$ then $u_{1}^{\prime}(\tau)=u_{2}^{\prime}(\tau)$ and it follows from (2.15) that there exists a constant $k<0$ such that $u_{1}=u_{2}+k$ on $\left[t_{0}, t_{1}\right]$. Using the boundary conditions, we deduce that $a k, c k \geq 0$, a contradiction. Suppose $\tau=t_{0}$. Then

$$
a\left(u_{1}\left(t_{0}\right)-u_{2}\left(t_{0}\right)\right) \geq b \phi^{-1}\left(r\left(t_{0}\right)\right)\left(u_{1}^{\prime}\left(t_{0}\right)-u_{2}^{\prime}\left(t_{0}\right)\right) \geq 0
$$

which implies $a=0$. Hence $b>0$ and the boundary condition at $t_{0} \operatorname{imply} u_{1}^{\prime}\left(t_{0}\right)-$ $u_{2}^{\prime}\left(t_{0}\right) \leq 0$, from which 2.15 gives $u_{1}^{\prime} \leq u_{2}^{\prime}$ on $\left(t_{0}, t_{1}\right)$. Consequently, $u_{1}=u_{2}+\tilde{k}$ on $\left(t_{0}, t_{1}\right)$ for some constant $k<0$, a contradiction. Similarly, we reach a contradiction when $\tau=t_{1}$, which completes the proof.

The next result plays an important role in the proof of the main result. When $\gamma \equiv 0$, it was obtained in [9, Lemma 3.4] but the proof there does not apply to the case $\gamma \not \equiv 0$.

Lemma 2.6. Let $\gamma \in L^{1}(0,1)$ with $\gamma \geq 0$ and let $u \in A C^{1}[0,1]$ satisfy

$$
\begin{gathered}
-\left(r(t)\left(\phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u) \geq 0 \quad \text { a.e. on }(0,1),\right. \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0) \geq 0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1) \geq 0 .
\end{gathered}
$$

Then there exists a constant $\kappa>0$ independent of u such that for all $t \in[0,1]$,

$$
u(t) \geq \kappa\|u\|_{\infty} p(t)
$$

Proof. By Lemma 2.5, $u \geq 0$ on $[0,1]$. Suppose $\|u\|_{\infty}=u(\tau)$ for some $\tau \in(0,1)$. By Lemma 2.4, the problem

$$
\begin{aligned}
& -\left(r(t) \phi\left(z^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(z)=0 \quad \text { a.e. on }(0, \tau) \\
& a z(0)-b \phi^{-1}(r(0)) z^{\prime}(0)=0, \quad z(\tau)=\|u\|_{\infty}
\end{aligned}
$$

has a unique solution $z \in A C^{1}[0, \tau]$. By Lemma 2.5, $u \geq z \geq 0$ on $[0, \tau]$, from which the boundary condition on z at 0 gives $z^{\prime}(0) \geq 0$. Note that

$$
z(t)=z(0)+\int_{0}^{t} \phi^{-1}\left(\frac{r(0) \phi\left(z^{\prime}(0)\right)+\int_{0}^{s} \gamma(\xi) \phi(z) d \xi}{r(s)}\right) d s
$$

from which (2.3) gives

$$
z(t) \leq z(0)+m_{0}\left(z^{\prime}(0)+\phi^{-1}\left(\int_{0}^{t} \gamma(s) \phi(z) d s\right)\right)
$$

where $m_{0}>0$ is a constant independent of u. Hence using 2.3 again, it follows that

$$
\phi(z(t)) \leq m_{1}\left(\phi\left(z(0)+z^{\prime}(0)\right)+\int_{0}^{t} \gamma(s) \phi(z) d s\right)
$$

for $t \in[0, \tau]$, where $m_{1}>0$ is a constant independent of u. By Gronwall's inequality,

$$
\phi\left(z(t) \leq m_{1} \phi\left(z(0)+z^{\prime}(0)\right) e^{m_{1} \int_{0}^{t} \gamma(s) d s}\right.
$$

for $t \in[0, \tau]$. In particular when $t=\tau$, we obtain

$$
\begin{equation*}
z(0)+z^{\prime}(0) \geq \kappa_{0}\|u\|_{\infty} \tag{2.16}
\end{equation*}
$$

where $\kappa_{0}=\left(e^{-m_{1}\|\gamma\|_{1}} / m_{1}\right)^{1 /(p-1)}$. Since $\left(r(t) \phi\left(z^{\prime}\right)\right)^{\prime}=\gamma(t) \phi(z) \geq 0$ on $(0, \tau)$, it follows that $r(t) \phi\left(z^{\prime}\right) \geq r(0) \phi\left(z^{\prime}(0)\right)$, which implies

$$
z^{\prime}(t) \geq\left(r(0) /\|r\|_{\infty}\right)^{1 /(p-1)} z^{\prime}(0)
$$

If $b=0$ then $z(0)=0$ and 2.16 give

$$
\begin{equation*}
z(t)=\int_{0}^{t} z^{\prime} \geq\left(\frac{r(0)}{\|r\|_{\infty}}\right)^{\frac{1}{p-1}} \kappa_{0}\|u\|_{\infty} t=\kappa_{1}(a t+b)\|u\|_{\infty} \tag{2.17}
\end{equation*}
$$

for $t \in[0, \tau]$, where $\kappa_{1}=a^{-1}\left(r(0) /\|r\|_{\infty}\right)^{1 /(p-1)} \kappa_{0}$.
On the other hand, if $b>0$ then $z^{\prime}(0)=\frac{a}{b \phi^{-1}(r(0))} z(0)$ and 2.16 becomes $z(0) \geq \tilde{\kappa}_{1}\|u\|_{\infty}$, where $\tilde{\kappa}_{1}=\kappa_{0}\left(1+\frac{a}{b \phi^{-1}(r(0))}\right)^{-1}$. Hence

$$
\begin{equation*}
z(t) \geq z(0) \geq \tilde{\kappa}_{1}\|u\|_{\infty} \geq \kappa_{2}(a t+b)\|u\|_{\infty} \tag{2.18}
\end{equation*}
$$

for $t \in[0, \tau]$, where $\kappa_{2}=\tilde{\kappa}_{1} /(a+b)$. Combining 2.17) and 2.18, we obtain $z(t) \geq \kappa_{3}(a t+b)\|u\|_{\infty}$ for $t \in[0, \tau]$, where $\kappa_{3}>0$ is independent of u, λ, h.

Next, let $w \in A C^{1}[\tau, 1]$ be the unique solution of

$$
\begin{aligned}
& -\left(r(t) \phi\left(w^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(w)=0 \quad \text { a.e. on }(\tau, 1) \\
& w(\tau)=\|u\|_{\infty}, \quad c w(1)+d \phi^{-1}(r(1)) w^{\prime}(1)=0
\end{aligned}
$$

Then $u \geq w \geq 0$ on $[\tau, 1]$ and the boundary condition on w at 1 gives $w^{\prime}(1) \leq 0$. Using the integral formula

$$
w(t)=w(1)-\int_{t}^{1} \phi^{-1}\left(\frac{r(1) \phi\left(w^{\prime}(1)\right)-\int_{s}^{1} \gamma(\xi) \phi(w) d \xi}{r(s)}\right) d s
$$

for $t \in[\tau, 1]$ and using similar arguments as above, we obtain $w(t) \geq \kappa_{4}(d+c(1-$ $t))\|u\|_{\infty}$ for $t \in[\tau, 1]$, where $\kappa_{4}>0$ is a constant independent of u. If $\tau=0$ then $u \geq w$ on $[0,1]$ while if $\tau=1$ then $u \geq z$ on $[0,1]$. Thus $u(t) \geq \kappa\|u\|_{\infty} p(t)$ for $t \in[0,1]$, where $\kappa=\min \left(\kappa_{3}, \kappa_{4}\right)$, which completes the proof.

The next result provides some estimates on λ_{1} for $p>1$.

Lemma 2.7. Suppose $b+d>0$ and $r \equiv 1$. If $d>0$ then

$$
\begin{equation*}
\frac{\min \left(A_{1}, 1\right)}{2^{(p-1)^{+}}} \leq \lambda_{1} \leq\left(A_{1}+\left(m_{1}+2\right)^{p} e^{m_{1} p}\right)(2 p+1) \tag{2.19}
\end{equation*}
$$

where $A_{1}=(c / d)^{p-1}, m_{1}=(c+2 d) / d$, while if $b>0$, then

$$
\begin{equation*}
\frac{\min \left(B_{1}, 1\right)}{2^{(p-1)^{+}}} \leq \lambda_{1} \leq\left(B_{1}+\left(m_{2}+2\right)^{p} e^{m_{2} p}(2 p+1)\right. \tag{2.20}
\end{equation*}
$$

where $B_{1}=(a / b)^{p-1}, m_{2}=(a+2 b) / b$.
Proof. Using the Rayleigh quotient, we obtain

$$
\begin{equation*}
\lambda_{1}=\inf _{u \in V} \frac{\phi\left(u^{\prime}(0)\right) u(0)-\phi\left(u^{\prime}(1)\right) u(1)+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t}{\int_{0}^{1}|u|^{p} d t} \tag{2.21}
\end{equation*}
$$

where $V=\left\{u \in C^{1}[0,1]: a u(0)-b u^{\prime}(0)=0, c u(1)+d u^{\prime}(1)=0\right\}$.
Suppose $d>0$. Then $u^{\prime}(1)=-(c / d) u(1)$ and $\phi\left(u^{\prime}(0) u(0) \geq 0\right.$ for $u \in V$. Hence

$$
\begin{align*}
\lambda_{1} & =\inf _{u \in V} \frac{\phi\left(u^{\prime}(0)\right) u(0)+A_{1}|u(1)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t}{\int_{0}^{1}|u|^{p} d t} \tag{2.22}\\
& \geq \inf _{u \in V} \frac{A_{1}|u(1)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t}{\int_{0}^{1}|u|^{p} d t}
\end{align*}
$$

Let $u \in V$. Then

$$
|u(t)| \leq|u(1)|+\int_{0}^{1}\left|u^{\prime}\right| d t
$$

which implies

$$
\begin{aligned}
\int_{0}^{1}|u|^{p} d t & \leq 2^{(p-1)^{+}}\left(|u(1)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t\right) \\
& \leq \frac{2^{(p-1)^{+}}}{\min \left(A_{1}, 1\right)}\left(A_{1}|u(1)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t\right)
\end{aligned}
$$

Consequently, 2.22) gives $\lambda_{1} \geq \frac{\min \left(A_{1}, 1\right)}{2^{(p-1)^{+}}}$.
Next, we choose $u(t)=t^{2} e^{m_{1}(1-t)}$, where $m_{1}=(c+2 d) / d$. Then $u \in V$ and

$$
\begin{gathered}
u(t) \geq t^{2} \\
\left|u^{\prime}(t)\right|=t e^{m_{1}(1-t)}\left|2-m_{1} t\right| \leq\left(m_{1}+2\right) e^{m_{1}}
\end{gathered}
$$

for $t \in[0,1]$. Hence

$$
\begin{equation*}
\int_{0}^{1}|u|^{p} d t \geq \frac{1}{2 p+1}, \quad \int_{0}^{1}\left|u^{\prime}\right|^{p} d t \leq\left(m_{1}+2\right)^{p} e^{m_{1} p} \tag{2.23}
\end{equation*}
$$

Since $u(0)=0, u(1)=1$, it follows from 2.23 and the equality in 2.22 that

$$
\lambda_{1} \leq\left(A_{1}+\left(m_{1}+2\right)^{p} e^{m_{1} p}\right)(2 p+1)
$$

i.e. 2.19 holds. Suppose next that $b>0$. Then

$$
\begin{align*}
\lambda_{1} & =\inf _{u \in V} \frac{B_{1}|u(0)|^{p}-\phi\left(u^{\prime}(1)\right) u(1)+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t}{\int_{0}^{1}|u|^{p} d t} \\
& \geq \inf _{u \in V} \frac{B_{1}|u(0)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t}{\int_{0}^{1}|u|^{p} d t} \tag{2.24}
\end{align*}
$$

Using the inequality

$$
|u(t)| \leq|u(0)|+\int_{0}^{1}\left|u^{\prime}\right| d t
$$

it follows that

$$
\int_{0}^{1}|u|^{p} d t \leq \frac{2^{(p-1)^{+}}}{\min \left(B_{1}, 1\right)}\left(B_{1}|u(0)|^{p}+\int_{0}^{1}\left|u^{\prime}\right|^{p} d t\right)
$$

from which 2.24) implies $\lambda_{1} \geq \frac{\min \left(B_{1}, 1\right)}{2^{(p-1)^{\dagger}}}$. By choosing $u(t)=(1-t)^{2} e^{m_{2} t}$, where $m_{2}=(a+2 b) / b$, we see that $u \in V$ and the equality in 2.24 gives

$$
\lambda_{1} \leq\left(B_{1}+\left(m_{2}+2\right)^{p} e^{m_{2} p}\right)(2 p+1)
$$

which establishes 2.20 . This completes the proof.
Example 2.8. It follows from (2.19) that the principal eigenvalue λ_{1} of $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$ with boundary conditions $u(0)-u^{\prime}(0)=0=u(1)+u^{\prime}(1)$ satisfies

$$
\frac{1}{2^{(p-1)^{+}}} \leq \lambda_{1} \leq\left(1+5^{p} e^{3 p}\right)(2 p+1)
$$

3. Proof of main results

Proof of Theorem 1.1. In view of (A2)-(A5), there exist constants $r, r_{1}, \bar{\lambda}>0$ with $r<r_{1}$ and $\bar{\lambda}<\lambda_{1}$ such that for a.e. $t \in(0,1)$,

$$
\begin{equation*}
f(t, z) \leq \bar{\lambda} z^{p-1}, \quad f(t, z)+(\eta(t)+1) z^{p-1} \geq 0 \tag{3.1}
\end{equation*}
$$

for $z \leq r$;

$$
|f(t, z)| \leq \gamma_{r_{1}}(t) \leq \gamma_{r_{1}}(t)(z / r)^{p-1}
$$

for $r<z<r_{1}$, and $f(t, z)>0$ for $z>r_{1}$ and a.e. t. Hence

$$
f(t, z)+\gamma(t) z^{p-1} \geq 0
$$

for a.e. $t \in(0,1)$ and all $z \geq 0$, where $\gamma(t)=\max \left(\eta(t)+1, \gamma_{r_{1}}(t) / r^{p-1}\right)$. For $v \in E=C[0,1]$, we have $f(t,|v|)+\gamma(t)|v|^{p-1} \in L^{1}(0,1)$ in view of (A3). Hence by Lemma 2.4 the problem

$$
\begin{gathered}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u)=f(t,|v|)+\gamma(t)|v|^{p-1} \quad \text { a.e. on }(0,1), \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0,
\end{gathered}
$$

has a unique solution $u=A v \in C^{1}[0,1]$. Since $A=T_{0} \circ S_{0}$, where $S_{0}: C[0,1] \rightarrow$ $L^{1}(0,1)$ is defined by $\left(S_{0} v\right)(t)=f(t,|v|)+\gamma(t)|v|^{p-1}$ and T_{0} is defined in Lemma 2.4 with $\alpha=\beta=0$, we see that $A: E \rightarrow E$ is completely continuous. We shall verify that
(i) $u=\theta A u, \theta \in(0,1] \Longrightarrow\|u\|_{\infty} \neq r$.

Indeed, let $u \in E$ satisfy $u=\theta A u$ for some $\theta \in(0,1]$ and suppose $\|u\|_{\infty}=r$. Then $u \in A C^{1}[0,1]$ and

$$
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u)=\theta^{p-1}\left(f(t,|u|)+\gamma(t)|u|^{p-1}\right) \geq 0 \quad \text { a.e. on }(0,1)
$$

which implies $u \geq 0$ on $(0,1)$ by Lemma 2.6. Hence

$$
\begin{equation*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\theta^{p-1} f(t, u)-\left(1-\theta^{p-1}\right) \gamma(t) u^{p-1} \leq \theta^{p-1} f(t, u) \tag{3.2}
\end{equation*}
$$

a.e. on $(0,1)$.

By [10, Lemma 2.1], there exists a constant $k_{0}>0$ such that $|z(t)| \leq k_{0}|z|_{C^{1}} p(t)$ for all $t \in[0,1]$ and $z \in C^{1}[0,1]$ satisfying the Sturm-Liouville boundary conditions in 1.1). In particular, $\sup _{t \in(0,1)} \frac{u(t)}{p(t)}<\infty$. Since

$$
-\left(r(t) \phi\left(\phi_{1}^{\prime}\right)^{\prime}\right)=\lambda_{1} \phi_{1}^{p-1}>0 \quad \text { a.e. on }(0,1),
$$

it follows from Lemma 2.6 (with $\gamma \equiv 0$) that $\inf _{t \in(0,1)} \frac{\phi_{1}(t)}{p(t)}>0$. Hence there exists a smallest positive constant δ_{0} such that $u \leq \delta_{0} \phi_{1}$ on $[0,1]$. Then it follows from (3.1) and (3.2) that

$$
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime} \leq \bar{\lambda} u^{p-1} \leq \bar{\lambda} \delta_{0}^{p-1} \phi_{1}^{p-1} \quad \text { a.e. on }(0,1)
$$

from which the weak comparison principle (see [9, Lemma 3.2], [17, Lemma A2]) gives

$$
u \leq\left(\bar{\lambda} \delta_{0}^{p-1} / \lambda_{1}\right)^{\frac{1}{p-1}} \phi_{1}
$$

on $[0,1]$, a contradiction with the definition of δ_{0}. Thus $\|u\|_{\infty} \neq r$ i.e. (i) holds.
Next, we claim that
(ii) There exists a constant $R>r$ such that $u=A u+\xi, \xi \geq 0$ implies $\|u\|_{\infty} \neq R$.
Let $u \in E$ satisfy $u=A u+\xi$ for some $\xi \in[0, \infty)$. Then $u-\xi=A u$ and therefore

$$
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u-\xi)=f(t,|u|)+\gamma(t)|u|^{p-1} \quad \text { a.e. on }(0,1)
$$

which implies

$$
\begin{equation*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi(u) \geq f(t,|u|)+\gamma(t)|u|^{p-1} \geq 0 \text { a.e. on }(0,1) \tag{3.3}
\end{equation*}
$$

Since $\lim \inf _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}>\lambda_{1}$ uniformly for a.e. $t \in(0,1)$, there exist positive constants $L, \tilde{\lambda}, \lambda_{0}$ with $\tilde{\lambda}>\lambda_{0}>\lambda_{1}$ such that $f(t, z) \geq \tilde{\lambda} z^{p-1}$ for a.e. $t \in(0,1)$ and $z>L$.

Let $\varepsilon=\left(k_{0} l\right)^{-1}\left(\left(\tilde{\lambda} / \lambda_{1}\right)^{\frac{1}{p-1}}-\left(\lambda_{0} / \lambda_{1}\right)^{\frac{1}{p-1}}\right)$, where $l=\sup _{t \in(0,1)} \frac{p(t)}{\phi_{1}(t)} \in(0, \infty)$, and let δ be given by 2.4 . Choose $I=[\alpha, \beta] \subset[0,1]$ such that

$$
\int_{[0,1 \backslash I}\left(\tilde{\lambda}+\gamma_{L}(t)\right)<\delta
$$

where γ_{L} is defined by (A3). Let $R>\max \left(r, \frac{1}{\kappa l_{0}}, \frac{L}{\kappa \min _{[\alpha, \beta]} p}\right)$, where $l_{0}=$ $\inf _{(0,1)} \frac{p}{\phi_{1}}>0$ and κ is defined in Lemma 2.6 . We claim that $\|u\|_{\infty} \neq R$. Indeed, suppose $\|u\|_{\infty}=R$. Then it follows from (3.3) and Lemma 2.6 that $u(t) \geq$ $\kappa\|u\|_{\infty} p(t)$ for $t \in(0,1)$. In particular, (3.3) becomes

$$
\begin{equation*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime} \geq f(t, u) \quad \text { on }(0,1) \tag{3.4}
\end{equation*}
$$

and

$$
u(t) \geq \kappa R p(t) \geq \kappa R \min _{[\alpha, \beta]} p>L
$$

for $t \in I$. Hence $f(t, u) \geq \tilde{\lambda} u^{p-1}$ for a.e. $t \in I$. Let δ_{1} be the largest positive number such that $u \geq \delta_{1} \phi_{1}$ on $(0,1)$. Then $\delta_{1} \geq \kappa l_{0} R>1$ and

$$
-\left(r(t) \phi\left(\frac{u^{\prime}}{\delta_{1}}\right)\right)^{\prime} \geq \begin{cases}\tilde{\lambda} \phi_{1}{ }^{p-1} & \text { if } t \in I \\ -\gamma_{L}(t) & \text { if } t \notin I\end{cases}
$$

Let $u_{1}, u_{2} \in A C^{1}[0,1]$ satisfy

$$
\begin{aligned}
-\left(r(t) \phi\left(u_{1}^{\prime}\right)\right)^{\prime} & = \begin{cases}\tilde{\lambda} \phi_{1}{ }^{p-1} & \text { if } t \in I, \\
-\gamma_{L}(t) & \text { if } t \notin I\end{cases} \\
& \equiv h_{1} \quad \text { a.e. on }(0,1),
\end{aligned}
$$

and

$$
-\left(r(t) \phi\left(u_{2}^{\prime}\right)\right)^{\prime}=\tilde{\lambda} \phi_{1}^{p-1} \equiv h_{2} \quad \text { a.e. on }(0,1)
$$

with Sturm-Liouville boundary conditions. Note that $u_{2}=\left(\tilde{\lambda} / \lambda_{1}\right)^{\frac{1}{p-1}} \phi_{1}$ and $u \geq$ $\delta_{1} u_{1}$ on $(0,1)$. Since

$$
\left\|h_{1}-h_{2}\right\|_{1} \leq \int_{[0,1] \backslash I}\left(\tilde{\lambda}+\gamma_{L}(t)\right)<\delta
$$

it follows from 2.4) that $\left|u_{1}-u_{2}\right|_{C^{1}}<\varepsilon$. Hence

$$
\begin{aligned}
u_{1} & \geq u_{2}-k_{0} \varepsilon p \geq u_{2}-k_{0} l \varepsilon \phi_{1} \\
& =\left(\tilde{\lambda} / \lambda_{1}\right)^{\frac{1}{p-1}} \phi_{1}-\left(\left(\tilde{\lambda} / \lambda_{1}\right)^{\frac{1}{p-1}}-\left(\lambda_{0} / \lambda_{1}\right)^{\frac{1}{p-1}}\right) \phi_{1} \\
& =\left(\lambda_{0} / \lambda_{1}\right)^{\frac{1}{p-1}} \phi_{1} \quad \text { on }(0,1),
\end{aligned}
$$

and consequently, $u \geq \delta_{1}\left(\lambda_{0} / \lambda_{1}\right)^{\frac{1}{p-1}} \phi_{1}$ on $(0,1)$, a contradiction with the definition of δ_{1}. Thus $\|u\|_{\infty} \neq R$, as claimed i.e. (ii) holds.

By Lemma 2.1, operator A has a fixed point $u \in E$ with $\|u\|_{\infty}>r$, which is a classical positive solution of 1.1 in view of Lemmas 2.4 and 2.6. This completes the proof.

References

[1] H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach Spaces, SIAM Rev. 18 (1976), 620-709.
[2] P. Binding, P. Drábek; Sturm-Liouville theory for the p-Laplacian, Studia Sci. Math. Hunga., 40 (2003), no. 4, 375-396.
[3] A. Ćwiszewski, M. Maciejewski; Positive stationary solutions for p-Laplacian problems with nonpositive perturbation, J. Differential Equations, 254 (2013), 1120-1136.
[4] M. del Pino, M. Elgueta, R. Manásevich; A homotopic deformation along p of a LeraySchauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0, u(0)=u(T)=0, p>1$. J. Differential Equations, 80 (1989), no. 1, 1-13.
[5] P. Drábek; Ranges of a -homogeneous operators and their perturbations, Casopis Pest. Mat., 105 (1980), 167-183.
[6] J. Dugundji, A. Granas; Fixed Point Theory, Springer-Verlag, 2004.
[7] L. Erbe, H. Wang; On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), no. 3, 743-748.
[8] D. G. de Figueiredo, P. L. Lions, R. D. Nusbaum; Estimations a priori pour les solutions positives de problèmes elliptiques superlinéaires. (French) C. R. Acad. Sci. Paris S ér. A-B, 290 (1980), no. 5, 217-220.
[9] D. D. Hai; On singular Sturm-Liouville boundary-value problems. Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), no. 1, 49-63.
[10] D. D. Hai; Existence of positive solutions for singular p-Laplacian Sturm-Liouville boundary value problems, Electron. J. Differential Equations (2016), Paper No. 260, 9 pp.
[11] H. G. Kaper, M. Knaap, M. K. Kwong; Existence theorems for second order boundary value problems, Differential Integral Equations, 4 (1991), no. 3, 543-554.
[12] Q. Kong, M. Wang; Positive solutions of boundary value problems with p-Laplacian, Electron. J. Differential Equations, 2010, No. 126, 16pp.
[13] Q. Kong, X. Wang; Nonlinear boundary value problems with p-Laplacian, Commun. Appl. Anal. 15 (2011), no. 1, 25-45.
[14] K. Lan, X. Yang, G. Yang; Positive solutions of one-dimensional p-Laplacian equations and applications to population models of one species, Topol. Methods Nonlinear Anal., 46 (2015), 431-445.
[15] R. Manásevich, F. I. Njoku, F. Zanolin; Positive solutions for the one-dimensional pLaplacian. Differential Integral Equations 8 (1995), 213-222.
[16] B. P. Rynne; Eigenvalue criteria for existence of positive solutions of second-order, multipoint, p-Laplacian boundary value problems, Topol. Methods Nonlinear Anal., 36 (2010), no. 2, 311-326.
[17] S. Sakaguchi; Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. pisa Cl. Sci., (4) 14 (1987), 403-421.
[18] J. R. L. Webb, K. Q. Lan; Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Methods Nonlinear Anal., 27 (2006), 91-116.
[19] J. Wang; The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275-2283.
[20] G. C. Yang, P. F. Zhou; A new existence results of positive solutions for the Sturm-Liouville boundary value problem, Appl. Math. Letters, 23 (2010), 1401-1406.

Khanh Duc Chu
Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho chi Minh City, Vietnam

E-mail address: chuduckhanh@tdt.edu.vn
Dang Dinh Hai
Department of Mathematics and Statistics, Mississippi state University, Mississippi State, MS 39762, USA

E-mail address: dang@math.msstate.edu

[^0]: 2010 Mathematics Subject Classification. 34B15, 34B18.
 Key words and phrases. p-Laplacian; superlinear; positive solutions.
 (C) 2018 Texas State University.

 Submitted February 12, 2018. Published April 17, 2018.

