Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 88, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATION WITH NONLINEAR TERM OF SUPERLINEAR AND SUBCRITICAL GROWTH

XIAO-FENG KE, CHUN-LEI TANG
Communicated by Paul Rabinowitz

Abstract

This article concerns the existence and multiplicity of solutions to the superlinear elliptic problems. We introduce a new superlinear condition which is proved to be weaker than the Ambrosetti-Rabinowitz condition, the nonquadratic condition, the monotonicity conditions. As an application, positive solution and infinitely many solutions to semilinear elliptic equation with general subcritical growth are obtained, which generalize some known results.

1. Introduction and statement of main results

Consider the semilinear elliptic equation Dirichlet problem

$$
\begin{gather*}
-\triangle u+a(x) u=f(x, u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where \triangle is the Laplacian operator, Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$, and $a \in L^{\frac{N}{2}}(\Omega)$. The inner product and induced norm in $H_{0}^{1}(\Omega)$ are respectively given by

$$
\langle u, v\rangle:=\int_{\Omega}(\nabla u, \nabla v) d x, \quad\|u\|:=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}, \quad \forall u, v \in H_{0}^{1}(\Omega)
$$

where (\cdot, \cdot) is the Euclidean inner product. The operator $-\triangle+a: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow$ $L^{2}(\Omega)$ possesses a unbounded eigenvalues sequence

$$
\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty \text { as } n \rightarrow \infty
$$

where λ_{1} is simple and characterized by

$$
\lambda_{1}=\inf _{u \in H_{0}^{1}(\Omega), u \neq 0} \frac{\int_{\Omega}|\nabla u|^{2}+a(x) u^{2} d x}{\int_{\Omega} u^{2} d x}
$$

the infimum is achieved by a positive function ϕ_{1} which is exactly a eigenfunction corresponding to λ_{1}, and u is a eigenfunction corresponding to λ_{1} if and only if $u \in H_{0}^{1}(\Omega) \backslash\{0\}$ is such that $\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a(x) u^{2} d x=\lambda_{1} \int_{\Omega} u^{2} d x$. Besides this, it is well known that the embedding mapping $H_{0}^{1}(\Omega) \hookrightarrow L^{r}(\Omega)$ is continuous for

[^0]$r \in\left[1,2^{*}\right]$ and is compact for $r \in\left[1,2^{*}\right)$, where $2^{*}:=\frac{2 N}{N-2}$. We denote by $|\cdot|_{r}$ the norm in $L^{r}(\Omega)$ and S_{r} the best constant to the corresponding embedding mapping, that is, $S_{r}|u|_{r} \leq\|u\|$, for all $u \in H_{0}^{1}(\Omega)$.

In the celebrated paper [1], Ambrosetti and Rabinowitz established the famous mountain pass theorem and applied it to obtain nontrivial solution and multiple solutions to problem (1.1) by assuming
(A1) f is Hölder continuous in $\bar{\Omega} \times \mathbb{R}$ and $f(x, 0)=0$,
(A2) there exist positive constants a_{1}, a_{2} and $q \in\left(2,2^{*}\right)$ such that

$$
|f(x, s)| \leq a_{1}+a_{2}|s|^{q-1}
$$

for $s \in \mathbb{R}$ and $x \in \Omega$,
(A3) $\lim _{s \rightarrow 0} f(x, s) / s=0$ uniformly in $x \in \bar{\Omega}$,
(A4) $\lim _{|s| \rightarrow \infty} f(x, s) / s=+\infty$ uniformly in $x \in \bar{\Omega}$,
(A5) there exist constants $s_{0}^{\prime}>0$ and $\theta>2$ such that

$$
\theta F(x, s) \leq s f(x, s)
$$

for $|s| \geq s_{0}^{\prime}$ and $x \in \bar{\Omega}$, where $F(x, s):=\int_{0}^{s} f(x, t) d t$,
(A6) f is odd in s,
where (A4) shows that f is essentially superlinear at ∞. Moreover, (A4) together with (A5) leads to
(A7) there exist constants $s_{1}^{\prime}>0$ and $\theta>2$ such that

$$
0<\theta F(x, s) \leq s f(x, s)
$$

for $|s| \geq s_{1}^{\prime}$ and $x \in \bar{\Omega}$,
which is hereafter called the Ambrosetti-Rabinowitz condition and plays a key role in ensuring that the Euler-Lagrange functional associated to problem (1.1) admits a mountain pass geometry and the Palais-Smale sequences are bounded. Integrating, from the continuity of f one deduces that

$$
\begin{equation*}
F(x, s) \geq \xi|s|^{\theta} \tag{1.2}
\end{equation*}
$$

for $|s| \geq s_{1}^{\prime}$ and $x \in \Omega$, where

$$
\xi:=\left(\frac{1}{s_{1}^{\prime}}\right)^{\theta} \min \left\{\min _{x \in \bar{\Omega}} F\left(x, s_{1}^{\prime}\right), \min _{x \in \bar{\Omega}} F\left(x,-s_{1}^{\prime}\right)\right\}>0 .
$$

Here we note two things. Firstly, in order to obtain (1.2), one should add the assumption ess $\inf _{x \in \Omega} F\left(x, \pm s_{1}^{\prime}\right)>0$ if (A7) is satisfied only on Ω rather than $\bar{\Omega}$ or $f\left(\cdot, \pm s_{1}^{\prime}\right): \bar{\Omega} \rightarrow \mathbb{R}$ is discontinuous, see [11] for more details. Secondly, 1.2] eliminates many interesting superlinear functions, such as $F(x, s)=s^{2} \ln (1+|s|)$. For this reason, this technique has been subsequently improved in order to include more superlinear functions and extended to deal with more complicated variational problems by a large number of researchers, see (3, 4, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 26] and references therein.

In [3], Costa and Magalhães replaced (A7) by
(A8) (i) there exist constants $q \in\left(2,2^{*}\right)$ and $a_{3}>0$ such that

$$
\limsup _{|s| \rightarrow \infty} \frac{F(x, s)}{|s|^{q}} \leq a_{3} \text { uniformly in a.e. } x \in \Omega,
$$

(ii) there exist constants $\delta>0$ and $\mu>\frac{N(q-2)}{2}$ such that

$$
\liminf _{|s| \rightarrow \infty} \frac{s f(x, s)-2 F(x, s)}{|s|^{\mu}} \geq \delta
$$

uniformly in a.e. $x \in \Omega$,
then a nontrivial solution was obtained provided
$\limsup _{s \rightarrow 0} \frac{2 F(x, s)}{s^{2}}<\lambda_{1}<\liminf _{|s| \rightarrow \infty} \frac{2 F(x, s)}{s^{2}} \quad$ uniformly in a.e. $x \in \Omega$.
Under these assumptions, they can deal with both superlinear situation and sublinear situation.

In [4, Ding and Luan investigated a class of Schrödinger equations with the nonlinear term satisfying
(A9) (i) $\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{s^{2}}=+\infty$ uniformly in $x \in \Omega$,
(ii) $H(x, s):=s f(x, s)-2 F(x, s)>0$ for $s \neq 0$,
(iii) there exist positive constants s_{2}^{\prime}, a_{4} and $\sigma>N / 2$ such that $\left(\frac{f(x, s)}{s}\right)^{\sigma} \leq$ $a_{4} H(x, s)$ for $|s| \geq s_{2}^{\prime}$ and $x \in \Omega$,
where (A9)(iii) can be deduced from (A7) and a subcritical growth condition, see [5, Lemma 2.2].

In [23], Willem and Zou studied a class of superlinear Schrödinger equation by assuming
(A10) (i) there exist positive constants a_{5}, a_{6} and $\nu \in\left(2,2^{*}\right)$ such that $a_{5}|s|^{\nu} \leq$ $f(x, s) s \leq a_{6}|s|^{\nu}$ for $s \in \mathbb{R}$ and $x \in \Omega$,
(ii) $s f(x, s)-2 F(x, s)>0$ for $s \neq 0$ and $x \in \Omega$,
(iii) there exist constants $\delta>0$ and $\mu>\frac{2^{*} \nu(\nu-2)}{2^{*} \nu-2^{*}-\nu}$ such that

$$
\liminf _{|s| \rightarrow \infty} \frac{s f(x, s)-2 F(x, s)}{|s|^{\mu}} \geq \delta \text { uniformly in } x \in \Omega
$$

In [10, Miyagaki and Souto studied a eigenvalue problem under $\left(\mathrm{S}_{2}\right)(\mathrm{i})$ and (A11) there exists constant $s_{3}^{\prime}>0$ such that

$$
\frac{f(x, s)}{s} \text { is increasing for } s \geq s_{3}^{\prime} \text { and decreasing for } s \leq-s_{3}^{\prime}, \quad \forall x \in \Omega
$$

which implies
(A12) there exists constant $s_{4}^{\prime}>0$ such that

$$
H(x, s) \text { is increasing for } s \geq s_{4}^{\prime} \text { and decreasing for } s \leq-s_{4}^{\prime}, \quad \forall x \in \Omega .
$$

It is remarkable that (A12) also implies that (A11) when $f(x, s)$ is differentiable with respect to s (see [8). Furthermore, (A12) can be generalized in two directions. One is the following generalized monotonic condition
(A13) there exists a constant $D \geq 1$ such that

$$
H(x, t) \leq D H(x, s) \quad \text { for } s_{4}^{\prime}<t<s \text { or } s<t<-s_{4}^{\prime}, \forall x \in \Omega,
$$

which was first introduced in [6]. The other is the following "quasi-monotonic" condition
(A14) there exists a nonnegative function $W_{1} \in L^{1}(\Omega)$ such that

$$
H(x, t) \leq H(x, s)+W_{1}(x) \quad \text { for } 0<t<s \text { or } s<t<0, \forall x \in \Omega
$$

A weaker condition than (A13) and (A14) is
(A15) there exist a constant $D \geq 1$ and a nonnegative function $W_{1} \in L^{1}(\Omega)$ such that

$$
H(x, t) \leq D H(x, s)+W_{1}(x) \quad \text { for } 0<t<s \text { or } s<t<0, \forall x \in \Omega
$$

Using (A15) instead of (A11), Lan and Tang in [7] generalized the result in [10].
In addition, Schechter and Zou in [15] established the existence of nontrivial solution for problem (1.1) provided

- $H(x, s)$ is convex in $s, \forall x \in \Omega$, or there are constants $a_{7}>0, \theta>2$ and s_{5}^{\prime} such that

$$
\theta F(x, s)-s f(x, s) \leq a_{7}\left(s^{2}+1\right)
$$

for $|s| \geq s_{5}^{\prime}$.
As remarked in [10], the convexity of H in the above assumption is stronger than (A11), while the second alternative is equivalent to (A7).

Under (A7), Wang in 21 proved that problem (1.1) had at least three nontrivial solutions via the mountain pass theorem and Morse theory. By assuming (A12) holds, Liu and Wang in [9] also obtained at least three nontrivial solutions via the Nehari manifold method, and infinitely many solutions via the LjusternikSchnirelmann theory. Recently, Tang in 19 investigated a superlinear Schrödinger equation with the nonlinear term satisfying

- there exists $\theta_{0} \in(0,1)$ such that $s f(x, s) \geq 0$ and

$$
\frac{1-\theta^{2}}{2} s f(x, s) \geq \int_{\theta s}^{s} f(x, t) d t=F(x, s)-F(x, \theta s), \quad \forall \theta \in\left[0, \theta_{0}\right]
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$.
Tang and Wu in 18 also introduced a new superquadratic condition to guarantee the existence of nontrivial solution to a second order Hamiltonian systems.

In this paper, we assume that $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, and satisfies
(A16) for every $M>0$, there exists a constant $L_{M}>0$ such that

$$
|f(x, s)| \leq L_{M}
$$

for $|s| \leq M$ and a.e. $x \in \Omega$,
(A17) $\lim _{|s| \rightarrow \infty} \frac{f(x, s)}{|s|^{2^{*}-2} s}=0$ uniformly in a.e. $x \in \Omega$,
(A18) there exist a function $m \in L^{\frac{N}{2}}(\Omega)$ and a subset $\Omega^{\prime} \subset \Omega$ with $\left|\Omega^{\prime}\right|>0$ such that

$$
\limsup _{s \rightarrow 0} \frac{2 F(x, s)}{s^{2}} \leq m(x) \leq \lambda_{1}
$$

uniformly in a.e. $x \in \Omega$, and $m<\lambda_{1}$ in Ω^{\prime}, where $F(x, s)=\int_{0}^{s} f(x, t) d t$ and $|\cdot|$ is the Lebesgue measure,
(A19) $\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{s^{2}}=+\infty$ uniformly in a.e. $x \in \Omega$,
(A20) there exist constants $s_{0}>0, \alpha>0, \sigma>\frac{N}{2}$ and a nonnegative function $W \in L^{1}(\Omega)$ such that

$$
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma} \leq \alpha H(x, s)+W(x)
$$

for $|s| \geq s_{0}$ and a.e. $x \in \Omega$, where $H(x, s)=s f(x, s)-2 F(x, s)$.
Remark 1.1. Obviously, (A16) holds when $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous. (A17) is essentially weaker than
(A21) there exist positive constants a_{8}, a_{9} and $q \in\left(2,2^{*}\right)$ such that

$$
|f(x, s)| \leq a_{8}+a_{9}|s|^{q-1}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$.
which is equivalent to (A8)(i) when (A16) holds. Besides, if $\lambda_{1}>0$, (A18) is obviously weaker than
(A22) $\lim _{s \rightarrow 0} \frac{2 F(x, s)}{s^{2}}=0$ uniformly in a.e. $x \in \Omega$.
Remark 1.2. There exist functions which satisfy our conditions and do not satisfy (A7)-(A10), and (A15). For example, when $a(x) \equiv 0$ and $N=4$, let $\Omega_{0} \subset \Omega$ be such that $\left|\Omega_{0}\right|>0$ and $\left|\Omega \backslash \Omega_{0}\right|>0, \chi_{\Omega_{0}}$ denotes the characteristic function of Ω_{0}, set $h:[1,+\infty) \rightarrow \mathbb{R}$ as follows

$$
h(s)= \begin{cases}n^{3}\left(\frac{1}{n^{2}}-|s-n|\right)+\frac{1}{s}, & \text { if }|s-n| \leq \frac{1}{n^{2}}, n=2,3,4, \ldots, \\ \frac{1}{s}, & \text { otherwise }\end{cases}
$$

and

$$
f(x, s)= \begin{cases}\frac{2 s \int_{1}^{s} h(t) d t+s^{2} h(s)}{(\ln s+1)^{1 / 2}}-\frac{s \int_{1}^{s} h(t) d t}{2(\ln s+1)^{3 / 2}}+3 \chi_{\Omega_{0}}(x) s^{2}, & s \geq 1, x \in \Omega \\ 2\left(s-\frac{1}{2}\right)\left(1+3 \chi_{\Omega_{0}}(x)\right), & s \in\left(\frac{1}{2}, 1\right), x \in \Omega \\ 0, & s \leq \frac{1}{2}, x \in \Omega\end{cases}
$$

By simple calculation, we have $\frac{2 N}{N-2}=4, \frac{N}{2}=2$,

$$
\begin{gathered}
h(n)=n+\frac{1}{n}, \quad h\left(n+\frac{1}{n^{2}}\right)=\frac{1}{n+\frac{1}{n^{2}}}, \quad n=2,3,4, \ldots \\
F(x, s)= \begin{cases}\frac{s^{2} \int_{1}^{s} h(t) d t}{(\ln s+1)^{1 / 2}}+\chi_{\Omega_{0}}(x) s^{3}+\frac{1}{4}\left(1-\chi_{\Omega_{0}}(x)\right), & s \geq 1, x \in \Omega \\
\left(s-\frac{1}{2}\right)^{2}\left(1+3 \chi_{\Omega_{0}}(x)\right), & s \in\left(\frac{1}{2}, 1\right), x \in \Omega \\
0, & s \leq \frac{1}{2}, x \in \Omega\end{cases}
\end{gathered}
$$

and

$$
s f(x, s)-2 F(x, s)=\frac{s^{3} h(s)}{(\ln s+1)^{1 / 2}}-\frac{s^{2} \int_{1}^{s} h(t) d t}{2(\ln s+1)^{3 / 2}}+\chi_{\Omega_{0}}(x) s^{3}-\frac{1}{2}\left(1-\chi_{\Omega_{0}}(x)\right)
$$

for $s \geq 1, x \in \Omega$. Besides this, for $s \geq 1$,

$$
\int_{1}^{s} h(t) d t=\int_{1}^{s}\left(h(t)-\frac{1}{t}\right) d t+\int_{1}^{s} \frac{1}{t} d t=\int_{1}^{s}\left(h(t)-\frac{1}{t}\right) d t+\ln s
$$

then for $3 \leq n \leq s \leq n+1$, one has

$$
\begin{aligned}
& \int_{1}^{s}\left(h(t)-\frac{1}{t}\right) d t \leq \sum_{k=2}^{n+1} \int_{k-\frac{1}{k^{2}}}^{k+\frac{1}{k^{2}}} k^{3}\left(\frac{1}{k^{2}}-|s-k|\right) d s=\sum_{k=2}^{n+1} \frac{1}{k} \\
& \int_{1}^{s}\left(h(t)-\frac{1}{t}\right) d t \geq \sum_{k=2}^{n-1} \int_{k-\frac{1}{k^{2}}}^{k+\frac{1}{k^{2}}} k^{3}\left(\frac{1}{k^{2}}-|s-k|\right) d s=\sum_{k=2}^{n-1} \frac{1}{k}
\end{aligned}
$$

From the above two inequalities and $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n}=1$ it follows that

$$
\lim _{s \rightarrow+\infty} \frac{\int_{1}^{s}\left(h(t)-\frac{1}{t}\right) d t}{\ln s}=1
$$

which leads to

$$
\lim _{s \rightarrow+\infty} \frac{\int_{1}^{s} h(t) d t}{\ln s}=2
$$

Thus, it is easy to verify that assumptions (A16)-(A19) hold. Furthermore, (A20) holds for arbitrary $\sigma \in(2,3)$. However, we can draw the following conclusions.
(i) Condition (A7) is not satisfied. Indeed, for $\theta>2, x \in \Omega \backslash \Omega_{0}$ and $s_{n}:=n+\frac{1}{n^{2}}$,

$$
s_{n} f\left(x, s_{n}\right)-\theta F\left(x, s_{n}\right) \leq-\frac{(\theta-2) s_{n}^{2} \int_{1}^{s_{n}} h(t) d t}{\left(\ln s_{n}+1\right)^{1 / 2}}+\frac{s_{n}^{3} h\left(s_{n}\right)}{\left(\ln s_{n}+1\right)^{1 / 2}} \rightarrow-\infty
$$

as $n \rightarrow+\infty$.
(ii) Conditions (A8) and (A10) are not satisfied. Indeed, it needs $q \geq 3$ to ensure (A8)(i) holds. But for $x \in \Omega \backslash \Omega_{0}$ and arbitrary $\mu>\frac{4(q-2)}{2} \geq 2$, one has

$$
\begin{aligned}
\liminf _{|s| \rightarrow \infty} \frac{s f(x, s)-2 F(x, s)}{|s|^{\mu}} & \leq \lim _{n \rightarrow \infty} \frac{s_{n} f\left(x, s_{n}\right)-2 F\left(x, s_{n}\right)}{\left(s_{n}\right)^{\mu}} \\
& \leq \lim _{n \rightarrow \infty} \frac{s_{n}^{3} h\left(s_{n}\right)}{\left(\ln s_{n}+1\right)^{1 / 2}\left(s_{n}\right)^{\mu}}=0
\end{aligned}
$$

which is in contradiction with (A8)(ii). Similarly, there are not constants $\nu \in(2,4)$ and $\mu>\frac{4 \nu(\nu-2)}{4 \nu-4-\nu}$ such that (A10) holds.
(iii) Condition (A9) is not satisfied. In fact, for $x \in \Omega \backslash \Omega_{0}$, we have

$$
\frac{f(x, n)}{n} \geq \frac{n^{2}}{(\ln n+1)^{1 / 2}}, \quad n f(x, n)-2 F(x, n) \leq \frac{2 n^{4}}{(\ln n+1)^{1 / 2}}
$$

for n large, so there does not exist constant $\sigma>2$ such that (A9) holds.
(iv) Condition (A15) is not satisfied. In fact, for $x \in \Omega \backslash \Omega_{0}$ and $s_{n}^{\prime}:=n-\frac{1}{n^{2}}$, it is not difficult to prove that

$$
\begin{aligned}
& n f(x, n)-2 F(x, n)-\left(s_{n} f\left(x, s_{n}\right)-2 F\left(x, s_{n}\right)\right) \rightarrow+\infty, \\
& n f(x, n)-2 F(x, n)-\left(s_{n}^{\prime} f\left(x, s_{n}^{\prime}\right)-2 F\left(x, s_{n}^{\prime}\right)\right) \rightarrow+\infty
\end{aligned}
$$

as $n \rightarrow \infty$. Then there do not exist constant $D \geq 1$ and nonnegative function $W_{1} \in L^{1}(\Omega)$ such that (A15) holds.

Our main results are the following theorems.
Theorem 1.3. Assume that (A16)-(A20) hold, and that $a \in L^{\infty}(\Omega)$ and $s f(x, s) \geq$ 0 for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. Then problem 1.1 has at least a positive solution and a negative solution.

Remark 1.4. In the next section, we will prove that (A20) indeed weaker than (A7)-(A10), (A15) under the assumptions (A21) and (A19). In addition, if f satisfies (A15)-(A17), (A19), and (A22), so does the term λf for $\lambda>0$. Therefore, Theorem 1.3 generalizes [10, Theorem 1.1] and complements [9, Theorem 2.1], [7, Theorem 1.2]. It is necessary to point out here that the integrability requirement $a \in L^{\infty}(\Omega)$ and sign condition $s f(x, s) \geq 0$ for $s \in \mathbb{R}$ and a.e. $x \in \Omega$ are only used to obtain a positive solution, especially in order to guarantee the validity of the strong Maximum principle in [20]. In fact, $a \in L^{\frac{N}{2}}(\Omega)$ is enough to ensure the existence of nontrivial solution.

Theorem 1.5. Assume that (A6), (A16), (A17), (A19), (A20) hold, then problem (1.1) has infinitely many solutions.

Remark 1.6. Theorem 1.5unifies and generalizes [22, Theorem 3.7], [17, Theorem 3.2], [24, Theorem 1.3], [25, Theorem 1.1], [13, Theorems 1.2 and 1.3]. Besides this, Theorem 1.5 complements [9, Theorem 2.3], [26, Theorem 3.1], [12, Theorem 1.4].

Remark 1.7. A condition similar to (A20) was introduced in [13]. However, compared with the description in [13], firstly, our description is more general and simple. Secondly, we point out the relations between (A20) and several famous superlinear conditions for the first time. Thirdly, we can deal with the superlinear problems with nonlinear term satisfying the general subcritical condition (A17).

2. Preliminaries

Let $E:=H_{0}^{1}(\Omega)$, the Euler-Lagrange functional associated to problem 1.1 is

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega} a(x) u^{2} d x-\int_{\Omega} F(x, u) d x, \quad u \in E .
$$

By (A16) and (A17), it is standard to verify that $\Phi \in C^{1}(E, \mathbb{R})$ and

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u, \nabla v) d x+\int_{\Omega} a(x) u v d x-\int_{\Omega} f(x, u) v d x
$$

for all $u, v \in E$. Moreover, the weak solutions of problem 1.1) are exactly the critical points of Φ in E. In order to obtain positive solution and negative solution, we let $\widetilde{f}(x, s):=f(x, s)-m(x) s$ and truncate \widetilde{f} above or below $s=0$, i.e., let

$$
\tilde{f}_{+}(x, s):=\left\{\begin{array}{ll}
\tilde{f}(x, s), & s \geq 0, \\
0, & s<0,
\end{array} \quad \widetilde{f}_{-}(x, s):= \begin{cases}\widetilde{f}(x, s), & s \leq 0 \\
0, & s>0\end{cases}\right.
$$

and $\widetilde{F}_{+}(x, s)=\int_{0}^{s} \widetilde{f}_{+}(x, t) d t, \widetilde{F}_{-}(x, s)=\int_{0}^{s} \widetilde{f}_{-}(x, t) d t$. Under (A16) and (A17), the functionals $\widetilde{\Phi}_{+}$and $\widetilde{\Phi}_{-}$defined as follows

$$
\begin{aligned}
& \widetilde{\Phi}_{+}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega} a(x) u^{2} d x-\frac{1}{2} \int_{\Omega} m(x) u^{2} d x-\int_{\Omega} \widetilde{F}_{+}(x, u) d x \\
& \widetilde{\Phi}_{-}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega} a(x) u^{2} d x-\frac{1}{2} \int_{\Omega} m(x) u^{2} d x-\int_{\Omega} \widetilde{F}_{-}(x, u) d x
\end{aligned}
$$

belong to $C^{1}(E, \mathbb{R})$ and

$$
\begin{aligned}
& \left\langle\widetilde{\Phi}_{+}^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u, \nabla v) d x+\int_{\Omega} a(x) u v d x-\int_{\Omega} m(x) u v d x-\int_{\Omega} \tilde{f}_{+}(x, u) v d x \\
& \left\langle\widetilde{\Phi}_{-}^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u, \nabla v) d x+\int_{\Omega} a(x) u v d x-\int_{\Omega} m(x) u v d x-\int_{\Omega} \widetilde{f}_{-}(x, u) v d x
\end{aligned}
$$

for all $u, v \in E$. The following lemmas show that our superlinear situation, i.e., (A19) and (A20), indeed includes all the superlinear situations implied by (A7)(A10), (A15).
Lemma 2.1. Under assumption (A21), assumption (A7) implies (A19), (A20).
Proof. Clearly, (A19) naturally holds because of 1.2. Additionally, from $q \in$ $\left(2,2^{*}\right)$ we derive $\frac{N}{2}<\frac{q}{q-2}$. Taking arbitrarily $\sigma \in\left(\frac{N}{2}, \frac{q}{q-2}\right)$, one has $q<\frac{2 \sigma}{\sigma-1}$. Then (A21) leads to

$$
\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{|s|^{\frac{2 \sigma}{\sigma-1}}}=0 \quad \text { uniformly in a.e. } x \in \Omega
$$

From this and (A19) it follows that there exists a constant $s_{1}>s_{1}^{\prime}$ such that

$$
0<\frac{F(x, s)}{|s|^{\frac{2 \sigma}{\sigma-1}}} \leq(\theta-2)^{\frac{1}{\sigma-1}}
$$

for $|s| \geq s_{1}$ and a.e. $x \in \Omega$, from this and (A7) we obtain that

$$
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma} \leq(\theta-2) F(x, s) \leq s f(x, s)-2 F(x, s)
$$

for $|s| \geq s_{1}$ and a.e. $x \in \Omega$.
Lemma 2.2. Under assumption (A19), assumption (A8) implies (A20).
Proof. From (A8) and (A19) it follows that there exists constant $s_{2}>1$ such that

$$
0<\frac{F(x, s)}{|s|^{q}} \leq a_{3}+1 \quad \text { and } \quad H(x, s) \geq \delta|s|^{\mu}
$$

for $|s| \geq s_{2}$ and a.e. $x \in \Omega$. From $\mu>\frac{N(q-2)}{2}$ we deduce that $\frac{N}{2}<\frac{\mu}{q-2}$. Taking arbitrarily $\sigma \in\left(\frac{N}{2}, \frac{\mu}{q-2}\right)$, one has $\sigma(q-2)<\mu$. Then

$$
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma}=\left(\frac{F(x, s)}{|s|^{q}}\right)^{\sigma}|s|^{\sigma(q-2)} \leq\left(a_{3}+1\right)^{\sigma}|s|^{\mu} \leq \frac{\left(a_{3}+1\right)^{\sigma}}{\delta} H(x, s)
$$

for $|s| \geq s_{2}$ and a.e. $x \in \Omega$.
Lemma 2.3. Condition (A9) implies (A19) and (A20).
Proof. (A9)(i) implies (A19). From this and (A9)(ii) it follows that there exists a constant $s_{3}>s_{2}^{\prime}$ such that

$$
s f(x, s) \geq 2 F(x, s)>0
$$

for $|s|>s_{3}$ and a.e. $x \in \Omega$, which together with (A9)(iii) leads to

$$
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma} \leq \frac{1}{2^{\sigma}}\left(\frac{f(x, s)}{s}\right)^{\sigma} \leq \frac{a_{4}}{2^{\sigma}} H(x, s)
$$

for $|s| \geq s_{3}$ and a.e. $x \in \Omega$.
Lemma 2.4. Condition (A10) implies (A19) and (A20).
Proof. (A10)(i) implies (A19). Moreover, from this and (A10)(iii) we deduce that there exists a constant $s_{4}>1$ such that

$$
\frac{F(x, s)}{s^{2}} \geq 1 \quad \text { and } \quad f(x, s) s-2 F(x, s) \geq \delta|s|^{\mu}
$$

for $|s| \geq s_{4}$ and a.e. $x \in \Omega$. Additionally, from $\nu \in\left(2,2^{*}\right)$ it follows that

$$
\nu-2>0 \quad \text { and } \quad \frac{2^{*} \nu}{2^{*} \nu-2^{*}-\nu}>\frac{N}{2} .
$$

Taking arbitrarily $\sigma \in\left(\frac{N}{2}, \frac{2^{*} \nu}{2^{*} \nu-2^{*}-\nu}\right)$, one derives from $\mu>\frac{2^{*} \nu(\nu-2)}{2^{*} \nu-2^{*}-\nu}$ and from (A10)(ii) that

$$
\begin{aligned}
f(x, s) s-2 F(x, s) & \geq \delta|s|^{\mu}>\delta\left(|s|^{\nu-2}\right)^{\frac{2^{*} \nu}{2^{*} \nu-2^{*}-\nu}} \\
& \geq \frac{\delta}{a_{6}^{\sigma}}\left(\frac{s f(x, s)}{s^{2}}\right)^{\sigma} \geq \frac{2 \delta}{a_{6}^{\sigma}}\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma}
\end{aligned}
$$

for $|s| \geq s_{4}$ and a.e. $x \in \Omega$.

Lemma 2.5. Under assumptions(A19) and (A21), condition (A15) implies (A20). Proof. From (A21) and (A19) it follows that there exists constant $s_{5}>0$ such that

$$
\begin{equation*}
\frac{F(x, s)}{s^{2}}>0 \quad \text { and } \quad \frac{F(x, s)}{|s|^{q}} \leq \frac{a_{9}}{q}+1 \tag{2.1}
\end{equation*}
$$

for $|s| \geq s_{5}$ and $x \in \Omega$. The fact $q \in\left(2, \frac{2 N}{N-2}\right)$ yields $\frac{q}{q-2}>\frac{N}{2}$. Then taking arbitrarily $\sigma \in\left(\frac{N}{2}, \frac{q}{q-2}\right)$, we have $2>(\sigma-1)(q-2)>0$. Let $\varsigma:=2-(\sigma-1)(q-2)>$ 0 , one gets

$$
\begin{aligned}
\frac{d}{d s}\left[\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma}\right] & =\sigma\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma-1} \frac{s f(x, s)-2 F(x, s)}{s^{3}} \\
& =\sigma\left(\frac{F(x, s)}{|s|^{q}}\right)^{\sigma-1} \frac{H(x, s)}{|s|^{\varsigma} s}
\end{aligned}
$$

for a.e. $x \in \Omega$. From this, 2.1) and (A15) it follows that

$$
\begin{aligned}
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma}-\left(\frac{F\left(x, s_{5}\right)}{s_{5}^{2}}\right)^{\sigma} & =\int_{s_{5}}^{s} \frac{d}{d t}\left[\left(\frac{F(x, t)}{t^{2}}\right)^{\sigma}\right] d t \\
& =\int_{s_{5}}^{s} \sigma\left(\frac{F(x, t)}{|t|^{q}}\right)^{\sigma-1} \frac{H(x, t)}{t^{\varsigma+1}} d t \\
& \leq \sigma\left(\frac{a_{9}}{q}+1\right)^{\sigma-1}\left(D H(x, s)+W_{1}(x)\right) \int_{s_{5}}^{s} \frac{1}{t^{\varsigma+1}} d t \\
& \leq \sigma\left(\frac{a_{9}}{q}+1\right)^{\sigma-1}\left(D H(x, s)+W_{1}(x)\right) \frac{s_{5}^{-\varsigma}}{\varsigma}
\end{aligned}
$$

for $s \geq s_{5}$ and a.e. $x \in \Omega$, where in the last inequality we use the fact that $D H(x, s)+W_{1}(x) \geq 0$ for $s \neq 0$ and a.e. $x \in \Omega$ which can be deduced from condition (A15) and $H(x, 0)=0$ a.e. $x \in \Omega$. Then we have

$$
\left(\frac{F(x, s)}{s^{2}}\right)^{\sigma} \leq \alpha H(x, s)+W(x)
$$

for $s \geq s_{5}$ and a.e. $x \in \Omega$, where $\alpha=\frac{\sigma D s_{5}^{-\varsigma}\left(a_{9}+q\right)^{\sigma-1}}{q^{\sigma-1} \varsigma}, W(x)=\frac{\sigma s_{5}^{-\varsigma}\left(a_{9}+q\right)^{\sigma-1}}{q^{\sigma-1} \varsigma} W_{1}(x)+$ $\left(\frac{F\left(x, s_{5}\right)}{s_{5}^{2}}\right)^{\sigma}$. In a similar way, it is easy to verify that the above inequality holds for $s \leq-s_{5}$ and a.e. $x \in \Omega$.

3. Proof of main results

To prove Theorems 1.3 and 1.5 , we recall two abstract critical point theorems, i.e., the mountain pass theorem and the symmetric mountain pass theorem under the (C) condition, the readers can refer to [2] and [14].

Theorem 3.1. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space, suppose that $\varphi \in C^{1}(X, \mathbb{R})$ satisfies $\varphi(0)=0$ and
(i) there exist positive constants R_{0} and α_{0} such that

$$
\varphi(u) \geq \alpha_{0} \quad \text { for all } u \in X \text { with }\|u\|_{X}=R_{0}
$$

(ii) there exists $e \in X$ with $\|e\|_{X}>R_{0}$ such that $\varphi(e)<0$,
(iii) φ satisfies the (C) condition, that is, for $c \in \mathbb{R}$, every sequence $\left\{u_{n}\right\} \subset X$ such that

$$
\varphi\left(u_{n}\right) \rightarrow c, \quad\left\|\varphi^{\prime}\left(u_{n}\right)\right\|\left(1+\left\|u_{n}\right\|\right) \rightarrow 0
$$

has a convergent subsequence.
Then $c:=\inf _{\gamma \in \Gamma} \sup _{s \in[0,1]} \varphi(\gamma(s))$ is a critical value of φ, where

$$
\Gamma:=\{\gamma \in C([0,1], X) ; \gamma(0)=0, \gamma(1)=e\}
$$

Theorem 3.2. Let $\left(X,\|\cdot\|_{X}\right)$ be an infinite dimensional Banach space, and let $\varphi \in C^{1}(X, \mathbb{R})$ be even. Suppose that φ satisfies $\varphi(0)=0$ and
(i) there exist a closed subspace X^{1} of X with $\operatorname{codim} X^{1}<+\infty$ and positive constants R_{1}, α_{1} such that

$$
\varphi(u) \geq \alpha_{1} \quad \text { for } u \in X^{1} \text { with }\|u\|_{X}=R_{1}
$$

(ii) for every finite dimensional subspace X^{2} of X, there exists positive constant R_{2} such that

$$
\varphi(u) \leq 0 \quad \text { for } u \in X^{2} \text { with }\|u\|_{X}=R_{2}
$$

(iii) φ satisfies the (C) condition in Theorem 3.1.

Then φ possesses an unbounded sequence of critical values.
In addition, we need the following lemmas.
Lemma 3.3 ([22, Lemma 2.13]). Assume that $N \geq 3$ and $\vartheta \in L^{\frac{N}{2}}(\Omega)$, then the functional

$$
\psi(u):=\int_{\Omega} \vartheta(x) u^{2} d x, u \in H_{0}^{1}(\Omega)
$$

is weakly continuous.
Lemma 3.4. Assume that $m \in L^{\frac{N}{2}}(\Omega)$, and there exists a subset $\Omega^{\prime} \subset \Omega$ with $\left|\Omega^{\prime}\right|>0$ such that

$$
m \leq \lambda_{1} \text { in } \Omega \quad \text { and } \quad m<\lambda_{1} \text { in } \Omega^{\prime}
$$

then

$$
d:=\inf _{u \in H_{0}^{1}(\Omega), u \neq 0} \frac{\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a(x) u^{2} d x-\int_{\Omega} m(x) u^{2} d x}{\int_{\Omega}|\nabla u|^{2} d x}>0 .
$$

Proof. From the characteristic of λ_{1} and the assumption $m \leq \lambda_{1}$ in Ω it follows that $d \geq 0$. The reminder is to prove that $d \neq 0$. Let

$$
\begin{gathered}
J(u):=\int_{\Omega} a(x) u^{2} d x, u \in H_{0}^{1}(\Omega), \\
K(u):=\int_{\Omega} m(x) u^{2} d x, u \in H_{0}^{1}(\Omega), \\
L(u):=\|u\|^{2}+J(u)-K(u), u \in H_{0}^{1}(\Omega) .
\end{gathered}
$$

We argue by contradiction. If $d=0$, there exists a sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ such that

$$
\left\|u_{n}\right\|=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} L\left(u_{n}\right)=0
$$

By the boundedness of $\left\{u_{n}\right\}$, up to subsequence we may assume that $u_{n} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$. From this, the weak continuity of J, K, and the weak lower continuity of L it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J\left(u_{n}\right)=J(u), \quad \lim _{n \rightarrow \infty} K\left(u_{n}\right)=K(u) \tag{3.1}
\end{equation*}
$$

and

$$
0 \leq L(u) \leq \liminf _{n \rightarrow \infty} L\left(u_{n}\right)=\lim _{n \rightarrow \infty} L\left(u_{n}\right)=0
$$

Then we have

$$
\begin{equation*}
L(u)=\|u\|^{2}+J(u)-K(u)=\lim _{n \rightarrow \infty} L\left(u_{n}\right)=0 \tag{3.2}
\end{equation*}
$$

which implies

$$
\|u\|^{2}+J(u)=K(u) \leq \lambda_{1} \int_{\Omega} u^{2} d x
$$

this together with the characteristic of λ_{1} leads to

$$
\begin{equation*}
\|u\|^{2}+J(u)=\lambda_{1} \int_{\Omega} u^{2} d x \tag{3.3}
\end{equation*}
$$

If $u=0$, from (3.1) and (3.2) it follows that $\left\|u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, which is in contradiction with $\left\|u_{n}\right\|=1$. So $u \neq 0$, then u is a eigenfunction corresponding to λ_{1}, so $u=l_{0} \phi_{1}$ for some $l_{0} \in \mathbb{R} \backslash\{0\}$ as λ_{1} is simple. Thus, from $\phi_{1}>0, m \leq \lambda_{1}$ in Ω and $m<\lambda_{1}$ in Ω^{\prime} with $\left|\Omega^{\prime}\right|>0$ it follows that

$$
\begin{aligned}
\|u\|^{2}+J(u) & =K(u)=\int_{\Omega} m(x) u^{2} d x \\
& =l_{0}^{2} \int_{\Omega} m(x) \phi_{1}^{2} d x<l_{0}^{2} \lambda_{1} \int_{\Omega} \phi_{1}^{2} d x \\
& =\lambda_{1} \int_{\Omega} u^{2} d x
\end{aligned}
$$

which is in contradiction with (3.3). Hence, $d>0$. The proof is complete.
Lemma 3.5. Assume that (A16)-(A18) hold. Then $\widetilde{\Phi}_{+}$satisfies (i) of Theorem 3.1 .

Proof. By (A18), for $\varepsilon \in\left(0, \frac{d S_{2}^{2}}{2}\right)$, there exists a positive constant $M_{1}<1$ such that

$$
\begin{equation*}
F_{+}(x, s)=F\left(x, s^{+}\right) \leq \frac{1}{2}(m(x)+\varepsilon)\left(s^{+}\right)^{2} \tag{3.4}
\end{equation*}
$$

for $|s| \leq M_{1}$ and a.e. $x \in \Omega$, where and in what follows we denote by $s^{+}:=$ $\max \{s, 0\}$ and $s^{-}:=\max \{-s, 0\}$. For above ε, from (A16), (A17) and (3.4) it follows that there exists a constant $M_{2}>1$ such that

$$
\begin{equation*}
\left|f_{+}(x, s)\right|=\left|f\left(x, s^{+}\right)\right| \leq \varepsilon\left(s^{+}\right)^{2^{*}-1}+L_{M_{2}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{+}(x, s) \leq \frac{1}{2}(m(x)+\varepsilon)\left(s^{+}\right)^{2}+\left(\frac{L_{M_{2}} M_{2}}{M_{1}^{2^{*}}}+\frac{\varepsilon}{2^{*}}\right)\left(s^{+}\right)^{2^{*}} \tag{3.6}
\end{equation*}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. From (3.6) and Lemma 3.4 we obtain

$$
\begin{aligned}
\widetilde{\Phi}_{+}(u) \geq & \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega} a(x) u^{2} d x-\frac{1}{2} \int_{\Omega} m(x) u^{2} d x \\
& -\frac{1}{2} \int_{\Omega}(m(x)+\varepsilon)\left(u^{+}\right)^{2} d x \\
& -\int_{\Omega}\left(\frac{L_{M_{2}} M_{2}}{M_{1}^{2^{*}}}+\frac{\varepsilon}{2^{*}}\right)\left(u^{+}\right)^{2^{*}} d x+\frac{1}{2} \int_{\Omega} m(x)\left(u^{+}\right)^{2} d x \\
\geq & \frac{d}{2}\|u\|^{2}-\frac{\varepsilon}{2 S_{2}^{2}}\|u\|^{2}-\left(\frac{L_{M_{2}} M_{2}}{M_{1}^{2^{*}}}+\frac{\varepsilon}{2^{*}}\right)\left(\frac{1}{S_{2^{*}}}\right)^{2^{*}}\|u\|^{2^{*}}
\end{aligned}
$$

$$
=\|u\|^{2}\left[\frac{d}{4}-\left(\frac{L_{M_{2}} M_{2}}{M_{1}^{2^{*}}}+\frac{\varepsilon}{2^{*}}\right)\left(\frac{1}{S_{2^{*}}}\right)^{2^{*}}\|u\|^{2^{*}-2}\right], \quad \forall u \in E
$$

Let

$$
C_{1}=\left(\frac{L_{M_{2}} M_{2}}{M_{1}^{2^{*}}}+\frac{\varepsilon}{2^{*}}\right)\left(\frac{1}{S_{2^{*}}}\right)^{2^{*}}, \quad R_{0}=\left(\frac{d}{8 C_{1}}\right)^{\frac{1}{2^{*}-2}}, \quad \alpha_{0}=\frac{d}{8} R_{0}^{2} .
$$

Then $\widetilde{\Phi}_{+}$satisfies (i) of Theorem 3.1.
Lemma 3.6. Assume that (A16), (A19) hold. Then $\widetilde{\Phi}_{+}$satisfies (ii) of Theorem 3.1 .

Proof. From (A16) and (A19) it follows that for $\Lambda>\frac{\left\|\phi_{1}\right\|^{2}+\int_{\Omega} a(x) \phi_{1}^{2} d x}{2\left|\phi_{1}\right|_{2}^{2}}$, there exists a constant $M_{3}>0$ such that

$$
F_{+}(x, s) \geq \Lambda\left(s^{+}\right)^{2}-L_{M_{3}} M_{3}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. Then for $t>0$, one obtains

$$
\widetilde{\Phi}_{+}\left(t \phi_{1}\right) \leq t^{2}\left(\frac{1}{2}\left\|\phi_{1}\right\|^{2}+\frac{1}{2} \int_{\Omega} a(x) \phi_{1}^{2} d x-\Lambda\left|\phi_{1}\right|_{2}^{2}\right)+M_{3} L_{M_{3}}|\Omega|
$$

Let $C_{2}=\frac{1}{2}\left(\left\|\phi_{1}\right\|^{2}+\int_{\Omega} a(x) \phi_{1}^{2} d x\right)-\Lambda\left|\phi_{1}\right|_{2}^{2}<0, C_{3}=M_{3} L_{M_{3}}|\Omega|>0, t_{0}=$ $\sqrt{\frac{2 C_{3}}{-C_{2}}}+R_{0}$ and $e=t_{0} \phi_{1}$, then $\widetilde{\Phi}_{+}$satisfies (ii) of Theorem 3.1

Lemma 3.7. Assume that (A16), (A17), (A19), (A20) hold. Then $\widetilde{\Phi}_{+}$satisfies the (C) condition in Theorem 3.1.

Proof. For $c \in \mathbb{R}$ and $\left\{u_{n}\right\} \subset E$ such that

$$
\begin{equation*}
\left\|\widetilde{\Phi}_{+}^{\prime}\left(u_{n}\right)\right\|\left(1+\left\|u_{n}\right\|\right) \rightarrow 0 \text { and } \widetilde{\Phi}_{+}\left(u_{n}\right) \rightarrow c \quad \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

we first prove that $\left\{u_{n}\right\}$ is bounded. Arguing by contradiction, if $\left\{u_{n}\right\}$ is unbounded, then $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow \infty$ after passing to a subsequence. Set $w_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, then $\left\|w_{n}\right\|=1$. Hence, up to subsequence, we may assume that

$$
w_{n} \rightharpoonup w \quad \text { weakly in } E,
$$

which results in

$$
\begin{gather*}
w_{n} \rightarrow w \quad \text { strongly in } L^{r}(\Omega) \text { for } r \in\left[1,2^{*}\right) \\
w_{n}^{ \pm} \rightharpoonup w^{ \pm} \quad \text { weakly in } E \\
w_{n}^{ \pm}(x) \rightarrow w^{ \pm}(x) \quad \text { a.e. in } \Omega \tag{3.8}\\
w_{n}^{ \pm} \rightarrow w^{ \pm} \quad \text { strongly in } L^{r}(\Omega) \text { for } r \in\left[1,2^{*}\right)
\end{gather*}
$$

From (A16) and (A19) it follows that there exists a constant $M_{4}>\max \left\{M_{1}, s_{0}\right\}$ such that

$$
\begin{equation*}
\left|F_{+}(x, s)\right| \leq L_{M_{4}}\left(s^{+}\right) \leq L_{M_{4}} M_{4} \tag{3.9}
\end{equation*}
$$

for $|s| \leq M_{4}$ and a.e. $x \in \Omega$, and $F_{+}(x, s) \geq\left(s^{+}\right)^{2}$ for $|s| \geq M_{4}$ and a.e. $x \in \Omega$. Then we have

$$
\begin{equation*}
F_{+}(x, s) \geq\left(s^{+}\right)^{2}-M_{4} L_{M_{4}}-M_{4}^{2} \geq-M_{4} L_{M_{4}}-M_{4}^{2} \tag{3.10}
\end{equation*}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$.

Now we claim that $w=0$. In fact, if $w^{+} \neq 0$, that is, $\left|\Omega_{+}\right|>0$, where $\Omega_{+}:=$ $\{x \in \Omega: w(x)>0\}$. Then, for a.e. $x \in \Omega_{+}$, one has $u_{n}^{+}(x)=w_{n}^{+}(x)\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow \infty$, which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F\left(x, u_{n}^{+}(x)\right)}{\left(u_{n}^{+}(x)\right)^{2}}=+\infty \tag{3.11}
\end{equation*}
$$

From 3.7 and 3.10 it follows that

$$
\begin{aligned}
& \frac{1}{2}\left(1+\int_{\Omega} a(x) w_{n}^{2} d x-\int_{\Omega} m(x)\left(w_{n}^{-}\right)^{2} d x\right)-\frac{c+o(1)}{\left\|u_{n}\right\|^{2}} \\
& =\int_{\Omega} \frac{F_{+}\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{2}} d x \\
& \geq \int_{\Omega_{+}} \frac{F\left(x, u_{n}^{+}\right)}{\left(u_{n}^{+}\right)^{2}}\left(w_{n}^{+}\right)^{2} d x+\int_{\Omega \backslash \Omega_{+}} \frac{-M_{4} L_{M_{4}}-M_{4}^{2}}{\left\|u_{n}\right\|^{2}} d x \\
& \geq \int_{\Omega_{+}} \frac{F\left(x, u_{n}^{+}\right)}{\left(u_{n}^{+}\right)^{2}}\left(w_{n}^{+}\right)^{2} d x-\frac{\left(M_{4} L_{M_{4}}+M_{4}^{2}\right)|\Omega|}{\left\|u_{n}\right\|^{2}}
\end{aligned}
$$

Then by Lemma 3.3. Fatou's lemma and (3.11), one obtains

$$
\begin{aligned}
& \frac{1}{2}\left(1+\int_{\Omega} a(x) w^{2} d x-\int_{\Omega} m(x)\left(w^{-}\right)^{2} d x\right) \\
& \geq \liminf _{n \rightarrow+\infty}\left(\int_{\Omega_{+}} \frac{F\left(x, u_{n}^{+}\right)}{\left(u_{n}^{+}\right)^{2}}\left|w_{n}\right|^{2} d x\right)=+\infty
\end{aligned}
$$

a contradiction. Hence $\left|\Omega_{+}\right|=0$, that is, $w^{+}=0$.
In addition, from (3.7) and Lemma 3.4 it follows that

$$
\begin{aligned}
d\left\|u_{n}^{-}\right\|^{2} \leq & \int_{\Omega}\left|\nabla\left(u_{n}^{-}\right)\right|^{2} d x+\int_{\Omega} a(x)\left(u_{n}^{-}\right)^{2} d x-\int_{\Omega} m(x)\left(u_{n}^{-}\right)^{2} d x \\
= & \int_{\Omega}\left|\nabla\left(u_{n}^{-}\right)\right|^{2} d x+\int_{\Omega} a(x)\left(u_{n}^{-}\right)^{2} d x-\int_{\Omega} m(x)\left(u_{n}^{-}\right)^{2} d x \\
& -\int_{\Omega} \tilde{f}_{+}\left(x, u_{n}\right) u_{n}^{-} d x \\
= & \left\langle\widetilde{\Phi}_{+}^{\prime}\left(u_{n}\right), u_{n}^{-}\right\rangle \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, that is, $u_{n}^{-} \rightarrow 0$ in E as $n \rightarrow \infty$. This together with (3.8) shows $w^{-}=0$. To sum up, we have $w=w^{+}-w^{-}=0$, so the claim is proved.

From (A16) it follows that the term $\left|s f_{+}(x, s)-2 F_{+}(x, s)\right|$ is bounded in $\left[0, M_{4}\right] \times$ Ω. Set

$$
\varpi:=\min _{(x, s) \in \Omega \times\left[0, M_{4}\right]}\left|s f_{+}(x, s)-2 F_{+}(x, s)\right|, \quad \Omega_{n}:=\left\{x \in \Omega: u_{n}(x) \geq M_{4}\right\} .
$$

Then from (3.9) and (A20) we have

$$
\begin{aligned}
& \frac{1}{2}\left(1+\int_{\Omega} a(x) w_{n}^{2} d x-\int_{\Omega} m(x)\left(w_{n}^{-}\right)^{2} d x\right)-\frac{c+o(1)}{\left\|u_{n}\right\|^{2}} \\
& =\int_{\Omega \backslash \Omega_{n}} \frac{F_{+}\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{2}} d x+\int_{\Omega_{n}} \frac{F_{+}\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{2}} d x \\
& \leq \int_{\Omega \backslash \Omega_{n}} \frac{L_{M_{4}} M_{4}}{\left\|u_{n}\right\|^{2}} d x+\left[\int_{\Omega_{n}}\left(\frac{F\left(x, u_{n}^{+}\right)}{\left(u_{n}^{+}\right)^{2}}\right)^{\sigma} d x\right]^{1 / \sigma}\left[\int_{\Omega_{n}}\left(w_{n}^{+}\right)^{\frac{2 \sigma}{\sigma-1}} d x\right]^{\frac{\sigma-1}{\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{L_{M_{4}} M_{4}|\Omega|}{\left\|u_{n}\right\|^{2}}+\left[\int_{\Omega_{n}} \alpha\left(u_{n}^{+} f\left(x, u_{n}^{+}\right)-2 F\left(x, u_{n}^{+}\right)\right)+W(x) d x\right]^{1 / \sigma}\left|w_{n}^{+}\right|_{\frac{2 \sigma}{\sigma-1}}^{2} \\
& \leq \frac{L_{M_{4}} M_{4}|\Omega|}{\left\|u_{n}\right\|^{2}}+\left[\alpha\left(2 \widetilde{\Phi}_{+}\left(u_{n}\right)-\widetilde{\Phi}_{+}^{\prime}\left(u_{n}\right) u_{n}\right)+\alpha \varpi|\Omega|+|W|_{1}\right]^{\frac{1}{\sigma}}\left|w_{n}^{+}\right|_{\frac{2 \sigma}{\sigma-1}}^{2}
\end{aligned}
$$

Since $\sigma>\frac{N}{2}$, one has $\sigma>1$ and $\frac{2 \sigma}{\sigma-1} \in\left(1,2^{*}\right)$. By (3.7) and (3.8), letting $n \rightarrow \infty$ in the above inequality gives the contradiction $1 / 2 \leq 0$., Hence $\left\{u_{n}\right\}$ is bounded, that is, $\left\|u_{n}\right\| \leq C_{4}$ for all n, where C_{4} is a positive constant independent of n. Hence, up to subsequence, there exists a $u \in E$ such that

$$
\begin{array}{ll}
& u_{n} \rightharpoonup u \quad \text { weakly in } E, \\
u_{n} \rightarrow u \quad \text { strongly in } L^{r}(\Omega) \text { for } r \in\left[1,2^{*}\right) \tag{3.12}
\end{array}
$$

Then by the weak lower semicontinuity of norm, we have $\|u\| \leq \lim _{\inf }^{n \rightarrow \infty}$ $\left\|u_{n}\right\| \leq$ C_{4}, which implies that $\left\|u_{n}-u\right\| \leq\left\|u_{n}\right\|+\|u\| \leq 2 C_{4}$.

Additionally, for ε in (3.5), from (3.12) there exists a positive constant $N(\varepsilon)$ such that

$$
\left|u_{n}-u\right|_{1}<\varepsilon \quad \text { for } n>N(\varepsilon)
$$

from this and 3.5 it follows that for $n>N(\varepsilon)$,

$$
\begin{aligned}
\left|\int_{\Omega} f_{+}\left(x, u_{n}\right)\left(u_{n}-u\right) d x\right| & \leq \int_{\Omega}\left(\varepsilon\left(u_{n}^{+}\right)^{2^{*}-1}+L_{M_{2}}\right)\left|u_{n}-u\right| d x \\
& \leq \varepsilon\left|u_{n}\right|_{2^{*}}^{2^{*}-1}\left|u_{n}-u\right|_{2^{*}}+L_{M_{2}}\left|u_{n}-u\right|_{1} \\
& \leq \varepsilon 2\left(\frac{C_{4}}{S_{2^{*}}}\right)^{2^{*}}+\varepsilon L_{M_{2}}
\end{aligned}
$$

that is, $\int_{\Omega} f_{+}\left(x, u_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0$ as $n \rightarrow \infty$. From this, 3.7), 3.12), and Lemma 3.3 it follows that

$$
\int_{\Omega}\left(\nabla u_{n}, \nabla\left(u_{n}-u\right)\right) d x \rightarrow 0
$$

as $n \rightarrow \infty$. Then one has $\left\|u_{n}-u\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Proof of Theorem 1.3. By Lemmas 3.5, 3.6 and 3.7 . $\widetilde{\Phi}_{+}$has a nontrivial critical point u via Theorem 3.1, that is, for any $v \in E$,
$\left\langle\widetilde{\Phi}_{+}^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u, \nabla v) d x+\int_{\Omega} a(x) u v d x-\int_{\Omega} m(x) u v d x-\int_{\Omega} \widetilde{f}_{+}(x, u) v d x=0$.
Letting $v=u^{-}$in the above equation gives $\left\|u^{-}\right\|=0$, so $u=u^{+} \geq 0$. Then u is also a critical point of Φ_{+}; that is,

$$
\left\langle\Phi_{+}^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u, \nabla v) d x+\int_{\Omega} a(x) u v d x-\int_{\Omega} f_{+}(x, u) v d x=0, \forall v \in E
$$

In addition, from (A16), (A17) and $a \in L^{\infty}(\Omega)$ it follows that there exists positive constant C_{ε} such that

$$
|-a(x) u+f(x, u)| \leq C_{\varepsilon}\left(1+|u|^{2^{*}-1}\right)
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. Let $b(x):=\frac{-a(x) u(x)+f(x, u(x))}{1+|u(x)|}$, then $b \in L^{\frac{N}{2}}(\Omega)$ and

$$
-\triangle u=b(x)(1+|u|)
$$

[16, Lemma B.3] shows $u \in L^{p}(\Omega)$ for any $p<\infty$, which implies that $f(x, u) \in$ $L^{p}(\Omega)$ for any $p<\infty$. By [16, Lemma B.2], we have $u \in H^{2, p}(\Omega) \cap H_{0}^{1}(\Omega)$ for
any $p<\infty$. Therefore, $u \in C^{1, \beta}(\Omega)$ for some $\beta \in(0,1)$ by the Sobolev embedding theorem. Moreover, from $s f(x, s) \geq 0$ it follows that

$$
\triangle u=a(x) u-f(x, u) \leq|a|_{\infty} u:=\zeta(u)
$$

where $\zeta:[0,+\infty) \rightarrow \mathbb{R}$ is continuous and nondecreasing, and satisfies $\zeta(0)=0$, $\zeta(s)>0$ for all $s>0$, and $\int_{0}^{1}(\zeta(s) s)^{-\frac{1}{2}} d s=+\infty$. Then we can conclude that $u>0$ in Ω by [20, Theorem 5]. In a similar way, we can obtain a negative solution for problem (1.1) by treating with $\widetilde{\Phi}_{-}$.

Proof of Theorem 1.5. Without loss of generality, we assume that

$$
\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{k_{0}} \leq 0<\lambda_{k_{0}+1} \leq \cdots \leq \lambda_{k} \cdots
$$

and e_{k} is eigenfunction corresponding to λ_{k}. Set $E_{k}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and E_{k}^{\perp} be the orthogonal complement of E_{k} in E. Then one has

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a(x) u^{2} d x \leq \lambda_{k} \int_{\Omega} u^{2} d x, \quad \forall u \in E_{k} \\
\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a(x) u^{2} d x \geq \lambda_{k+1} \int_{\Omega} u^{2} d x, \quad \forall u \in E_{k}^{\perp} .
\end{aligned}
$$

Hence in E_{k}^{\perp} with $k \geq k_{0},\|u\|_{\star}:=\left\{\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} a(x) u^{2} d x\right\}^{1 / 2}$ is also a norm and is equivalent to $\|u\|$. Hence for $k \geq k_{0}$, there exists a positive constant C_{5} such that

$$
\|u\|_{\star} \geq \sqrt{C_{5}}\|u\|, \quad \forall u \in E_{k}^{\perp}
$$

Similar to (3.5), from (A16) and (A17) it follows that

$$
|f(x, s)| \leq \varepsilon|s|^{2^{*}-1}+L_{M_{2}}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. Set $\varrho_{k}:=\sup _{u \in E_{k}^{\perp},\|u\|=1}|u|_{1}$. It was shown in [22, Lemma $3.8]$ that $\varrho_{k} \rightarrow 0$ as $k \rightarrow \infty$. Let $X^{1}=E_{k}^{\perp}$ with $k \geq k_{0}$ such that $\varrho_{k}<\frac{C_{5}}{8 L_{M_{2}}}$,

$$
R_{1}=\left(\frac{2^{*} S_{2^{*}}^{2^{*}}}{4 \varepsilon} C_{5}\right)^{\frac{1}{2^{*}-1}}>0
$$

for $u \in E_{k}^{\perp}$ with $\|u\|=R_{1}$, we have

$$
\begin{aligned}
\Phi(u) & \geq \frac{1}{2}\|u\|_{\star}^{2}-\frac{\varepsilon}{2^{*}}|u|_{2^{*}}^{2^{*}}-L_{M_{2}}|u|_{1} \\
& \geq\|u\|\left(\frac{C_{5}}{2}\|u\|-\frac{\varepsilon}{2^{*} S_{2^{*}}^{2^{*}}}\|u\|^{2^{*}-1}-\varrho_{k} L_{M_{2}}\right) \\
& \geq \frac{1}{8} C_{5} R_{1} .
\end{aligned}
$$

then Φ satisfies (i) of Theorem 3.2 with $\alpha_{1}=\frac{1}{8} C_{5} R_{1}>0$.
For every E_{k}, there exists a positive constant C_{6} such that

$$
\|u\| \leq \sqrt{C_{6}}|u|_{2}, \quad \forall u \in E_{k}
$$

because all the norms on the finite dimension space E_{k} are equivalent. From (A19), there exists a positive constant C_{7} such that

$$
F(x, s) \geq\left(\frac{\left|\lambda_{k}\right|}{2}+1\right) s^{2}-C_{7}
$$

for $s \in \mathbb{R}$ and a.e. $x \in \Omega$. Set $R_{2}=\sqrt{C_{6} C_{7}|\Omega|}$, for $u \in E_{k}$ with $\|u\|=R_{2}$,

$$
\Phi(u) \leq \frac{\lambda_{k}}{2}|u|_{2}^{2}-\left(\frac{\left|\lambda_{k}\right|}{2}+1\right)|u|_{2}^{2}+C_{7}|\Omega| \leq-\frac{1}{C_{6}}\|u\|^{2}+C_{7}|\Omega| \leq 0
$$

then Φ satisfies (ii) of Theorem 3.2 .
Lastly, in a way similar to treat with $\widetilde{\Phi}_{+}$in Lemma 3.7, we can prove that Φ satisfies the (C) condition. Therefore Theorem 3.2 shows that Φ has a unbounded sequence of critical values.

Acknowledgments. This research was supported by National Natural Science Foundation of China (No. 11471267, No. 11226118), by the Fundamental Research Funds for the Central Universities(XDJK2014C161), by the Doctoral Fund of Southwest University (SWU111060).

The authors express their gratitude to the reviewers for the valuable comments and helpful suggestions which lead to the improvement of the manuscript.

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications. Journal of Functional Analysis, 14 (1973), no. 4, 349-381.
[2] P. Bartolo, V. Benci, D. Fortunato; Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal., 7 (1983), no. 9, 9811012.
[3] D. G. Costa, C. A. Magalhães; Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal., 23 (1994), 1401-1412.
[4] Y. H. Ding, S. X. Luan; Multiple solutions for a class of nonlinear Schrödinger equations, J. Differential Equations 207 (2004) 423-457.
[5] Y. H. Ding, A. Szulkin; Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007) 397-419.
[6] L. Jeanjean; On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbb{R}^{N}. Proc. Roy. Soc. Edinburgh, 129 (1999) 787-809.
[7] Y. Y. Lan, C. L. Tang; Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth. Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 809-818.
[8] G. B. Li, C. Y. Yang; The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition. Nonlinear Anal., 72 (2010), 4602-4613.
[9] Z. L. Liu, Z. Q. Wang; On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud., 4 (2004), no. 4, 563-574.
[10] O. H. Miyagaki, M. Souto; Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008) 3628-3638.
[11] D. Mugnai; Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3, 379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition. NoDEA Nonlinear Differential Equations Appl., 19 (2012), no. 3, 299-301.
[12] H. L. Pan, C. L. Tang; Existence of infinitely many solutions for semilinear elliptic equations. Electron. J. Differential Equations, 2016, Paper No. 167, 11 pp.
[13] D. D. Qin, X. H. Tang, J. Zhang; Multiple solutions for semilinear elliptic equations with sign-changing potential and nonlinearity. Electron. J. Differential Equations, 2013, No. 207, 9 pp .
[14] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
[15] M. Schechter, W. Zou; Superlinear problems, Pacific J. Math., 214 (2004) 145-160.
[16] M. Struwe; Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, 2000.
[17] A. Szulkin, T. Weth; Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257 (2009), 3802-3822.
[18] C. L. Tang, X. P. Wu; Periodic solutions for a class of new superquadratic second order Hamiltonian systems. Appl. Math. Lett., 34 (2014), 65-71.
[19] X. H. Tang; New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud., 14 (2014), no. 2, 361-373.
[20] J. L. Vázquez; A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim., 12 (1984), no. 3, 191-202.
[21] Z. Q. Wang; On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linaire, 8 (1991) 43-57.
[22] M. Willem; Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
[23] M. Willem, W. M. Zou; On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J., 52 (2003) 109-132.
[24] Y. W. Ye, C. L. Tang; Multiplicity of solutions for elliptic boundary value problems. Electron. J. Differential Equations 2014, No. 140, 13 pp.
[25] Q. Y. Zhang, C. G. Liu; Multiple solutions for a class of semilinear elliptic equations with general potentials. Nonlinear Anal. 75 (2012), no. 14, 5473-5481.
[26] W. Zou; Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), 343-358.

Xiao-Feng Ke
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
E-mail address: kexf@swu.edu.cn
Chun-Lei Tang (corresponding author)
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
E-mail address: tangcl@swu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J61, 35D30.
 Key words and phrases. Semilinear elliptic equation; new superlinear conditionl; general subcritical condition.
 (C) 2018 Texas State University.

 Submitted February 4, 2018. Published April 10, 2018.

