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Abstract. In the framework of fractional Sobolev space, using Nehari mani-

fold and concentration compactness principle, we study a minimization prob-

lem in the whole space involving the fractional Laplacian. Firstly, we give a Li-
ons type lemma in fractional Sobolev space, which is crucial in the proof of our

main result. Then, by showing a relative compactness of minimizing sequence,

we obtain the existence of minimizer for the above-mentioned fractional mini-
mization problem. Furthermore, we also point out that the minimizer is actu-

ally a ground state solution for the associated fractional Schrödinger equation

1. Introduction and statement of main results

In this article, we are interested in the minimizing problem

I0 := inf
{
I(u) : u ∈ Hα(RN ) \ {0}, 〈I ′(u), u〉 = 0

}
. (1.1)

where 〈·, ·〉 denotes the usual duality between the fractional Sobolev space Hα(RN )
(see Section 2 for more details) and its dual space. The energy functional I :
Hα(RN )→ RN is defined by

I(u) =
1
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|u|2 dx− 1

q

∫
RN
|u|q dx,

where 0 < α < 1, 2 < q < 2∗α = 2N/(N − 2α). It is standard to verify that
I ∈ C1(Hα(RN ),R). Then, a necessary condition for u ∈ Hα(RN ) to be a critical
point of I is that 〈I ′(u), u〉 = 0, which defines the Nehari manifold

N := {u ∈ Hα(RN ) \ {0} : 〈I ′(u), u〉 = 0}.
The minimizing problem (1.1) is often referred to as the minimizing problem with
artificial constraint.

In recent years, fractional spaces and the corresponding fractional problems arise
in many different applications, such as phase transitions [1, 31], optimization [16],
conservation laws [4], minimal surfaces [7], materials science [3], water waves [9, 10]
and so on. Some interesting topics concerning the fractional Laplacian, such as,
the nonlinear fractional Schrödinger equation (see [20, 21]), the nonlinear fractional
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Kirchhoff equation (see [19, 29, 34, 35]), the fractional porous medium equation
(see [8, 33]) and so on, have attracted recently much research interest. Indeed,
the literature on fractional operators and their applications to partially differential
equations is quite large, here we would like to mention a few, see for instance
[2, 6, 11, 13, 27, 30, 36] and the references therein.

Based on the theory of fractional Sobolev space, we will study the existence
of minimizer for minimizing problem (1.1) by showing a relative compactness of
minimizing sequences of problem (1.1). A main difficulty is due to the loss of the
compactness for the embedding Hα(RN ) ↪→ Lq(RN ). To overcome this difficulty,
we use the concentration compactness principle established by Lions in [22, 23].
With the help of this principle, a noncompact minimizing sequence can be changed
into a new sequence possessing some compact. Now, we give the main result as
follows:

Theorem 1.1. Problem (1.1) has a minimizer, i.e. there exists v ∈ N such that
I(v) = infu∈N I(u).

In fact, it is easy to see that v is exactly a ground state solution for the fractional
Schrödinger equation

(−∆)αu+ V (x)u = |u|q−2u in RN , (1.2)

where the potential V (x) = 1. More precisely, set G(u) = 〈I ′(u), u〉. Then it follows
from Lagrange multiplier rule that, for some λ ∈ R,

I ′(v) = λG′(v).

Note that 〈I ′(v), v〉 = 0 implies that

〈G′(v), v〉 = (2− q)
∫

RN
|v|q dx < 0,

which means that λ = 0. Thus, I ′(v) = 0.
It is worthy pointing out that problem (1.1) was studied by several researchers

recently. For example, Byeon et al. in [5] investigated a Pohozaev type minimization
problem for a nonlinear fractional Schrödinger equation involving the Berestycki-
Lions type C0 nonlinearity. In this article, we will take a quite different approach
from [5] to study problem (1.1).

Finally, let us sketch the main advances related to our study and the key tech-
niques used in this article. In [17], by using the mountain pass lemma, the authors
obtained the existence of positive solutions to problem (1.2). Especially, they used
a comparison argument to overcome the difficulty that the Palais-Smale sequences
may lose compactness in the whole space RN . In [15], the existence of a radially
symmetric solution for problem (1.2) has been obtained by applying symmetric de-
creasing rearrangement. The existence of bound state solutions for problem (1.2)
with unbounded potential have been derived by Lagrange multiplier method and
Nehari manifold in [12]. In [18], the author also used the concentration compactness
principle in fractional Sobolev space to get the existence of a positive ground state
solution for problem (1.2) with some positive Lagrange multiplier V (x) = V0. For
example, see also [32, 37, 38] for some recent results for problem (1.2) involving the
critical exponents exploited by the fractional version of concentration compactness
principle. In this paper, we first give a Lions type lemma in fractional Sobolev
space. Then, using a different version of concentration compactness principle, we
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obtain the main result. To the best of our knowledge, there are few papers to use
the above-mentioned approach to study the existence of ground state solutions for
problem (1.2) without critical nonlinearities.

2. Preliminaries

For the convenience of reader, in this part we recall some definitions and basic
properties of fractional Sobolev spaces. For a deeper treatment on these spaces
and their applications to fractional Laplacian problems of elliptic type, we refer to
[14, 24] and the references therein.

Let 0 < α < 1 < p < ∞ be real numbers with pα < N , and let p∗α be the
fractional Sobolev critical exponent defined by p∗α = Np/(N − pα). The fractional
Sobolev space Wα,p(RN ) is defined by

Wα,p(RN ) =
{
u ∈ Lp(RN ) : [u]α,p <∞

}
,

where [u]α,p denotes the Gagliardo norm, that is

[u]α,p =
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+pα
dx dy

)1/p

,

and Wα,p(RN ) is equipped with the norm

‖u‖Wα,p(RN ) =
(
‖u‖p

Lp(RN )
+ [u]pα,p

)1/p

.

As it is well known, Wα,p(RN ) =
(
Wα,p(RN ), ‖ · ‖Wα,p(RN )

)
is a uniformly convex

Banach space (see also [28]), which implies that it is reflexive.
In the case p = 2, Wα,2(RN ) := Hα(RN ) turns out to be a Hilbert space with

scalar product

〈u, v〉Hα(RN ) =
∫∫

R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2α

dx dy +
∫

RN
u(x)v(x) dx.

Theorem 2.1 ([14, Theorem 6.7]). Let Ω ⊆ RN be an extension domain for the
space Wα,p(Ω). Then there exists a positive constant C = C(N, p, α,Ω) such that
for any u ∈Wα,p(Ω),

‖u‖Lν(Ω) ≤ C‖u‖Wα,p(Ω),

for any ν ∈ [p, p∗α], i.e. the embedding Wα,p(Ω) ↪→ Lν(Ω) is continuous for any
ν ∈ [p, p∗α].

Remark 2.2. By Theorem 2.1, the embedding Wα,p(RN ) ↪→ Lν(RN ) is continuous
for any ν ∈ [p, p∗α], that is, there exists a positive constant C1 = C(N, p, α) such
that for any u ∈Wα,p(RN ),

‖u‖Lν(RN ) ≤ C1‖u‖Wα,p(RN ). (2.1)

We could also obtain that the embedding Wα,p(B(y,R)) ↪→ Lν(B(y,R)) is con-
tinuous for any ν ∈ [p, p∗α], where B(y,R) ⊂ RN is an open ball with center y and
radius R. Then, there exists a positive constant C2 = C(N, p, α,B(y,R)) such that
for any u ∈Wα,p(B(y,R)),

‖u‖Lν(B(y,R)) ≤ C2‖u‖Wα,p(B(y,R)). (2.2)
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In fact, we could modify the proof of [14, (5.3) in Proposition 2.2] which is important
in the discussion of Theorem 2.1 and obtain that the constant C2 depends only on
N , p, α and the radius R.

Theorem 2.3 ([28, Lemma 2.1]). If 1 ≤ ν < p∗s, the embedding W s,p(RN ) ↪→
Lνloc(RN ) is compact.

To prove the main result, we give the following lemma of Lions type in fractional
Sobolev space.

Lemma 2.4. If {un}n is bounded in Wα,p(RN ) and

sup
y∈RN

∫
B(y,R)

|un|ν dx→ 0, as n→∞,

for some R > 0 and some ν satisfying p ≤ ν < p∗α, then un → 0 in Ls(RN ) for any
s with p < s < p∗α. Furthermore, if ν = p∗α, then un → 0 in Lp

∗
α(RN ).

Proof. Choose {yi}i ⊂ RN such that RN ⊂ ∪∞i=1B(yi, R) and each y ∈ RN is
covered by at most N + 1 of such balls. Note that

R2N ⊂
(
∪∞i=1 B(yi, R)

)
×
(
∪∞i=1 B(yi, R)

)
⊂ ∪∞i,j=1

(
B(yi, R)×B(yj , R)

)
.

Then z ∈ R2N is contained in at most (N + 1)2 of {B(yi, R)×B(yj , R)}i,j .
We first consider the case p ≤ ν < p∗α. Let m = p + (1 − p/p∗α)ν and κ = p/m.

Then, ν < m < p∗α, 0 < κ < 1 and they satisfy the following equation
1
m

=
1− κ
ν

+
κ

p∗α
.

By the Hölder inequality and (2.2), we have∫
B(yi,R)

∣∣un(x)
∣∣mdx ≤ ‖un‖m(1−κ)

Lν(B(yi,R))‖un‖
mκ
Lp

∗
α (B(yi,R))

≤ Cp2
(

sup
y∈RN

∫
B(y,R)

∣∣un(x)
∣∣νdx)m(1−κ)ν

‖un‖pWα,p(B(yi,R)).

Note that
∞∑
i=1

‖un‖pWα,p(B(yi,R))

≤ (N + 1)
∫

RN
|un(x)|p dx+

∞∑
i,j=1

∫
B(yi,R)

∫
B(yj ,R)

|un(x)− un(y)|p

|x− y|N+pα
dx dy

≤ (N + 1)
∫

RN
|un(x)|p dx+ (N + 1)2

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+pα
dx dy,

which implies∫
RN

∣∣un(x)
∣∣mdx ≤ ∞∑

i=1

∫
B(yi,R)

∣∣un(x)
∣∣mdx

≤ Cp2
(

sup
y∈RN

∫
B(y,R)

∣∣un(x)
∣∣νdx)m(1−κ)

ν
∞∑
i=1

‖un‖pWα,p(B(yi,R))

≤ C
(

sup
y∈RN

∫
B(y,R)

∣∣un(x)
∣∣νdx)m(1−κ)

ν → 0, as n→∞.
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(i) If m < s < p∗s, take λ = s−m
p∗α−m

· p
∗
α

s , then 1
s = 1−λ

m + λ
p∗α

. By the Hölder
inequality and (2.1), we have

‖un‖Ls(RN ) ≤ ‖un‖1−λLm(RN )
‖un‖λLp∗α (RN )

≤ C‖un‖1−λLm(RN )
‖un‖λWα,p(RN )

≤ C‖un‖1−λLm(RN )
,

then ‖un‖Ls(RN ) → 0, as n→∞.
(ii) If p < s < m, take λ = s−p

m−p ·
m
s , then 1

s = 1−λ
p + λ

m , which implies

‖un‖Ls(RN ) ≤ ‖un‖1−λLp(RN )
‖un‖λLm(RN ) ≤ C‖un‖

1−λ
Lm(RN )

.

Thus ‖un‖Ls(RN ) → 0, as n→∞.
Finally, in the case ν = p∗α, we have∫

B(yi,R)

∣∣un(x)
∣∣p∗αdx ≤ ( sup

y∈RN

∫
B(y,R)

∣∣un(x)
∣∣p∗αdx) p∗α−pp∗α

(∫
B(yi,R)

∣∣un(x)
∣∣p∗αdx) p

p∗α .

Then we obtain∫
RN

∣∣un(x)
∣∣p∗αdx ≤ ∞∑

i=1

∫
B(yi,R)

∣∣un(x)
∣∣p∗αdx

≤ C
(

sup
y∈RN

∫
B(y,R)

∣∣un(x)
∣∣p∗αdx) p∗α−pp∗α → 0,

as n→∞. The lemma is thus proved. �

3. Proof of Theorem 1.1

In this section, by using concentration compactness principle, we will show that
the minimizing sequence of problem (1.1) is relative compactness.

First of all, several technical results will be established. For any a ≥ 0, define

I−a = inf
{
I(u) +

a

2
: u ∈ Hα(RN ) \ {0}, 〈I ′(u), u〉 = −a

}
.

Theorem 3.1. For any a ≥ 0, I−a satisfies the following properties:
(1) I0 > 0;
(2) for any b > a ≥ 0, I−b > I−a;
(3) I−a, as a function of a, is continuous in a ∈ (0,∞).

Proof. (1) In fact, for any u ∈ N , we have∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

∫
RN
|u|2 dx =

∫
RN
|u|q dx,

which implies

I(u) =
(1

2
− 1
q

)( ∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

∫
RN
|u|2 dx

)
≥ 0. (3.1)

If I0 = 0, there exists {un}n ⊂ N such that I(un)→ 0, as n→∞. Then∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx→ 0,
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which implies that un → 0 in Hα(RN ), as n→∞. By (2.1), we derive

0 = 〈I ′(un), un〉 =‖un‖2Hα(RN ) − ‖un‖
q
Lq(RN )

≥‖un‖2Hα(RN ) − C
q
1‖un‖

q
Hα(RN )

≥1
2
‖un‖2Hα(RN ),

(3.2)

as n is sufficiently large. That is a contradiction. So, we obtain I0 > 0.
(2) For any b > a ≥ 0, we have that I−b ≥ I−a. In fact, for any t > 0,

〈I ′(tu), tu〉 = t2
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy + t2

∫
RN
|u|2 dx− tq

∫
RN
|u|q dx,

which implies that for any u ∈ Hα(RN ) \ {0}, there exists 0 < t(u) < 1 such that

〈I ′(t(u)u), t(u)u〉 > 0.

Then, for any u ∈ Hα(RN ) such that 〈I ′(u), u〉 = −b, there exists tu ∈ (t(u), 1)
such that

〈I ′(tuu), tuu〉 = −a.
Then we have

I(u) +
b

2
− I(tuu)− a

2

=
1− t2u

2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

1− t2u
2

∫
RN
|u|2 dx

− 1− tqu
q

∫
RN
|u|q dx+

b

2
− a

2
.

Denote

g(t) =
1− t2

2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

1− t2

2

∫
RN
|u|2 dx− 1− tq

q

∫
RN
|u|q dx.

For any 0 < t < 1,

g′(t) = −t
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy − t

∫
RN
|u|2 dx+ tq−1

∫
RN
|u|q dx

= −t
(∫

RN
|u|q dx− b

)
+ tq−1

∫
RN
|u|q dx

< bt,

which implies that g(t)− b
2 t

2 is decreasing on (0, 1). Then

g(tu)− b

2
t2u > g(1)− b

2
= − b

2
,

which yields

I(u) +
b

2
− I(tuu)− a

2
>
b

2
t2u −

a

2
.

By the definition of I−a, we obtain

I(u) +
b

2
> I(tuu) +

a

2
+
b

2
t2u −

a

2
≥ I−a +

b

2
t2u −

a

2
. (3.3)
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In addition, we have

〈I ′(u), u〉 − 〈I ′(tuu), tuu〉

= (1− t2u)
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2α
dx dy + (1− t2u)

∫
RN
|u|2 dx

− (1− tqu)
∫

RN
|u|q dx

= (1− t2u)
(∫

RN
|u|q dx

)
+ (tqu − 1)

∫
RN
|u|q dx

= (tqu − t2u)
∫

RN
|u|q dx− b(1− t2u)

< −b(1− t2u),

(3.4)

which implies that −b+ a < −b(1− t2u). Thus

bt2u > a. (3.5)

Let {un}n ⊂ Hα(RN ) such that 〈I ′(un), un〉 = −b and I(un)+ b
2 → I−b, as n→∞.

We have

I(un) +
b

2

≥ 1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|un|2 dx−

1
q

∫
RN
|un|q dx+

b

2

=
1
2

∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|un|2 dx

− 1
q

(∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx+ b

)
+
b

2

≥
(1

2
− 1
q

)( ∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx

)
,

which means that {un}n is bounded in Hα(RN ). Hence, Theorem 2.1 yields that
{un}n is also bounded in Lq(RN ).

In the following, we will verify that there exists t0 ∈ (0, 1) such that tun → t0, as
n→∞. Indeed, if the conclusion is not satisfied, we may assume that there exists
a subsequence, still denoted by {tun}n, such that tun → 0. Thus, tunun → 0 in
Hα(RN ). Similar to the discussion of (3.2), we obtain a contradiction. By (3.4),
we obtain

〈I ′(un), un〉 − 〈I ′(tunun), tunun〉 = (tqun − t
2
un)
∫

RN
|un|q dx− b(1− t2un), (3.6)

which gives

a− b ≥ C(tqun − t
2
un)− b(1− t2un).

If t0 = 1, let n→∞, we obtain that a− b ≥ 0, this is absurd.
By (3.6), we have

a− bt20 = (tq0 − t20) lim
n→∞

∫
RN
|un|q dx.
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Given that
∫

RN |un|
q dx→ 0 as n→∞, we can deduce∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx→ −b < 0,

which is a contradiction. Therefore, we obtain that bt20 > a.
By (3.3) we obtain

I(un) +
b

2
> I−a +

b

2
t2un −

a

2
.

Letting n→∞, we have

I−b ≥ I−a +
b

2
t20 −

a

2
> I−a.

(3) For any a > 0, it suffices to verify that

I−a = lim
n→∞

I−(a+ 1
n ) = lim

n→∞
I−(a− 1

n ).

For any n ∈ N, using the result in (2), we obtain

I−(a+ 1
n ) > I−a > I−(a− 1

n ). (3.7)

Next, we will verify that

I−a = lim
n→∞

I−(a+ 1
n ).

Take {un}n ⊂ Hα(RN ) such that 〈I ′(un), un〉 = −a and I(un) + a/2 → I−a, as
n → ∞. Similar to the discussion in (2), {un}n is bounded in Hα(RN ) and there
exists {tn}n ⊂ (1,+∞) such that 〈I ′(tnun), tnun〉 = −(a+ 1/n) for any n ∈ N.

Denote vn = tnun and sn = 1/tn. We obtain that sn ∈ (0, 1), 〈I ′(snvn), snvn〉 =
−a, 〈I ′(vn), vn〉 = −(a + 1/n) and I(snvn) + a/2 → I−a, as n → ∞. Similar to
(3.5), we obtain that (a+1/n)s2

n > a, which implies that sn → 1. Then tn → 1 and
{vn}n is bounded in Hα(RN ). Furthermore, we obtain that I(vn) +a/2→ I−a. As
I(vn) + (a + 1/n)/2 ≥ I−(a+1/n), we obtain that I−a ≥ lim supn→∞ I−(a+1/n). It
follows from (3.7) that I−a = limn→∞ I−(a+1/n).

Next, we will verify that

I−a = lim
n→∞

I−(a− 1
n ).

For any ε > 0, there exists un ∈ Hα(RN ) such that

〈I ′(un), un〉 = −
(
a− 1

n

)
,

I−(a− 1
n ) + ε > I(un) +

a− 1
n

2
.

Then, the sequence {un}n is bounded in Hα(RN ) and there exists tn > 1 such that
〈I ′(tnun), tnun〉 = −a.

Denote vn = tnun and sn = 1/tn. Thus sn ∈ (0, 1), 〈I ′(snvn), snvn〉 = −(a− 1
n )

and 〈I ′(vn), vn〉 = −a. We obtain that as2
n > a − 1

n , which implies that sn → 1.
Then tn → 1 and {vn}n is bounded in Hα(RN ). Note that

I−(a− 1
n ) + ε > I(snvn) +

a

2
− 1

2n

= I(snvn)− 1
2n
− I(vn) + I(vn) +

a

2

≥ I(snvn)− 1
2n
− I(vn) + I−a,
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we obtain that I−(a− 1
n ) +ε > I−a−ε, as n is sufficiently large. It follows from (3.7)

that limn→∞ I−(a− 1
n ) = I−a. Combining with the above discussions, we obtain the

desired result. �

Based on the following concentration compactness lemma [22, 23], we will prove
the main result.

Lemma 3.2. Let {ρn}n be a sequence in L1(RN ) satisfying ρn ≥ 0 and∫
RN

ρn(x) dx→ λ > 0,

as n→∞. Then there exists a subsequence, still denoted by {ρn}n, satisfying one
of the following three possibilities:

(1) (Compactness) There exists a sequence {xn}n in RN such that {ρn}n is
tight, that is, for any ε > 0, there exists R > 0 such that∫

B(xn,R)

ρn(x) dx ≥ λ− ε.

(2) (Vanishing) For any R > 0,

lim
n→∞

sup
y∈RN

∫
B(y,R)

ρn(x) dx = 0.

(3) (Dichotomy) There exists β ∈ (0, λ) such that for any ε > 0, there exist
R > 0, {yn}n ⊂ RN and Rn →∞ satisfying: for n sufficiently large,∣∣ ∫

B(yn,R)

ρn(x) dx− β
∣∣ < ε,

∣∣ ∫
RN\B(yn,Rn)

ρn(x) dx− (λ− β)
∣∣ < ε.

Proof of Theorem 1.1. Take {un}n ⊂ Hα(RN ) \ {0} be a minimizing sequence of
(1.1), i.e.

〈I ′(un), un〉 = 0 and I(un)→ I0 > 0, (3.8)
as n → ∞. It follows from (3.1) that {un}n is bounded in Hα(RN ). We assume
that ∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx→ λ, (3.9)

as n→∞. Then λ > 0.
In the following, we will apply the concentration compactness principle to the

case

ρn(y) =
∫

RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

and show that for such {ρn}n, the cases “vanishing” and “dichotomy” do not hold.
(1) If the case “vanishing” takes place, by Lemma 3.2 we obtain

lim
n→∞

sup
z∈RN

∫
B(z,R)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy = 0,

for any R > 0. Thus

lim
n→∞

sup
z∈RN

∫
B(z,R)

|un|2 dy = 0.
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As 2 < q < 2∗α, it follows from Lemma 2.4 that un → 0 in Lq(RN ), as n → ∞.
Note that ∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy +

∫
RN
|un|2 dx =

∫
RN
|un|q dx,

we obtain un → 0 in Hα(RN ). That is a contradiction.
(2) In the case of dichotomy, by Lemma 3.2, there exists β ∈ (0, λ) such that for

any ε > 0, there exist R > ε−1, {zn}n ⊂ RN , Rn →∞ and n0 ∈ N, then∣∣ ∫
B(zn,R)

ρn(y) dy − β
∣∣ < ε,

∣∣ ∫
RN\B(zn,Rn)

ρn(y) dy − (λ− β)
∣∣ < ε,

for n ≥ n0. Since Rn →∞, we assume that Rn > 6R, for n ≥ n0. Note that∫
B(zn,Rn)\B(zn,R)

ρn(y) dy

=
∫

RN
ρn(y) dy −

∫
RN\B(zn,Rn)

ρn(y) dy −
∫
B(zn,R)

ρn(y) dy;

thus ∫
B(zn,Rn)\B(zn,R)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy < 3ε. (3.10)

Take ϕ,ψ ∈ C∞(RN ,R) such that 0 ≤ ϕ ≤ 1; ϕ(x) = 1 in B(0, 1), ϕ(x) = 0
in RN \ B(0, 2) and 0 ≤ ψ ≤ 1; ψ(x) = 1 in RN \ B(0, 1), ψ(x) = 0 in B(0, 1/2).
Define

u(1)
n (x) = un(x)ϕ

( |x− zn|
R

)
:= un(x)ϕR(x),

u(2)
n (x) = un(x)ψ

( |x− zn|
Rn

)
:= un(x)ψRn(x).

We have ∫∫
R2N

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx dy

=
∫∫

R2N

|un(x)ϕR(x)− un(y)ϕR(y)|2

|x− y|N+2α
dx dy

=
∫∫

R2N

(un(x)− un(y))2ϕ2
R(y)

|x− y|N+2α
dx dy

+
∫∫

R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

+
∫∫

R2N

2un(x)ϕR(y)(un(x)− un(y))(ϕR(x)− ϕR(y))
|x− y|N+2α

dx dy.

Since {un}n is bounded in Hα(RN ), by using the Hölder inequality we obtain∣∣ ∫∫
R2N

un(x)ϕR(y)(un(x)− un(y))(ϕR(x)− ϕR(y))
|x− y|N+2α

dx dy
∣∣

≤
(∫∫

R2N

ϕ2
R(y)(un(x)− un(y))2

|x− y|N+2α
dx dy

)1/2
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×
(∫∫

R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

)1/2

≤ C
(∫∫

R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

)1/2

.

Next we show that

lim
n→∞

∫∫
R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy = 0.

Note that

RN × RN =
(
(RN \B(zn, 2R)) ∪B(zn, 2R)

)
×
(
(RN \B(zn, 2R)) ∪B(zn, 2R)

)
=
(
(RN \B(zn, 2R))× (RN \B(zn, 2R))

)
∪
(
B(zn, 2R)× RN

)
∪
(
(RN \B(zn, 2R))×B(zn, 2R)

)
.

(i) If (x, y) ∈
(
RN \B(zn, 2R)

)
×
(
RN \B(zn, 2R)

)
, then ϕR(x) = ϕR(y) = 0.

(ii) (x, y) ∈ B(zn, 2R)× RN . If |x− y| ≤ R, then

|y − zn| ≤ |x− y|+ |x− zn| ≤ 3R,

which implies∫
B(zn,2R)

dx

∫
{y∈RN :|x−y|≤R}

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dy

=
∫
B(zn,2R)

dx

∫
{y∈RN :|x−y|≤R}

u2
n(x)|∇ϕ(ξ)|2|x−yR |

2

|x− y|N+2α
dy

≤ CR−2

∫
B(zn,2R)

dx

∫
{y∈RN :|x−y|≤R}

u2
n(x)

|x− y|N+2α−2
dy

= CR−2α

∫
B(zn,2R)

u2
n(x)dx,

where ξ = y−zn
R + τ x−znR and τ ∈ (0, 1). If |x− y| > R, then we have∫

B(zn,2R)

dx

∫
{y∈RN :|x−y|>R}

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dy

≤ C
∫
B(zn,2R)

dx

∫
{y∈RN :|x−y|>R}

u2
n(x)

|x− y|N+2α
dy

= CR−2α

∫
B(zn,2R)

u2
n(x)dx.

(iii) (x, y) ∈
(
RN \B(zn, 2R)

)
× B(zn, 2R). If |x − y| ≤ R, then |x − zn| ≤

|x− y|+ |y − zn| ≤ 3R. Furthermore,∫
RN\B(zn,2R)

dx

∫
{y∈B(zn,2R):|x−y|≤R}

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dy

≤ CR−2

∫
B(zn,3R)

dx

∫
{y∈B(zn,2R):|x−y|≤R}

u2
n(x)

|x− y|N+2α−2
dy

≤ CR−2α

∫
B(zn,3R)

u2
n(x)dx.
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Notice that there exists k > 4 such that(
RN \B(zn, 2R)

)
×B(zn, 2R)

⊂ (B(zn, kR)×B(zn, 2R)) ∪
(
(RN \B(zn, kR))×B(zn, 2R)

)
.

If |x− y| > R, we obtain∫
B(zn,kR)

dx

∫
{y∈B(zn,2R):|x−y|>R}

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dy

≤ C
∫
B(zn,kR)

dx

∫
{y∈B(zn,2R):|x−y|>R}

u2
n(x)

|x− y|N+2α
dy

≤ CR−2α

∫
B(zn,kR)

u2
n(x)dx.

If (x, y) ∈
(
RN \B(zn, kR)

)
×B(zn, 2R), we obtain

|x− y| ≥ |x− zn| − |y − zn| ≥
|x− zn|

2
+
k

2
R− 2R >

|x− zn|
2

,

which implies∫
RN\B(zn,kR)

dx

∫
{y∈B(zn,2R):|x−y|>R}

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dy

≤ C
∫

RN\B(zn,kR)

dx

∫
{y∈B(zn,2R):|x−y|>R}

u2
n(x)

|x− zn|N+2α
dy

≤ CRN
∫

RN\B(zn,kR)

u2
n(x)

|x− zn|N+2α
dx

≤ Ck−N
(∫

RN\B(zn,kR)

|un(x)|2
∗
α dx

)2/2∗α
.

Since {un}n is bounded in Hα(RN ), from (i), (ii) and (iii) we have∫∫
R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

=
(∫∫

B(zn,2R)×RN
+
∫∫

(RN\B(zn,2R))×B(zn,2R)

)u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

≤ CR−2α

∫
B(zn,2R)

u2
n(x) dx+ CR−2α

∫
B(zn,3R)

u2
n(x) dx

+ CR−2α

∫
B(zn,kR)

u2
n(x) dx+ Ck−N

(∫
RN\B(zn,kR)

|un(x)|2
∗
α dx

)2/2∗α

≤ CR−2α + Ck−N

≤ Cε2α + Ck−N ,

which yields

lim
n→∞

∫∫
R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy

= lim
k→∞

lim
n→∞

∫∫
R2N

u2
n(x)(ϕR(x)− ϕR(y))2

|x− y|N+2α
dx dy = 0.

(3.11)
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Thus ∫∫
R2N

|un(x)ϕR(x)− un(y)ϕR(y)|2

|x− y|N+2α
dx dy

=
∫∫

R2N

(un(x)− un(y))2ϕ2
R(y)

|x− y|N+2α
dx dy + o(1).

(3.12)

Hence we obtain∫
RN

(∫
RN

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx+ |u(1)

n (y)|2
)
dy

=
∫∫

R2N

|un(x)− un(y)|2ϕ2
R(y)

|x− y|N+2α
dx dy +

∫
RN

ϕ2
R(y)|un(y)|2 dy + o(1)

=
∫
B(zn,2R)\B(zn,R)

ϕ2
R(y)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy

+
∫
B(zn,R)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy + o(1).

Notice that B(zn, 2R) \ B(zn, R) ⊂ B(zn, Rn) \ B(zn, R) and ϕ2
R(y) ≤ 1, it

follows from (3.10) that∫
B(zn,2R)\B(zn,R)

ϕ2
R(y)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy → 0,

as n→∞. Then, as n→∞, we have∫
RN

(∫
RN

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx+ |u(1)

n (y)|2
)
dy → β. (3.13)

Similarly, as n→∞, we obtain∫
RN

(∫
RN

|u(2)
n (x)− u(2)

n (y)|2

|x− y|N+2α
dx+ |u(2)

n (y)|2
)
dy → λ− β. (3.14)

Note that∫
RN
|un|2 dx−

∫
RN
|u(1)
n |2 dx−

∫
RN
|u(2)
n |2 dx

=
∫
B(zn,2R)\B(zn,R)

|un|2 dx+
∫
B(zn,

1
2Rn)\B(zn,2R)

|un|2 dx

+
∫
B(zn,Rn)\B(zn,

1
2Rn)

|un|2 dx−
∫
B(zn,2R)\B(zn,R)

|unϕR|2 dx

−
∫
B(zn,Rn)\B(zn,

1
2Rn)

|unψRn |2 dx.

Then from (3.10) we deduce that∫
RN
|un|2 dx−

∫
RN
|u(1)
n |2 dx−

∫
RN
|u(2)
n |2 dx→ 0, (3.15)
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as n→∞. Combining (3.9), (3.13) with (3.14) we obtain that as n→∞,∫∫
R2N

|un(x)− un(y)|2

|x− y|N+2α
dx dy −

∫∫
R2N

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx dy

−
∫∫

R2N

|u(2)
n (x)− u(2)

n (y)|2

|x− y|N+2α
dx dy → 0.

(3.16)

Denoting vn = un − u(1)
n − u(2)

n , we obtain∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy

=
∫∫

R2N

|un(x)− u(1)
n (x)− u(2)

n (x)− un(y) + u
(1)
n (y) + u

(2)
n (y)|2

|x− y|N+2α
dx dy

=
∫
B(zn,R)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

+
∫
B(zn,Rn)\B(zn,R)

dy

×
∫

RN

|un(x)− u(1)
n (x)− u(2)

n (x)− un(y) + u
(1)
n (y) + u

(2)
n (y)|2

|x− y|N+2α
dx

+
∫

RN\B(zn,Rn)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx.

(3.17)

Note that∫
B(zn,R)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

=
∫
B(zn,R)

dy

∫
B(zn,R)

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

+
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

+
∫
B(zn,R)

dy

∫
RN\B(zn,Rn)

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx,

then∫
B(zn,R)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

=
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx

=
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

|un(x)− ϕR(x)un(x)− ψRn(x)un(x)|2

|x− y|N+2α
dx

≤ 2
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

(ϕR(x)− 1)2|un(x)|2

|x− y|N+2α
dx

+ 2
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

ψ2
Rn

(x)|un(x)|2

|x− y|N+2α
dx
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= 2
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

(ϕR(x)− ϕR(y))2|un(x)|2

|x− y|N+2α
dx

+ 2
∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

(1− ψRn(x)− (1− ψRn(y)))2|un(x)|2

|x− y|N+2α
dx.

From (3.11), we have∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

(ϕR(x)− ϕR(y))2|un(x)|2

|x− y|N+2α
dx→ 0.

Similarly, we obtain as n→∞,∫
B(zn,R)

dy

∫
B(zn,Rn)\B(zn,R)

(1− ψRn(x)− (1− ψRn(y)))2|un(x)|2

|x− y|N+2α
dx→ 0.

Then ∫
B(zn,R)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx→ 0, (3.18)

as n→∞. Similarly, we obtain as n→∞,∫
RN\B(zn,Rn)

dy

∫
RN

|un(x)− u(1)
n (x)− u(2)

n (x)|2

|x− y|N+2α
dx→ 0. (3.19)

We have∫
B(zn,Rn)\B(zn,R)

dy

×
∫

RN

|un(x)− u(1)
n (x)− u(2)

n (x)− un(y) + u
(1)
n (y) + u

(2)
n (y)|2

|x− y|N+2α
dx

≤ 32

∫
B(zn,Rn)\B(zn,R)

dy

×
∫

RN

|un(x)− un(y)|2 + |u(1)
n (x)− u(1)

n (y)|2 + |u(2)
n (x)− u(2)

n (y)|2

|x− y|N+2α
dx

Similar to the discussion of (3.12), we obtain∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx

=
∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|un(x)− un(y)|pϕpR(y)
|x− y|N+2α

dx+ o(1).

Note that ∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|un(x)− un(y)|2ϕ2
R(y)

|x− y|N+2α
dx

≤
∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx,

it follows from (3.10) that∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|u(1)
n (x)− u(1)

n (y)|2

|x− y|N+2α
dx→ 0,
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as n→∞. Similarly, we have∫
B(zn,Rn)\B(zn,R)

dy

∫
RN

|u(2)
n (x)− u(2)

n (y)|2

|x− y|N+2α
dx→ 0,

which implies as n→∞,∫
B(zn,Rn)\B(zn,R)

dy

×
∫

RN

|un(x)− u(1)
n (x)− u(2)

n (x)− un(y) + u
(1)
n (y) + u

(2)
n (y)|2

|x− y|N+2α
dx→ 0.

Combining (3.17), (3.18) and (3.19), we obtain∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy → 0,

as n→∞. It follows from (3.10) that∫
RN
|vn|2 dy =

∫
B(zn,Rn)\B(zn,R)

|un − u(1)
n − u(2)

n |2 dy

≤
∫
B(zn,Rn)\B(zn,R)

32(|un|2 + |u(1)
n |2 + |u(2)

n |2) dy → 0,

as n → ∞. Then, vn → 0 in Hα(RN ). Using (2.1), we obtain vn → 0 in Lq(RN ),
as n→∞. We have∫

RN
|un|q dx−

∫
RN
|u(1)
n |q dx−

∫
RN
|u(2)
n |q dx

=
∫

RN
|un|q dx−

∫
B(zn,R)

|u(1)
n |q dx−

∫
B(zn,2R)\B(zn,R)

|u(1)
n |q dx

−
∫

RN\B(zn,Rn)

|u(2)
n |q dx−

∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n |q dx

=
∫
B(zn,Rn)\B(zn,R)

|un|q dx−
∫
B(zn,2R)\B(zn,R)

|u(1)
n |q dx

−
∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n |q dx

=
∫
B(zn,2R)\B(zn,R)

|u(1)
n + vn|q dx+

∫
B(zn,

1
2Rn)\B(zn,2R)

|vn|q dx

+
∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n + vn|q dx−

∫
B(zn,2R)\B(zn,R)

|u(1)
n |q dx

−
∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n |q dx.

Note that∣∣ ∫
B(zn,2R)\B(zn,R)

|u(1)
n + vn|q dx−

∫
B(zn,2R)\B(zn,R)

|u(1)
n |q dx

∣∣
≤
∫
B(zn,2R)\B(zn,R)

‖u(1)
n + vn|q − |u(1)

n |q‖ dx
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≤ C
∫
B(zn,2R)\B(zn,R)

(
|u(1)
n |q−1|vn|+ |vn|q

)
dx

≤ C
(∫

B(zn,2R)\B(zn,R)

|u(1)
n |q dx

) q−1
q
(∫

B(zn,2R)\B(zn,R)

|vn|q dx
)1/q

+ C

∫
B(zn,2R)\B(zn,R)

|vn|q dx,

which implies that, as n→∞,∫
B(zn,2R)\B(zn,R)

|u(1)
n + vn|q dx−

∫
B(zn,2R)\B(zn,R)

|u(1)
n |q dx→ 0.

Similarly, we deduce that, as n→∞,∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n + vn|q dx−

∫
B(zn,Rn)\B(zn,

1
2Rn)

|u(2)
n |q dx→ 0.

Then ∫
RN
|un|q dx−

∫
RN
|u(1)
n |q dx−

∫
RN
|u(2)
n |q dx→ 0,

as n→∞. Combining (3.15) and (3.16), we obtain

I(un)− I(u(1)
n )− I(u(2)

n )→ 0, (3.20)

〈I ′(un), un〉 − 〈I ′(u(1)
n ), u(1)

n 〉 − 〈I ′(u(2)
n ), u(2)

n 〉 → 0, (3.21)

as n→∞. If 〈I ′(u(1)
n ), u(1)

n 〉 = 0, then I(u(1)
n ) ≥ I0.

We obtain lim supn→∞ I(u(2)
n ) ≤ 0 and 〈I ′(u(2)

n ), u(2)
n 〉 → 0, as n → ∞. From

(3.14), we have

I(u(2)
n ) =

(1
2
− 1
q

)( ∫∫
R2N

|u(2)
n (x)− u(2)

n (y)|2

|x− y|N+2α
dx+ |u(2)

n (y)|2 dy
)

+
1
q
〈I ′(u(2)

n ), u(2)
n 〉

→
(1

2
− 1
q

)
(λ− β) 6= 0,

which is a contradiction.
In the following, we assume that 〈I ′(u(1)

n ), u(1)
n 〉 = −an < 0. Then I(u(1)

n ) +
an/2 ≥ I−an > I0. If an → 0, then 〈I ′(u(1)

n ), u(1)
n 〉 → 0. Similar to the above

discussions, we obtain a contradiction. Note that {u(1)
n }n is bounded in Hα(RN ),

we assume that an → a > 0.
Denote 〈I ′(u(2)

n ), u(2)
n 〉 = bn and define

Ibn = inf
{
I(u)− bn

2
: u ∈ Hα(RN ) \ {0}, 〈I ′(u), u〉 = bn

}
.

It is easy to verify that Ibn ≥ 0. From (3.21), we have that bn → a. We assume
that bn > 0 as n is sufficiently large. Then, we obtain

I(u(1)
n ) +

an
2

+ I(u(2)
n )− bn

2
≥ I−an + Ibn ≥ I−an ,
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which implies I0 ≥ limn→∞ I−an = I−a > I0. This is a contradiction. Therefore,
by Lemma 3.2, the case “compactness” holds. There exists {zn}n ⊂ RN such that
for any ε > 0, there exists R > 0, then∫

B(zn,R)

(∫
RN

|un(x)− un(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy ≥ λ− ε.

Denote vn(x) = un(x+ zn), using (3.8) and (3.9), we obtain as n→∞,∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

∫
RN
|vn(y)|2 dy → λ,

I(vn)→ I0 and 〈I ′(vn), vn〉 = 0.
(3.22)

Thus, {vn}n is bounded in Hα(RN ). Up to a subsequence, still denoted by {vn}n,
we assume that vn → v weakly in Hα(RN ). Moreover, using Theorem 2.3 we obtain
that vn → v in Lq(Br(0)), for any r > 0. Passing to a subsequence, still denoted
by {vn}n, a diagonal process enables us to assume that vn(x) → v(x) a.e. in RN ,
as n→∞. Note that∫

B(0,R)

(∫
RN

|vn(x)− vn(y)|2

|x− y|N+2α
dx+ |vn(y)|2

)
dy

=
∫
B(0,R)

(∫
RN

|un(x+ zn)− vn(y + zn)|2

|x− y|N+2α
dx+ |un(y + zn)|2

)
dy

=
∫
B(zn,R)

(∫
RN

|un(x)− vn(y)|2

|x− y|N+2α
dx+ |un(y)|2

)
dy ≥ λ− ε,

it follows from (3.22) that∫
B(0,R)

(∫
RN

|vn(x)− vn(y)|2

|x− y|N+2α
dx+ |vn(y)|2

)
dy → λ.

Then, ∫
RN\B(0,R)

(∫
RN

|vn(x)− vn(y)|2

|x− y|N+2α
dx+ |vn(y)|2

)
dy → 0.

Using Theorem 2.1, we obtain∫
RN\B(0,R)

|vn|q dx→ 0,

as n→∞. Thus, by the Fatou Lemma we have∫
RN\B(0,R)

|v|q dx = 0,

which implies that v = 0 a.e. in RN \B(0, R). As vn → v in Lq(BR(0)), it follows
that ∫

RN
|vn − v|q dx→ 0, as n→∞,

i.e. vn → v in Lq(RN ). Then

I0 = lim
n→∞

I(vn)

= lim
n→∞

(1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|vn(y)|2 dy − 1

q

∫
RN
|vn(y)|q dy

)
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= lim
n→∞

(1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|vn(y)|2 dy

)
− 1
q

∫
RN
|v(y)|q dy

≥ 1
2

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|v(y)|2 dy − 1

q

∫
RN
|v(y)|q dy.

Thus,

I0 ≥ I(v). (3.23)

Furthermore, we will prove that 〈I ′(v), v〉 = 0, i.e.∫
RN
|v|q dx =

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy +

∫
RN
|v|2 dx. (3.24)

Bearing in mind that∫
RN
|vn|q dx =

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

∫
RN
|vn|2 dx,

we have ∫
RN
|v|q dx ≥

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy +

∫
RN
|v|2 dx.

Denote

a := −〈I ′(v), v〉 =
∫

RN
|v|q dx−

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy −

∫
RN
|v|2 dx.

If a > 0, then we obtain

lim
n→∞

(∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

∫
RN
|vn|2 dx

)
= lim
n→∞

∫
RN
|vn|q dx =

∫
RN
|v|q dx

=
∫∫

R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy +

∫
RN
|v|2 dx+ a.

(3.25)

Note that

I(vn)− I(v)− a

2

=
1
2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2α
dx dy +

1
2

∫
RN
|vn|2 dx−

1
q

∫
RN
|vn|q dx

− 1
2

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2α
dx dy − 1

2

∫
RN
|v|2 dx+

1
q

∫
RN
|v|q dx− a

2
,

which implies that I0 − I(v)− a/2 = 0. Thus I0 = I(v) + a/2 ≥ I−a > I0. That is
a contradiction.

It follows from (3.23) and (3.24) that v ∈ N and satisfies I(v) = infu∈N I(u).
Thus, the proof is complete. �
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totics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001),
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