
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 79, pp. 1–31.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

WELL-POSEDNESS OF DEGENERATE
INTEGRO-DIFFERENTIAL EQUATIONS IN FUNCTION SPACES

RAFAEL APARICIO, VALENTIN KEYANTUO

Communicated by Jerome A. Goldstein

Abstract. We use operator-valued Fourier multipliers to obtain character-

izations for well-posedness of a large class of degenerate integro-differential
equations of second order in time in Banach spaces. We treat periodic vector-

valued Lebesgue, Besov and Trieblel-Lizorkin spaces. We observe that in the

Besov space context, the results are applicable to the more familiar scale of
periodic vector-valued Hölder spaces. The equation under consideration are

important in several applied problems in physics and material science, in par-

ticular for phenomena where memory effects are important. Several examples
are presented to illustrate the results.

1. Introduction

In this article, we consider the following problem which consists in a second order
degenerate integro-differential equation with infinite delay in a Banach space:

(Mu′)′(t)− Λu′(t)− d

dt

∫ t

−∞
c(t− s)u(s)ds

= γu(t) +Au(t) +
∫ t

−∞
b(t− s)Bu(s)ds+ f(t), 0 ≤ t ≤ 2π,

(1.1)

and periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π). Here,
A,B,Λ and M are closed linear operators in a Banach space X satisfying the
assumption D(A)∩D(B) ⊂ D(Λ)∩D(M), b, c ∈ L1(R+), f is an X-valued function
defined on [0, 2π], and γ is a constant. In case M = 0, the second boundary
condition above becomes irrelevant and we are in the presence of a first order
degenerate equation.

Equations of the form (1.1) appear in a variety of applied problems. The case
where the memory effect is absent has been studied by many authors. The mono-
graph [32] by Favini and Yagi is devoted to these problems and contains meaningful
applications to concrete problems. Recently applications to inverse problems and
in the context of multivalued operators have been investigated (see e.g. [31]). The
book [44] by Melnikova and Filinkov also treats abstract degenerate equations.
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Evolutionary integro-differential equations arise typically in mathematical physics
by constitutive laws pertaining to materials for which memory effects are impor-
tant, when combined with the usual conservation laws such as balance of energy or
balance of momentum. For details concerning the underlying physical principles,
we refer to Coleman-Gurtin [24], Lunardi [43], Nunziato [45], and the monograph
Prüss [50] (particularly Chapter II, Section 9) for work on the subject. The latter
reference contains a wealth of results on general aspects of evolutionary integral
equations and their relevance in concrete models from the physical sciences. Equa-
tions of first and second order in time are of interest. Typical examples for b(·)
and c(·) are the completely monotonic functions Ke−ωttµ where K ≥ 0, ω > 0 and
µ > −1, and linear combinations thereof.

Several authors have considered particular cases of the above equation. Earlier
papers: Lunardi [43], Da Prato-Lunardi [25, 26], Clement-Da Prato [21], Prüss
[51], Nunziato [45], Alabau-Boussouira-Cannarsa-Sforza [1] and [53] for example,
use various techniques for the solvability of problems of this type. In the case
of Hilbert spaces, the results obtained by these authors are complete. This is
due to the fact that Plancherel’s theorem is available in Hilbert space. When
X is not a Hilbert space, this is no longer the case because of Kwapien’s theo-
rem which states that the validity of Plancherel’s theorem for X-valued functions
requires X to be isomorphic to Hilbert space (see for example Arendt-Bu [7]). Be-
ginning with the papers by Weis [56, 57], Arendt-Bu [7], Arendt-Batty-Bu [6], it
became possible to completely characterize well-posedness of the problem in pe-
riodic vector-valued function spaces. Initially, Arendt and Bu [7] dealt with the
problem u′(t) = Au(t) + f(t), u(0) = u(2π). Maximal regularity for the evolution
problem in Lp was treated earlier by Weis [56, 57] (see also [21] for a different proof
of the operator-valued Mikhlin multiplier theorem using a transference principle).
The study in the Lp framework (when 1 < p <∞) was made possible thanks to the
introduction of the concept of randomized boundedness (hereafter R-boundedness,
also known as Riesz-boundedness or Rademacher-boundedness). With this, neces-
sary conditions for operator-valued Fourier multipliers were found in this context.
In addition, the space X must have the UMD property. This was done initially
by L. Weis [56, 57] for the evolutionary problem and then by Arendt-Bu [7] for pe-
riodic boundary conditions. For non-degenerate integro-differential equations both
in the periodic and non periodic cases, operator-valued Fourier multipliers have
been used by various authors to obtain well-posedness in various scales of function
spaces: see [12, 15, 18, 35, 36, 37, 38, 48] and the corresponding references. The
well-posedness or maximal regularity results are important in that they allow for
the treatment of nonlinear problems. Earlier results on the application of operator-
valued Fourier multiplier theorems to evolutionary integral equations can be found
in [21]. More recent examples of second order integro-differential equations with
frictional damping and memory terms have been studied in the paper [19]

We use the operator-valued Fourier multiplier theorems obtained by Arendt and
Bu [8] on Bspq(0, 2π;X), and Bu and Kim [17] on F spq(0, 2π;X) to give a charac-
terization of well-posedness of (1.1) in these spaces in terms of operator-valued
Fourier multipliers and then we derive concrete conditions that allow us to apply
this characterization.

More recently, degenerate equations have attracted the attention of many au-
thors. Both first and second order equations have been considered. The first order
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degenerate equation

(Mu)′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π, (1.2)

with periodic boundary condition Mu(0) = Mu(2π), has been studied by Lizama
and Ponce [42]; under suitable assumptions on the modified resolvent operator
associated to (1.2), they gave necessary and sufficient conditions to ensure the
well-posedness of (1.2) in Lebesgue-Bochner spaces Lp(0, 2π;X), Besov spaces
Bspq(0, 2π;X) and Triebel-Lizorkin spaces F spq(0, 2π;X).

Recently Bu [13] studied the following second order degenerate equation

(Mu′)′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π, (1.3)

with periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π). He also
obtained necessary and sufficient conditions to ensure the well-posedness of (1.3)
in Lebesgue-Bochner spaces Lp(0, 2π;X), Besov spaces Bspq(0, 2π;X) and Triebel-
Lizorkin spaces F spq(0, 2π;X) under some suitable conditions on the modified re-
solvent operator associated to (1.3). Operator-valued Fourier multiplier techniques
have been used recently, most notably by Bu and Cai for handling degenerate prob-
lems in various classes of function spaces (see e.g. [14, 18].

For more references on degenerate equations and their relevance in concrete
problems, we refer to the book [32] by Favini and Yagi. Other references are Barbu
and Favini [32], Favaron and Favini [30] and Showalter [54, 55]. The latter author
has studied extensively the class of Sobolev type equations.

When more than one unbounded operators are involved in (1.1), a strengthening
of the definition of well-posedness is necessary. The resulting definition (Definition
3.4 below) which we provide, seems to be new in this context. In fact, our def-
inition is parallel to the usual one for partial differential equations, in the sense
of Hadamard, namely existence, uniqueness and continuous dependence of the so-
lution on the data of the problem. The definition given is consistent with the
previously adopted ones in the case where only one unbounded operator appears
in the equation.

We study equation (1.1) in the spaces of 2π-periodic vector-valued functions,
namely: Lebesgue-Bochner spaces Lp(0, 2π;X), Besov spaces Bspq(0, 2π;X) and
Triebel-Lizorkin spaces F spq(0, 2π;X).

This article is organized as follows: in Section 2 we collect some preliminary
results and definitions. In Section 3, we give necessary and sufficient conditions
for well-posedness of the (1.1) in the Lebesgue Bochner spaces Lp(0, 2π;X), Besov
spaces Bspq(0, 2π;X) and Triebel-Lizorkin F spq(0, 2π;X) spaces in terms of operator-
valued Fourier multipliers. In Section 4, we give concrete conditions on the data
ensuring applicability of the results established in Section 3. We stress that in the
Lp case, the results use the concept of R-boundedness and require the space X to
be UMD (this is equivalent to the continuity of the Hilbert transform on Lp(R, X),
1 < p < ∞). The the concept of R-boundedness first appeared in the context of
evolution equations in the papers [56, 57] of Weis (see also the article [34]).

In the other cases (namely Bspq(0, 2π;X) and F spq(0, 2π;X)), these restrictions
are no longer needed but one requires instead higher order boundedness conditions
on the “modified resolvents” involved.

In the final Section 5, we consider some examples where the results above apply.
We single out the following modified version of problem which is considered in
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Favini-Yagi [32, Example 6.1]

∂

∂t
(m(x)

∂u(t, x)
∂t

)−∆
∂u(t, x)
∂t

= ∆u(t, x) +
∫ t

−∞
b(t− s)∆u(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(t, x) =
∂u(t, x)
∂t

= 0, (t, x) ∈ [0, 2π]× ∂Ω,

u(0, x) = u(2π, x), m(x)
∂u(0, x)
∂t

= m(x)
∂u(2π, x)

∂t
, x ∈ Ω,

(1.4)

where Ω ⊂ Rn is an open subset and ∆ is the Laplace operator. We consider the
problem in the space X = Lr(Ω), 1 < r < ∞. This is a degenerate wave equation
with memory and a damping term. We treat the problem for periodic boundary
conditions. The authors of the cited papers also study the evolutionary problem
as well, including asymptotic behavior of solutions. They consider only the case
when a = 0, that is they do not incorporate the memory term in the equation.
They restrict their study to the Hölder spaces. For periodic boundary conditions,
we obtain complete characterization of well-posedness in the three scales of spaces:
Lp, Bspq, and F spq. We are also able to treat this problem replacing ∆ with −∆ in
the right hand side. The latter equation is the focus of the reference [32].

2. Preliminaries

In this section, we collect some results and definitions that will be used in the
sequel. Let X be a complex Banach space. We denote as usual by L1(0, 2π,X)
the space of Bochner integrable functions with values in X. For a function f ∈
L1(0, 2π;X), we denote by f̂(k), k ∈ Z the kth Fourier coefficient of f :

f̂(k) =
1

2π

∫ 2π

0

e−k(t)f(t)dt,

where ek(t) = eikt, t ∈ R.
Let u ∈ L1(0, 2π;X). We denote again by u its periodic extension to R. Let

a ∈ L1(R+). We consider the the function

F (t) =
∫ t

−∞
a(t− s)u(s)ds, t ∈ R.

Since

F (t) =
∫ t

−∞
a(t− s)u(s)ds =

∫ ∞
0

a(s)u(t− s)ds, (2.1)

we have ‖F‖L1 ≤ ‖a‖1‖u‖L1 = ‖a‖L1(R+)‖u‖L1(0, 2π;X) and F is periodic of period
T = 2π as u. Now using Fubini’s theorem and (2.1) we obtain, for k ∈ Z, that

F̂ (k) = ã(ik)û(k), k ∈ Z (2.2)

where ã(λ) =
∫∞

0
e−λta(t)dt denotes the Laplace transform of a. This identity

plays a crucial role in the paper.
Let X,Y be Banach spaces. We denote by L(X,Y ) the set of all bounded linear

operators from X to Y . When X = Y , we write simply L(X).
For results on operator-valued Fourier multipliers and R-boundedness (used in

the next section), as well as some applications to evolutionary partial differential
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equations, we refer to Amann [2], Bourgain [10, 11], Clément-de Pagter-Sukochev-
Witvliet [22], Weis [56, 57], Girardi-Weis [33], [34], Kunstmann-Weis [39], Clément-
Prüss [23], Arendt [4] and Arendt-Bu [7]. The scalar case is presented for example
in Schmeisser-Triebel [52, Chapter 3]. This reference also considers the case where
X is a Hilbert space (Chapter 6). Here, we will merely present the appropriate
definitions.

We shall frequently identify the spaces of (vector or operator-valued) functions
defined on [0, 2π] to their periodic extensions to R. Thus, in this section, we consider
the spaces:

Lebesgue-Bochner spaces. For 1 ≤ p ≤ ∞, we denote Lp2π(R;X) (denoted also
Lp(0, 2π;X), 1 ≤ p ≤ ∞) of all 2π-periodic Bochner measurable X-valued functions
f such that the restriction of f to [0, 2π] is p-integrable, usual modification if p =∞.
The space is equipped with the norm

‖f‖p = ‖f‖Lp(0,2π,X) =


(

1
2π

∫ 2π

0
‖f(t)‖pXdt

)1/p if 1 ≤ p <∞,

ess supt∈[0,2π] ‖f(t)‖X if p =∞.
(2.3)

Besov spaces. We briefly recall the the definition of 2π-periodic Besov space in
the vector-valued case introduced in [8]. Let S(R) be the Schwartz space of all
rapidly decreasing smooth functions on R. Let D(0, 2π) be the space of all infinitely
differentiable functions on [0, 2π] equipped with the locally convex topology given
by the family of seminorms

‖f‖α = sup
x∈[0,2π]

|f (α)(x)|

for α ∈ N0 := N ∪ {0}. Let D′(0, 2π,X) := L(D(0, 2π), X) be the space of all
bounded linear operators from D(0, 2π) to X (X-valued distributions). In order to
define the Besov spaces, we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| ≤ 2}, Ik = {t ∈ R : 2k−1 < |t| ≤ 2k}

for k ∈ N. Let Φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Ik for each k ∈ N0,

∑
k∈N0

φk(x) = 1 for x ∈ R, and for each α ∈ N0,

supx∈R,k∈N0
2kα|φ(α)

k (x)| < ∞. Let φ = (φk)k∈N0 ∈ Φ(R) be fixed. For 1 ≤ p, q ≤
∞, s ∈ R, the X-valued 2π-periodic Besov space is denoted by Bspq(0, 2π,X) and
defined by the set{

f ∈ D′(0, 2π;X) : ‖f‖spq :=
(∑
j≥0

2sjq‖
∑
k∈Z

ek ⊗ φj(k)f̂(k)‖qp
)1/q

<∞
}

with the usual modification if q =∞.
It is known that Bspq(0, 2π,X) is independent of the choice of φ, and different

choices of φ in the class Φ(R) lead to equivalent norms ‖ · ‖spq. Equipped with the
norm ‖ · ‖spq, Bspq(0, 2π,X) is a Banach space.

It is also known that is s1 ≤ s2, then Bs2pq(0, 2π,X) ⊂ Bs1pq(0, 2π,X) and the
embedding is continuous [8]. When s > 0, it is proved in [8] that Bspq(0, 2π,X) ⊂
Lp(0, 2π,X) and the embedding is continuous; moreover, f ∈ Bs+1

pq (0, 2π,X) if and
only if f is differentiable a.e on [0, 2π] and f ′ ∈ Bspq(0, 2π,X). In the case where
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p = q = ∞ and 0 < s < 1 we have that Bs∞∞(0, 2π,X) corresponds to the space
Cs(0, 2π,X) of Hölder continuous functions with equivalent norm

‖f‖Cs(0,2π;X) = sup
t1 6=t2

‖f(t2)− f(t1)‖X
|t2 − t1|s

+ ‖f‖∞.

Triebel-Lizorkin spaces. Let φ = (φk)k∈N0 ∈ Φ(R) be fixed with φ and Φ(R)
as above. For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R, the X-valued 2π-periodic Triebel-
Lizorkin space with parameters s, p and q is denoted by F spq(0, 2π;X) and defined
by the set{

f ∈ D′(0, 2π,X) : ‖f‖spq :=
∥∥(∑

j≥0

2sjq‖
∑
k∈Z

ek ⊗ φj(k)f̂(k)‖qX
)1/q∥∥

p
<∞

}
with the usual modification if q =∞.

It is known that set F spq(0, 2π,X) is independent of the choice of φ, and again,
different choices of φ lead to equivalent norms ‖ · ‖spq. Equipped with the norm
‖ · ‖spq, F spq(0, 2π,X) is a Banach space.

It is also known that if s1 ≤ s2, then F s2pq (0, 2π,X) ⊂ F s1pq (0, 2π,X) and the
embedding is continuous [17]. When s > 0, it is show in [17] that F spq(0, 2π,X) ⊂
Lp(0, 2π,X) and the embedding is continuous; moreover, f ∈ F s+1

pq (0, 2π,X) if and
only if f is differentiable a.e on [0, 2π] and f ′ ∈ F spq(0, 2π,X). The exceptional case
p = ∞ will not be considered in this paper. We refer to Schmeisser-Triebel [52,
Section 3.4.2] for a discussion. Note that F spp((0, 2π);X) = Bspp((0, 2π);X) by an
inspection of the definitions.

We give the definition of operator-valued Fourier multipliers in each of the cases
that will be of interest to us. First, in the case of Lebesgue spaces, we have: (See
[7, 8, 17]).

Definition 2.1. Let X and Y be Banach spaces. For 1 ≤ p ≤ ∞, we say that a
sequence (Mk)k∈Z ⊂ L(X,Y ) is an Lp-multiplier, if for each f ∈ Lp(0, 2π;X) there
exists u ∈ Lp(0, 2π;Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

In the case of Besov spaces, we have the following concept.

Definition 2.2. Let X and Y be Banach spaces. For 1 ≤ p, q ≤ ∞, s > 0,
we say that a sequence (Mk)k∈Z ⊂ L(X,Y ) is an Bspq-multiplier, if for each f ∈
Bspq(0, 2π;X) there exists u ∈ Bspq(0, 2π;Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

Finally, in the case of Triebel-Lizorkin spaces, we have the following concept.

Definition 2.3. Let X and Y be Banach spaces. For 1 ≤ p < ∞, 1 ≤ q ≤ ∞,
s > 0, and let (Mk)k∈Z ⊂ L(X,Y ), we say that a sequence (Mk)k∈Z ⊂ L(X,Y ) is
an F spq-multiplier, if for each f ∈ F spq(0, 2π;X) there exists u ∈ F spq(0, 2π;Y ) such
that

û(k) = Mkf̂(k) for all k ∈ Z.

From the uniqueness theorem of Fourier series, it follows that u is uniquely
determined by f in each of the above mentioned cases.
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We denote by Y = Y(X) any of the following spaces of X-valued functions:
Lp(0, 2π;X), 1 ≤ p ≤ ∞; Bspq(0, 2π;X), 1 ≤ p, q ≤ ∞, s > 0; F spq(0, 2π;X),
1 ≤ p <∞, 1 ≤ q ≤ ∞, s > 0. We define the sets

Y [1] = {u ∈ Y : u is almost everywhere differentiable and u′ ∈ Y},

Y [1]
per = {u ∈ Y : ∃v ∈ Y, such that v̂(k) = ikû(k) for all k ∈ Z}

In the case that Y = Lp(0, 2π;X), Y [1] is denoted by W 1,p(0, 2π;X) and Y [1]
per by

W 1,p
per(0, 2π;X). In the case that Y = Bspq(0, 2π;X), Y [1] = Bs+1

pq (0, 2π;X). In the
case that Y = F spq(0, 2π;X), Y [1] = F s+1

pq (0, 2π;X).

Remark 2.4. Using integration by parts, the fact that Y ⊂ L1(0, 2π,X) and the
uniqueness theorem of Fourier coefficients, we have

Y [1]
per = {u ∈ Y [1] : u(0) = u(2π)},

Y [1]
per = {u ∈ Y [1] : û′(k) = ikû(k) for all k ∈ Z}.

(2.4)

Therefore, if u ∈ Y [1]
per, then u has a unique continuous representative such that

u(0) = u(2π). We always identify u with this continuous function.

Remark 2.5. It is clear from the definitions that:
(a) if (Mk)k∈Z, (Nk)k∈Z ⊂ L(X,Y ) are Y-Fourier multipliers and α, β are con-

stants, then (αMk + βNk)k∈Z ⊂ L(X,Y ) is a Y-Fourier multiplier as well.
(b) if (Mk)k∈Z ⊂ L(X,Y ) and (Nk)k∈Z ⊂ L(Y, Z) are Y-Fourier multipliers,

then (NkMk)k∈Z ⊂ L(X,Z) is a Y-Fourier multiplier as well. In particular,
when X = Y = Z, if (Mk)k∈Z, (Nk)k∈Z are Y-Fourier multipliers, then
(NkMk)k∈Z is a Y-Fourier multiplier as well.

Proposition 2.6 ([7, Fejer’s Theorem]). Let f ∈ Lp(0, 2π;X)), then one has

f = lim
n→∞

1
n+ 1

n∑
m=0

m∑
k=−m

ekf̂(k)

with convergence in Lp(0, 2π;Y )).

Remark 2.7. (a) If (kMk)k∈Z is a Y-Fourier multiplier, then (Mk)k∈Z is also a
Y-Fourier multiplier.

(b) If (Mk)k∈Z ⊂ L(X,Y ) is a Y-Fourier multiplier, then there exists a bounded
linear operator T ∈ L(Y(X),Y(Y )) satisfying (̂Tf)(k) = Mkf̂(k) for all k ∈ Z.
This implies in particular that the sequence (Mk)k∈Z must be bounded.

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e. rj(t) =
sgn(sin(2jπt)). For x ∈ X we denote by rj⊗x the vector valued function t→ rj(t)x.

The important concept of R-bounded for a given family of bounded linear oper-
ators is defined as follows.

Definition 2.8. A family T ⊂ L(X,Y ) is called R-bounded if there exists cq ≥ 0
such that

‖
n∑
j=1

rj ⊗ Tjxj‖Lq(0,1;X) ≤ cq‖
n∑
j=1

rj ⊗ xj‖Lq(0,1;X) (2.5)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N, where 1 ≤ q <∞. We denote by
Rq(T) the smallest constant cq such that (2.5) holds.
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Remark 2.9. Several useful properties of R-bounded families can be found in the
monograph of Denk-Hieber-Prüss [28, Section 3], see also [4, 7, 22, 47, 39]. We
collect some of them here for later use.

(a) Any finite subset of L(X) is is R-bounded.
(b) If S ⊂ T ⊂ L(X) and T is R-bounded, then S is R-bounded and Rp(S) ≤

Rp(T).
(c) Let S,T ⊂ L(X) be R-bounded sets. Then S ·T := {S · T : S ∈ S, T ∈ T}

is R-bounded and

Rp(S ·T) ≤ Rp(S) ·Rp(T).

(d) Let S,T ⊂ L(X) be R-bounded sets. Then S+T := {S+T : S ∈ S, T ∈ T}
is R- bounded and

Rp(S + T) ≤ Rp(S) +Rp(T).

(e) If T ⊂ L(X) is R- bounded, then T∪{0} is R-bounded and Rp(T∪{0}) =
Rp(T).

(f) If S,T ⊂ L(X) are R- bounded, then T ∪ S is R-bounded and

Rp(T ∪ S) ≤ Rp(S) +Rp(T).

(g) Also, each subset M ⊂ L(X) of the form M = {λI : λ ∈ Ω} is R-bounded
whenever Ω ⊂ C is bounded (I denotes the identity operator on X).

The proofs of (a), (e), (f), and (g) rely on Kahane’s contraction principle.
We sketch a proof of (f). Since we assume that S,T ⊂ L(X) are R-bounded,

it follows from (e) (which is a consequence of Kahane’s contraction principle) that
S∪{0} and T∪{0} are R-bounded. We now observe that S∪T ⊂ S∪{0}+T∪{0}.
Then using (d) and (b) we conclude that S ∪T is R-bounded.

We make the following general observation which will be valid throughout the
paper, notably in Section 4. Whenever we wish to establish R-boundedness of a
family of operators (Mk)k∈Z, if at some point we make an exception such as (k 6= 0),
(k /∈ {−1, 0}) and so on, then later we recover the property for the entire family
using items (a), (c) and (f) of the foregoing remark. The corresponding observation
for boundedness is clear.

Remark 2.10. If X = Y is a UMD space and Mk = mkI with mk ∈ C, then the
Marcinkiewicz condition supk |mk|+ supk |k(mk+1−mk)| <∞ implies that the set
{Mk}k∈Z is an Lp-multiplier. (see [7] or [2, Theorem 4.4.3]).

Another important notion in Banach space theory is that of Fourier type for a
Banach space. Conditions for Fourier multipliers are simplified when the Banach
spaces involved satisfy this condition. The Hausdorff-Young inequality states that
for 1 ≤ p ≤ 2, the Fourier transform maps Lp(R) := Lp(R; C) continuously into
Lp
′
(R) where 1

p + 1
p′ = 1, with the convention that p′ = ∞ when p = 1. In

particular, when p = 2, Plancherel’s theorem holds. When X is a Banach space
and one considers Lp(R;X), the situation is no longer the same. It is known
that Plancherel’s theorem (here we mean L2−continuity of the X−valued Fourier
transform) holds if and only if X is isomorphic to a Hilbert space (see e.g. [2, 6,
7, 34]). For every Banach space, the Hausdorff-Young theorem holds with p = 1.
A Banach space is said to have non-trivial Fourier type if the Hausdorff-Young
theorem holds true for some p ∈ (1, 2]. By a result of Bourgain [10, 11], UMD spaces
are examples of spaces with nontrivial Fourier type (see [34, 5]). More generally,
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B-convex spaces, in particular superreflexive Banach spaces have nontrivial Fourier
type ([11, Proposition 3]). However, there exist non reflexive Banach spaces with
nontrivial Fourier type. The implications of the property of having non trivial
Fourier type are studied in Giradi-Weis [34].

For Banach spaces with non trivial Fourier type, in particular for UMD spaces,
the conditions for the validity of operator-valued Fourier multiplier theorems are
greatly simplified.

3. Characterization in terms of Fourier multipliers

In this section, we characterize the well-posedness of the problem

(Mu′)′(t)− Λu′(t)− d

dt

∫ t

−∞
c(t− s)u(s)ds

= γu(t) +Au(t) +
∫ t

−∞
b(t− s)Bu(s)ds+ f(t), 0 ≤ t ≤ 2π,

u(0) = u(2π) and (Mu)′(0) = (Mu)′(2π)

(3.1)

in the vector-valued Lebesgue, Besov, and Triebel-Lizorkin spaces. Here A,B,Λ
and M are closed linear operators in a Banach space X satisfying D(A) ∩D(B) ⊂
D(Λ)∩D(M), b, c ∈ L1(R+), f is an X-valued function defined on [0, 2π], and γ is
a constant. The results are in terms of operator-valued Fourier multipliers.

Let b, c be complex valued functions and γ a constant. We define the M,Λ-
resolvent set of A and B, ρΛ,M,b̃,c̃(A,B), associated to (3.1) by

{λ ∈ C|M(λ) : D(A) ∩D(B)→ X is bijective and [M(λ)]−1 ∈ L(X)}
whereM(λ) = λ2M −A− b̃(λ)B−λΛ−λc̃(λ)I − γI. Thus, λ ∈ ρΛ,M,ã,b̃,c̃(A,B) if
and only if [M(λ)]−1 is a linear continuous isomorphism from X onto D(A)∩D(B).
Here we consider D(A), D(B), D(Λ) and D(M) as normed spaces equipped with
their respective graph norms. These are Banach space since all the operators are
closed. For a ∈ L1(R+), u ∈ Y, we denote by a ∗ u the function

(a ∗ u)(t) :=
∫ t

−∞
a(t− s)u(s)ds (3.2)

Since Y ⊂ L1(0, 2π;X), it follows that a∗u ∈ L1(0, 2π;X) and (a∗u)(0) = (a∗u)(2π)
by (2.1). With this notation we may rewrite (1.1) in the following way:

(Mu′)′(t)−Λu′(t)− d

dt
(c ∗u)(t) = γu(t) +Au(t) + (b ∗Bu)(t) + f(t), 0 ≤ t ≤ 2π.

If b, c ∈ L1(R+) and u ∈ L1(0, 2π;D(A)) ∩ L1(0, 2π;D(B)), then c ∗ u, b ∗Bu ∈
L1(0, 2π;X) by (2.1) and (̂c ∗ u)(k) = c̃(ik)û(k), ̂(a ∗Au)(k) = ã(ik)Aû(k) and
̂(b ∗Bu)(k) = b̃(ik)Bû(k) by (2.2). If additionally we have that d

dt (c ∗ u) ∈
L1(0, 2π;X), then c ∗ u ∈ W 1,1(0, 2π;X) and (c ∗ u)(0) = (c ∗ u)(2π). Then

̂d
dt (c ∗ u)(k) = ikc̃(ik)û(k) by (2.4).

In what follows, we adopt the following notation:

bk := b̃(ik), ck := c̃(ik) (3.3)

Remark 3.1. By the Riemann-Lebesgue lemma, the sequences (bk)k∈Z and (ck)k∈Z
so defined are bounded. In fact lim|k|→∞ bk = 0, and similarly for (ck)k∈Z. More-
over, (bkI)k∈Z and (ckI)k∈Z define a Y-Fourier multiplier.
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We now give the definition of solutions of (3.1) in our relevant cases.

Definition 3.2. A function u ∈ Y is called a strong Y-solution of (3.1) if u ∈
Y(D(A)) ∩ Y(D(B)) ∩ Y [1]

per, u′ ∈ Y(D(Λ)) ∩ Y(D(M)), Mu′ ∈ Y [1]
per, and equation

(1.1) holds for almost all t ∈ [0, 2π].

Lemma 3.3. Let X be a Banach space, and A, B, Λ, M be closed linear operators
in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M). Suppose that γ is a constant,
b, c ∈ L1(R+), and consider bk, ck as in (3.3). Assume that u is a strong Y-solution
of (3.1). Then

[−k2M −A− bkB − ikΛ− ikckI − γI]û(k) = f̂(k).

for all k ∈ Z.

Proof. Let k ∈ Z. Since u is a strong Y-solution of (3.1), u ∈ Y(D(A))∩Y(D(B))∩
Y [1]

per, u′ ∈ Y(D(Λ)) ∩ Y(D(M)), Mu′ ∈ Y [1]
per and

(Mu′)′(t)− Λu′(t)− d

dt
(c ∗ u)(t)

= γu(t) +Au(t) + (b ∗Bu)(t) + f(t), for a.e t ∈ [0, 2π].

Since u ∈ Y(D(A)) ∩ Y(D(B)), we have

û(k) ∈ D(A) ∩D(B) and Âu(k) = Aû(k), B̂u(k) = Bû(k).

by [7, Lemma 3.1]. Since u ∈ Y [1]
per, we have û′(k) = ikû(k) by (2.4). Since

u′ ∈ Y(D(Λ)) ∩ Y(D(M)), it follows that (̂Λu′) = Λû′(k) = ikΛû(k), M̂u′ =
Mû′(k) = ikMû(k) by [7, Lemma 3.1]. Since Mu′ ∈ Y [1]

per, it follows that (̂Mu′)′ =
ikM̂u′(k) = −k2Mû(k) by (2.4). Since u ∈ Y(D(A)) ⊂ L1(0, 2π;D(A)), u ∈
Y(D(B)) ⊂ L1(0, 2π;D(B)) and b, c ∈ L1(R+), it follows that c ∗ u, b ∗ Bu ∈
L1(0, 2π;X), (c∗u)(0) = (c∗u)(2π) by (2.1) and (̂c ∗ u)(k) = c̃(ik)û(k), ̂(b ∗Bu)(k) =
b̃(ik)Bû(k) by (2.2). Since Y ⊂ L1(0, 2π;X), we have u, Λu′, (Mu′)′ and f ∈
L1(0, 2π;X). So u, Au, Bu, b ∗ Bu, Λu′, (Mu′)′ and f all belong to L1(0, 2π;X).
Then d

dt (c ∗ u) must be in L1(0, 2π;X). Therefore c ∗ u ∈ W 1,1
per(0, 2π;X) and

̂d
dt (c ∗ u)(k) = ikc̃(ik)û(k) by (2.4).

Taking Fourier series on both sides of (1.1) we obtain

[−k2M −A− bkB − ikΛ− ikckI − γI]û(k) = f̂(k), k ∈ Z.

�

When (3.1) is Y well-posed, the map S : Y → Y, f 7→ u where u is the unique
strong solution, is linear. We adopt the following definition of well-posedness.

Definition 3.4. We say that (3.1) is Y-well-posed, if for each f ∈ Y, there exists
a unique strong Y-solution u of (3.1) which depends continuously on f in the sense
that the operator S : Y → Y defined by S(f) = u where u is the unique strong
Y-solution of (3.1) is continuous.

Remark 3.5. We note that, according to Section 2, [7, 8, 17], all the spaces of
vector-valued functions Y concerned in this paper are continuously embedded in
L1(0, 2π,X). It follows that: If fn → f in Y, then fn → f in L1(0, 2π,X) and
consequently for each k ∈ Z, limn→∞ f̂n(k) = f(k) in X.
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Our definition imposes an additional condition to that given in the previous
works such as [13], [42] that allows us to establish the following characterization of
well-posed of (3.1) in terms of Fourier multipliers. Actually, the above definition
stems from the Hadamard concept of well-posedness in partial differential equations.
We refer for example to [29] and [6] for the presentation of this fundamental concept.

Theorem 3.6. Let X be a Banach space and A, B, Λ, M be closed linear operators
in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M). Suppose that γ is a constant,
b, c ∈ L1(R+), and consider bk, ck as in (3.3). Then the following assertions are
equivalent.

(i) (3.1) is Y-well-posed.
(ii) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z, (kNk)k∈Z

are Y-Fourier multipliers, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

In this case the following maximal regularity property holds: The unique strong Y-
solution u is such that Au, b ∗Bu, Λu, Λu′, c ∗ u, d

dt (c ∗ u), Mu, Mu′ and (Mu′)′

all belong to Y and there exists a constant C > 0 independent of f ∈ Y such that

‖u‖Y + ‖Au‖Y + ‖b ∗Bu‖Y + ‖Λu‖Y + ‖Λu′‖Y + ‖c ∗ u‖Y

+ ‖ d
dt

(c ∗ u)‖Y + ‖Mu‖Y + ‖Mu′‖Y + ‖(Mu′)′‖Y ≤ C‖f‖Y

Proof. (i) ⇒ (ii). Let k ∈ Z and y ∈ X. Define f(t) = eikty. Then f̂(k) = y. By
assumption, there exists a unique strong Y-solution u of (3.1). By Lemma 3.3, we
have that for all k ∈ Z,

[−k2M −A− bkB − ikΛ− ikckI − γI]û(k) = y

It follows that
[−k2M −A− bkB − ikΛ− ikckI − γI]

is surjective for each k ∈ Z. Next we prove that for each k ∈ Z,

[−k2M −A− bkB − ikΛ− ikckI − γI]

is injective. Let x ∈ D(A) ∩D(B) such that

[−k2M −A− bkB − ikΛ− ikckI − γI]x = 0 (3.4)

Define u(t) = eiktx when t ∈ [0, 2π]. Then û(k) = x and û(n) = 0 for all n ∈ Z,
n 6= k. By (3.4) we have

(̂Mu′)′(n)− Λ̂u′(n)−
̂d
dt

(c ∗ u)(n) = γû(n) + Âu(n) + ̂(b ∗Bu)(n),

for all n ∈ Z. From uniqueness theorem of Fourier coefficients, we conclude that u
satisfies

(Mu′)′(t)− Λu′(t)− d

dt
(c ∗ u)(t) = γu(t) +Aw(t) + (b ∗Bu)(t)

for almost all t ∈ [0, 2π]. Thus u is a strong Y-solution of (3.1) with f = 0. We
obtain x = 0 by the uniqueness assumption. We have shown that

[−k2M −A− bkB − ikΛ− ikckI − γI]

is injective for each k ∈ Z. Now we show that

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1 ∈ L(X)
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Let k ∈ Z and (xn)n∈N be a sequence in X such that xn → x. For each n ∈ N
we define fn(t) = eiktxn and f(t) = eiktx. Then fn, f ∈ Y, for every n ∈ N and
fn → f in Y. Since (3.1) is Y-well-posed, for each fn, f ∈ Y there exists a unique
strong Y-solution S(fn) = un, S(f) = u. Since fn → f in Y, we have un → u in Y
by continuity of S. Therefore ûn(k)→ û(k) by Remark 3.5. Since

−k2M −A− bkB − ikΛ− ikckI − γI

is bijective, we obtain ûn(k) = −Nkxn, û(k) = −Nkx by Lemma 3.3; then Nkxn →
Nkx. Thus by the Closed Graph Theorem, Nk ∈ L(X). Thus iZ ⊂ ρΛ,M,b̃,c̃(A,B).

We now set for each k ∈ Z:

Mk = k2MNk Bk = ANk

Sk = BNk Hk = kNk.

Next we show that (Mk)k∈Z, (Bk)k∈Z, (Sk)k∈Z, and (Hk)k∈Z are Y-Fourier multi-
pliers. Since Nk ∈ L(X), B, Λ, M are closed, Mk, Bk, Hk and Sk are bounded for
all k ∈ Z. Now let f ∈ Y, then there exists a strong Y-solution u of (3.1). Then
û(k) = −Nkf̂(k) for all k ∈ Z by Lemma 3.3. Therefore

û(k) ∈ D(A) ∩D(B) ⊂ D(Λ) ∩D(M),

for all k ∈ Z. Since B is closed,

B̂u(k) = Bû(k) = −BNkf̂(k) = −Bkf̂(k)

for all k ∈ Z by [7, Lemma 3.1]. Since Λ, M are closed, u ∈ Y [1]
per, u′ ∈ Y(D(Λ)) ∩

Y(D(M)), and Mu′ ∈ Y [1]
per, we have

û′(k) = ikû(k) = −ikNkf̂(k) = −iHkf̂(k),

Λ̂u′(k) = Λû′(k) = ikΛû(k) = −ikΛNkf̂(k) = −iSkf̂(k),

(̂Mu′)′(k) = ikM̂u′(k) = ikMû′(k) = −k2Mû(k) = k2MNkf̂(k) = Mkf̂(k)

for all k ∈ Z by (2.4) and [7, Lemma 3.1]. It follows that (Mk)k∈Z, (Bk)k∈Z,
(Sk)k∈Z, and (Hk)k∈Z are Y-Fourier multipliers. Therefore the implication (i) ⇒
(ii) is true.

(ii) ⇒ (i). Since

k2MNk +ANk + bkBNk + ikΛNk + ikckNk + γNk = I,

we have
ANk = I −

(
k2MNk +ANk + bkBNk + ikckNk + γNk

)
for each k ∈ Z. Therefore, (ANk)k∈Z is a Y-Fourier multiplier by Remarks 2.5, 2.7,
and 3.1. Since (k2MNk)k∈Z, (kΛNk)k∈Z, (kNk)k∈Z, (BNk)k∈Z, and (ANk)k∈Z are
Y-Fourier multipliers, it follows that (Nk)k∈Z, (ikckNk)k∈Z, (ckNk)k∈Z, (ikNk)k∈Z,
(ikΛNk)k∈Z, (ΛNk)k∈Z, (−k2MNk)k∈Z (ikMNk)k∈Z, and (MNk)k∈Z are also Y-
Fourier multipliers again by Remarks 2.5, 2.7, and 3.1. From the fact that (ANk)k∈Z,
(BNk)k∈Z, (ΛNk)k∈Z, (MNk)k∈Z, and (ckNk)k∈Z are Y-Fourier multipliers, then
for all f ∈ Y, we conclude that exist u, v1, v2, v3, v4, and v5 ∈ Y such that

û(k) = Nkf̂(k), (3.5)
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and
v̂1(k) = ANkf̂(k) = Aû(k) = Âu(k),

v̂2(k) = BNkf̂(k) = Bû(k) = B̂u(k),

v̂3(k) = ΛNkf̂(k) = Λû(k) = Λ̂u(k),

v̂4(k) = MNkf̂(k) = Mû(k) = M̂u(k),

v̂5(k) = ckNkf̂(k) = ckû(k) = ĉ ∗ u(k),

(3.6)

for all k ∈ Z by the closedness of A, B, Λ, M , and (2.2). Since iZ ⊂ ρΛ,M,b̃,c̃(A,B),
it follows that

û(k) ∈ D(A) ∩D(B) ⊂ D(Λ) ∩D(M),

for all k ∈ Z by (3.5). Since A, B, Λ, and M are closed,

u(t) ∈ D(A) ∩D(B)

and Au(t) = v1(t), Bu(t) = v2(t), Λu(t) = v3(t), Mu(t) = v4(t) and (c ∗ u)(t) =
v5(t) a.e. t ∈ [0, 2π] by (3.6) and [7, Lemma 3.1] (here we also use the fact that
Y ⊂ Lp(0, 2π,X)). Therefore

u ∈ Y(D(A)) ∩ Y(D(B)),

and c ∗ u, Λu, Mu ∈ Y. Since (ikNk)k∈Z is a Y-Fourier multiplier, there exists
v6 ∈ Y such that

v̂6(k) = ikNkf̂(k) = ikû(k) ∈ D(Λ) ∩D(M). (3.7)

for all k ∈ Z. Therefore by (2.4) and (3.7), u ∈ Y [1]
per, û′(k) = ikû(k) and

û′(k) ∈ D(Λ) ∩D(M),

for all k ∈ Z. Since (ikΛNk)k∈Z and (ikMNk)k∈Z are Y-Fourier multipliers, there
exist v7, v9 ∈ Y such that

v̂7(k) = ikΛNkf̂(k) = Λ(ikû(k)) = Λû′(k) = Λ̂u′(k),

v̂8(k) = ikMNkf̂(k) = M(ikû(k)) = Mû′(k) = M̂u′(k),
(3.8)

for al k ∈ Z. Since Λ and M are closed,

u′(t) ∈ D(Λ) ∩D(M)

and Λu′(t) = v7(t), Mu′(t) = v8(t) a.e. t ∈ [0, 2π] by (3.8) and [7, Lemma 3.1] (here
again, we also use the fact that Y ⊂ Lp(0, 2π,X)). Therefore

u′ ∈ Y(D(Λ)) ∩ Y(D(M)).

Since (−k2MNk)k∈Z is a Y-Fourier multiplier, there exists v9 ∈ Y such that

v̂9(k) = −k2kMNkf̂(k) = ik(ikMû(k)) = ikMû′(k) = ikM̂u
′
(k), (3.9)

for al k ∈ Z by (3.8). Then Mu′ ∈ Y [1]
per. Since (ikckNk)k∈Z is a Y-Fourier multi-

plier, there exists v10 ∈ Y such that

v̂10(k) = ikckNkf̂(k) = ikckû(k) = ik(̂c ∗ u)(k), (3.10)

for al k ∈ Z by (3.6). Then c ∗ u ∈ Y [1]
per by (2.4). Since û(k) = Nkf̂(k), we have

[−k2M −A− bkB − ikΛ− ikckI − γI](−û(k)) = f̂(k),
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this means that

(M̂w′)′(k)− Λ̂w′(k)−
̂d

dt
(c ∗ w)(k) = γŵ(k) + Âw(k) + ̂(b ∗Bw)(k) + f̂(k),

for all k ∈ Z where w = −u. From the uniqueness theorem of Fourier coefficients,
we conclude that w satisfies

(Mw′)′(t)− Λw′(t)− d

dt
(c ∗ w)(t) = γw(t) +Aw(t) + (b ∗Bw)(t) + f(t)

for almost all t ∈ [0, 2π]. Thus w is a strong Y-solution of (3.1). To prove unique-
ness, let u be a strong Y-solution of (3.1) with f = 0. Then

[−k2M −A− bkB − ikΛ− ikckI − γI]û(k) = 0

for all k ∈ Z by Lemma 3.3. Since ik ∈ ρΛ,M,b̃,c̃(A,B) for all k ∈ Z, it follows that
û(k) = 0 for all k ∈ Z. From the uniqueness theorem of Fourier coefficients we have
that u = 0. Now we show the continuous dependence of u on f . Let f ∈ Y, then
the unique strong Y-solution of (3.1), u, is such that û(k) = −Nkf̂(k) for all k ∈ Z
by Lemma 3.3 and iZ ⊂ ρΛ,M,b̃,c̃(A,B). Since Nk is a Y-Fourier multiplier, there

exists a bounded linear operator T ∈ L(Y,Y) such that T̂ f(k) = û(k) for all k ∈ Z
by Remark 2.7. Then Tf = u, so u depends continuously on f .

The last assertion of the theorem is a direct consequence of the fact that Au,
b∗Bu, Λu, Λu′, c∗u, d

dt (c∗u), Mu, Mu′ and (Mu′)′ ∈ Y are defined through the fol-
lowing operator valued Fourier multipliers (−ANk)k∈Z, (−bkBNk)k∈Z, (−ΛNk)k∈Z,
(−kΛNk)k∈Z, (−ckNk)k∈Z, (−kckNk)k∈Z, (−MNk)k∈Z, (kMNk)k∈Z, (k2MNk)k∈Z
(here we use the Remarks 2.5, 2.7, and 3.1). �

The last assertion of the previous theorem is known as the maximal regularity
property for (3.1).

Remark 3.7. We can construct the solution u(·) given by the above theorems using
Proposition 2.6 and the fact that Y is continuously embedded in Lp(0, 2π;X). More
precisely,

u(·) = − lim
n→∞

1
n+ 1

n∑
m=0

m∑
k=−m

ek(·)Nkf̂(k), (3.11)

with convergence in Lp(0, 2π;X).

Remark 3.8. If at most one operator of those that appear in (1.1) is unbounded,
then the additional condition in our definition of well-posedness is obtained auto-
matically. In that case the operators

−k2M −A− bkB − ikΛ− ikckI − γI
are closed for all k ∈ Z and once we show that they are bijective, continuity follows
from the Closed Graph Theorem.

4. Concrete characterization on periodic Lebesgue, Besov and
Triebel-Lizorkin spaces

In this section, we give concrete conditions that allow us to apply Theorem
3.6. Specifically we obtain conditions under which the sequences (k2MNk)k∈Z,
(BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are Fourier multipliers in the scale of spaces
under consideration by use of the operator valued multiplier theorems established in
[5, 7, 8, 17]. Versions of the multiplier theorems on the real line can be found in [3,
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33, 34] (the reference [34] contains concrete criteria for R-boundedness of operator
families), [56, 57]. The Lp-case is much different from the other scales of spaces in
that it involves the notion of R-boundedness and one has to restrict consideration
to UMD Banach spaces. Fortunately, many Banach spaces, for example Lp(Ω, µ),
1 < p < ∞ are UMD spaces. In addition, the R-boundedness condition holds for
resolvents of many classical operators in the analysis of partial differential equations
of evolution type (see for example Kunstmann-Weis [39] and Girardi-Weis [34]).

Let {ak : k ∈ Z} ⊂ C be a scalar sequence, we denote by ∆ak = ak+1 − ak. It
is obvious that ∆ is linear: ∆(ak + bk) = ∆ak + ∆bk; ∆(λak) = λ∆ak. Another
property used frequently is ∆(akbk) = ak∆bk+(∆ak)bk. Define ∆n+1αk = ∆∆nak
for all n ∈ N, k ∈ Z. ∆n is the nth order difference operator:

∆nak =
n∑
j=0

(−1)n−j
(
n

j

)
ak+j .

We will use the following hypotheses:
(H0) {ak : k ∈ Z} is bounded.
(H1) {ak : k ∈ Z}, {k∆ak : k ∈ Z} are bounded.
(H2) {ak : k ∈ Z}, {k∆ak : k ∈ Z}, {k2∆2ak : k ∈ Z} are bounded.
(H3) {ak : k ∈ Z}, {k∆ak : k ∈ Z}, {k2∆2ak : k ∈ Z}, {k3∆3ak : k ∈ Z} are

bounded.
Clearly (H0) is weaker than (H1) which in turn is weaker than (H2), and the latter is
weaker than (H3). In our cases (H0) is obtained automatically from the Riemann-
Lebesgue Lemma. The condition (H1) will be used for Lp well-posedness, while
(H2) and (H3) are needed for Besov spaces and Triebel-Lizorkin spaces respectively.
Some variations to this rule will occur when the Banach space X satisfies a special
geometric property such as being UMD or having nontrivial Fourier type.

Examples of functions a(t) such that ak = ã(ik) satisfies (H3) are a(t) = Ce−ωttν

where ω > 0, ν > −1 and C is a constant. We give a class of functions which
discriminate between the above conditions in the following example.

Example 4.1. Let β > 0, ω > 0, c ∈ R and consider the family of functions

b(t) =

{
0 if 0 < t ≤ β,
Ce−ωt(t− β)ν if t > β

bk = b̃(ik). Then
(a) For −1 < ν < 0 and β /∈ 2πZ, bk satisfies (H0) but not (H1).
(b) For 0 ≤ ν < 1 and β /∈ 2πZ, bk satisfies (H1) but not (H2).
(c) For 1 ≤ ν < 2 and β /∈ 2πZ, bk satisfies (H2) but not (H3).
(d) For ν ≥ 2 or β ∈ 2πZ, bk satisfies (H3).

In the following theorem, we characterize well-posedness in the vector-valued Lp

spaces.

Theorem 4.2. Let X be a UMD Banach space, 1 < p < ∞ and A, B, Λ, M be
closed linear operators in X such that D(A)∩D(B) ⊂ D(Λ)∩D(M). Suppose that
γ is a constant, b, c ∈ L1(R+), and consider bk, ck as in (3.3) such that {bk : k ∈ Z}
and {ck : k ∈ Z} satisfy (H1). Then the following assertions are equivalent.

(i) (3.1) is Lp-well-posed.
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(ii) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and {k2MNk : k ∈ Z}, {BNk : k ∈ Z}, {kΛNk : k ∈
Z}, and {kNk : k ∈ Z} are R-bounded, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

Proof. (i) ⇒ (ii) Assume that (3.1) is Lp-well-posed. Then by Theorem 3.6, iZ ⊂
ρΛ,M,b̃,c̃(A,B) and (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are Lp-
Fourier multipliers. The R-boundedness of {k2MNk : k ∈ Z}, {BNk : k ∈ Z},
(kΛNk)k∈Z, and {kNk : k ∈ Z} now follows from [7, Proposition 1.11].

(ii)⇒ (i) In view of Theorem 3.6, it suffices to show that (k2MNk)k∈Z, (BNk)k∈Z,
(kΛNk)k∈Z, and (kNk)k∈Z are Lp-Fourier multipliers.

For each k ∈ Z we define Mk = k2MNk, Bk = BNk, Hk = kNk and Sk = kΛNk.
These operators are bounded because iZ ⊂ ρΛ,M,b̃,c̃(A,B). Since {kNk : k ∈ Z} is
R-bounded, {Nk : k ∈ Z} is R-bounded by Remark 2.9. We observe that

N−1
k+1Nk =

[
(k + 1)2M +A+ bk+1B + i(k + 1)Λ + i(k + 1)ck+1I + γI

]
Nk

= [N−1
k + (2k + 1)M + ∆bkB + ik∆ckI + ick+1I + iΛ]Nk

= I + (2k + 1)MNk + ∆bkBNk + ik∆ckNk + ick+1Nk + iΛNk

= I +
2k + 1
k2

Mk + ∆bkBk + i∆ckHk +
ick+1

k
Hk +

i

k
Sk

for all k ∈ Z, k 6= 0. If we define

Tk =
2k + 1
k2

Mk + ∆bkBk + i∆ckHk + i
ck+1

k
Hk +

i

k
Sk, (4.1)

then N−1
k+1Nk = I + Tk for all k ∈ Z, k 6= 0. Define

Qk = −kTk

= −[
2k + 1
k

Mk + k∆bkBk + ik∆ckHk + ick+1Hk + iSk].

for all k ∈ Z, k 6= 0. Since {bk : k ∈ Z} and {ck : k ∈ Z} satisfy (H1), {Qk : k ∈ Z}
is R-bounded by Remark 2.9 and 3.1. We observe that

k∆Nk = k(Nk+1 −Nk) = kNk+1(I −N−1
k+1Nk)

= kNk+1[I − (I + Tk)] = kNk+1[−Tk] = Nk+1Qk

Thus, we have

k∆Bk = k∆(BNk) = B(k∆Nk) = BNk+1Qk = Bk+1Qk,

k∆Hk = k[(k + 1)Nk+1 − kNk]

= k[(k + 1)Nk+1 − (k + 1)Nk + (k + 1)Nk − kΛNk]

= k[(k + 1)∆Nk +Nk] = (k + 1)(k∆Nk) + kNk

= (k + 1)Nk+1Qk + kNk = Hk+1Qk +Hk,

k∆Sk = Λ(k[(k + 1)Nk+1 − kNk])

= Λ[Hk+1Qk +Hk] = Sk+1Qk + Sk,
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k∆Mk = k((k + 1)2MNk+1 − k2MNk)

= k((k + 1)2MNk+1 − (k + 1)2MNk + (k + 1)2MNk − k2MNk)

= k[(k + 1)2M∆Nk + (2k + 1)MNk

= (k + 1)2M [k∆Nk] + k(2k + 1)MNk

= (k + 1)2MNk+1Qk + k(2k + 1)MNk

= Mk+1Qk +
2k + 1
k

Mk

for all k ∈ Z, k 6= 0. Then {k∆Bk : k ∈ Z}, {k∆Hk : k ∈ Z}, {k∆Sk : k ∈ Z}, and
{k∆Mk : k ∈ Z} are R-bounded by Remark 2.9. Therefore by [7, Theorem 1.3] we
obtain that (Bk)k∈Z, (Hk)k∈Z, (Sk)k∈Z, and (Mk)k∈Z are Lp-Fourier multipliers.

�

From the proof of Theorem 4.2, we deduce the following result for Bspq-solutions
in case X has nontrivial Fourier type.

Theorem 4.3. Let X be a Banach space with nontrivial Fourier type and A, B,
Λ, M be closed linear operators in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M).
Suppose that γ is constant, b, c ∈ L1(R+), and consider bk, ck as in (3.3) such that
(bk)k∈Z and (ck)k∈Z satisfy (H1). Then for s > 0 and 1 ≤ p, q ≤ ∞, the following
are equivalent.

(i) (3.1) is Bsp,q-well-posed.
(ii) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and {k2MNk : k ∈ Z}, {BNk : k ∈ Z}, {kΛNk : k ∈

Z}, and {kNk : k ∈ Z} are bounded, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

Proof. (i) ⇒ (ii). Assume that (3.1) is Bspq-well-posed. Then by Theorem 3.6,
iZ ⊂ ρΛ,M,b̃,c̃(A,B) and (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z and (kNk)k∈Z are
Bspq-Fourier multipliers. The boundedness of (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z,
and (kNk)k∈Z now follows from Remark 2.7.

(ii) ⇒ (i). In view of Theorem 3.6, it suffices to show that (k2MNk)k∈Z,
(BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are Bspq-Fourier multipliers. By [8, Theo-
rem 4.5] the proof follows the same lines as that of the preceding theorem. �

We now consider the problem of well-posedness in Besov spaces Bspq(0, 2π,X)
for arbitrary Banach spaces X. For this, assumption (H0) and (H1) are no longer
sufficient. It is proved in [8, Theorem 4.2] that for any sequence (Mk)k∈Z ⊂ L(X),
the so-called variational Marcinkiewicz condition; that is,

sup
k∈Z
‖Mk‖+ sup

j≥0

( ∑
2j≤|k|<2j+1

‖∆Mk‖
)
<∞ (4.2)

implies that (Mk)k∈Z is a Bspq-Fourier multiplier if and only if 1 < p <∞ and X is
a UMD space.

For Banach spaces with nontrivial Fourier type, a condition which implies that
(Mk)k∈Z is a Fourier multiplier for the scale Bsp,q, s ∈ R, 1 ≤ p, q ≤ ∞ is the
Marcinkiewicz condition of order one:

sup
k∈Z

(‖Mk‖+ ‖k∆Mk‖) <∞, (4.3)
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see [8, Theorem 4.5], which is used in the proof of Theorem 4.3.
For arbitrary Banach spaces, a Marcinkiewicz condition of order two is needed,

namely,
sup
k∈Z

(‖Mk‖+ ‖k∆Mk‖+ k2‖∆2Mk‖) <∞, (4.4)

see [8, Theorem 4.5]. Our next result uses this condition to obtain maximal regu-
larity of (3.1) when X does not necessarily have nontrivial Fourier type.

Theorem 4.4. Let X be a Banach space and A, B, Λ, M be closed linear operators
in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M). Suppose that γ is a constant,
b, c ∈ L1(R+), and consider bk, ck as in (3.3) such that (bk)k∈Z, and (ck)k∈Z satisfy
(H2). Then for s > 0 and 1 ≤ p, q ≤ ∞, the following statements are equivalent.

(i) (3.1) is Bspq-well-posed.
(ii) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and {k2MNk : k ∈ Z}, {BNk : k ∈ Z}, {kΛNk : k ∈

Z}, and {kNk : k ∈ Z} are bounded, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

Proof. (i) ⇒ (ii). Assume that (3.1) is Bspq-well-posed. Then by Theorem 3.6,
iZ ⊂ ρΛ,M,b̃,c̃(A,B) and (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z and (kNk)k∈Z are
Bspq-Fourier multipliers. The boundedness of {k2MNk : k ∈ Z}, {BNk : k ∈ Z},
{kNk : k ∈ Z}, and {kNk : k ∈ Z} now follows from Remark 2.7.

(ii) ⇒ (i). By Theorem 3.6, it suffices to show that the families (k2MNk)k∈Z,
(BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are Bspq-Fourier multipliers. Let Mk =
k2MNk, Bk = BNk, Hk = kNk, and Sk = kΛNk. Since (H2) implies (H1),
the verification of the Marcinkiewicz condition of order one is similar to what was
done in the proof of Theorem 4.2. It remains to prove that supk∈Z ‖k2∆2Mk‖ <∞,
supk∈Z ‖k2∆2Bk‖ <∞, supk∈Z ‖k2∆2Sk‖ <∞, and supk∈Z ‖k2∆2Hk‖ <∞.

We recall from the proof of Theorem 4.2 that the family (Tk)k∈Z defined through

Tk =
2k + 1
k2

Mk + ∆bkBk + i∆ckHk + i
ck+1

k
Hk + i

1
k
Sk, k 6= 0

is such that N−1
k+1Nk = I + Tk, Qk = −kTk, k∆Nk = Nk+1Qk for all k ∈ Z, k 6= 0,

and {kTk : k ∈ Z} is bounded.
We observe that

∆Tk = ∆(
2k + 1
k2

Mk) + ∆(∆bk)Bk + i∆(∆(ck)Hk)

+ i∆(
ck+1

k
Hk) + i∆(

1
k
Sk))

However,

∆(
2k + 1
k2

Mk) =
2k + 3

(k + 1)2
Mk+1 −

2k + 1
k2

Mk

=
2k + 3

(k + 1)2
Mk+1 −

2k + 3
(k + 1)2

Mk +
2k + 3

(k + 1)2
Mk −

2k + 1
k2

Mk

=
2k + 3

(k + 1)2
∆Mk −

2k2 + 4k + 1
k2(k + 1)2

Mk

=
2k + 3
k(k + 1)2

(k∆Mk)− 2k2 + 4k + 1
k2(k + 1)2

Mk,
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∆(
1
k
Sk) =

1
k + 1

Sk+1 −
1
k
Sk

=
1

k + 1
Sk+1 −

1
k + 1

Sk +
1

k + 1
Sk −

1
k
Sk

=
1

k + 1
∆Sk −

1
k(k + 1)

Sk

=
1

k(k + 1)
(k∆Sk)− 1

k(k + 1)
Sk,

∆(
ck+1

k
Hk) =

ck+2

k + 1
Hk+1 −

ck+1

k
Hk

=
ck+2

k + 1
Hk+1 −

ck+2

k + 1
Hk +

ck+2

k + 1
Hk −

ck+2

k
Hk +

ck+2

k
Hk −

ck+1

k
Hk

=
ck+2

k + 1
∆Hk +

∆ck+1

k
Hk −

ck+2

k(k + 1)
Hk

=
ck+2

k(k + 1)
(k∆Hk) +

(k + 1)∆ck+1

k(k + 1)
Hk −

ck+2

k(k + 1)
Hk,

∆[k(∆bk)Bk] = (∆bk+1)Bk+1 − (∆bk)Bk
= (∆bk+1)Bk+1 − (∆bk+1)Bk + (∆bk+1)Bk − (∆bk)Bk

= (∆bk+1)∆Bk + (∆2bk)Bk

=
1

k(k + 1)
((k + 1)∆bk+1)(k∆Bk) +

1
k2

(k2∆2bk)Bk,

and

∆((∆ck)Hk)) = (∆ck+1)Hk+1 − (∆ck)Hk

= (∆ck+1)Hk+1 − (∆ck+1)Hk + (∆ck+1)Hk − (∆ck)Hk

= (∆ck+1)∆Hk + (∆2ck)Hk

=
1

k(k + 1)
((k + 1)∆ck+1)(k∆Hk) +

1
k2

(k2∆2ck)Hk

for all k ∈ Z, k 6= 0,−1. Since {bk : k ∈ Z} and {ck : k ∈ Z} satisfy (H2),
we have (Mk)k∈Z, (Bk)k∈Z, (Sk)k∈Z, (Hk)k∈Z satisfy the Marcinkiewicz condi-
tion of order one, and {ck : k ∈ Z} is bounded by Remark 3.1. It follows that
supk∈Z{k2‖∆Tk‖} <∞.

We observe that from (4.1) we have

k2∆2Nk = k2[∆Nk+1 −∆Nk]

= k2[−Nk+2Tk+1 +Nk+1Tk]

= −k2Nk+2[Tk+1 −N−1
k+2Nk+1Tk]

= −k2Nk+2[Tk+1 − (I + Tk+1)Tk]

= −k2Nk+2[Tk+1 − Tk − Tk+1Tk]

= −k2Nk+2[∆Tk − Tk+1Tk]
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= −Nk+2[k2∆Tk −
k

k + 1
Qk+1Qk] = Nk+2Rk

where we have set Rk = −[k2∆Tk − k
k+1Qk+1Qk] for all k ∈ Z, k 6= 0,−1. Since

{Qk : k ∈ Z} and {k2∆Tk : k ∈ Z} are bounded, {Rk : k ∈ Z} is bounded.
Now, we have

k2∆2Bk = k2∆2(BNk) = B(k2∆2Nk) = BNk+2Rk = Bk+2Rk,

k2∆2Hk = k2∆2(kNk)

= k2[(k + 2)Nk+2 − 2(k + 1)Nk+1 + kNk]

= k2[kNk+2 − 2kNk+1 + kNk] + 2k2Nk+2 − 2k2Nk+1

= k3∆2Nk + 2k2∆Nk+1

= k(k2∆2Nk) +
2k2

k + 1
[(k + 1)∆Nk+1]

= kNk+2Rk +
2k2

k + 1
Nk+2Qk+1

=
k

k + 2
Hk+2Rk +

2k2

(k + 1)(k + 2)
Hk+2Qk+1,

k2∆2Sk = k2∆2(kΛNk) = k2Λ∆2(kNk) = Λ(k2∆2Hk)

= Λ
( k

k + 2
Hk+2Rk +

2k2

(k + 1)(k + 2)
Hk+2Qk+1

)
=

k

k + 2
Sk+2Rk +

2k2

(k + 1)(k + 2)
Sk+2Qk+1.

Finally,

k2∆2Mk = k2∆2(k2MNk)

= k2[(k + 2)2MNk+2 − 2(k + 1)2MNk+1 + k2MNk]

= k2[k2MNk+2 − 2k2MNk+1 + k2MNk] + k2(4k + 4)MNk+2

− 2k2(2k + 1)MNk+1

= k2M(k2∆2Nk) +
2k2(2k + 1)

k + 1
M [(k + 1)∆Nk+1] + 2k2MNk+2

= k2MNk+2Rk +
2k2(2k + 1)

k + 1
MNk+2Qk+1 + 2k2MNk+2

=
k2

(k + 2)2
Mk+2Rk +

2k2(2k + 1)
(k + 1)(k + 2)2

Mk+2Qk+1 +
2k2

(k + 2)2
Mk+2

for all k ∈ Z, k 6= 0,−1,−2. Since {Bk : k ∈ Z}, {Sk : k ∈ Z}, {Hk : k ∈ Z},
{Mk : k ∈ Z}, {Qk : k ∈ Z}, and {Rk : k ∈ Z} are bounded, {k2∆2Bk : k ∈ Z},
{k2∆2Hk : k ∈ Z}, {k2∆2Sk : k ∈ Z} and {k2∆2Mk : k ∈ Z} are bounded. This
completes the proof. �

From the proof of Theorem 4.4 and using [17, Theorem 3.2], we deduce the
following result for F spq-solutions in the case that 1 < p <∞, 1 < q ≤ ∞ and s > 0.
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Theorem 4.5. Let X be a Banach space and A, B, Λ, M be closed linear operators
in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M). Suppose that γ is a constant,
b, c ∈ L1(R+), and consider bk, ck as in (3.3) such that (bk)k∈Z and (ck)k∈Z satisfy
(H2). Then for s > 0 and 1 < p <∞, 1 < q ≤ ∞, the following are equivalent.

(i) (3.1) is F sp,q-well-posed.
(ii) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and {k2MNk : k ∈ Z}, {BNk : k ∈ Z}, {kΛNk : k ∈

Z}, and {kNk : k ∈ Z} are bounded, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

Proof. (i) ⇒ (ii). Follows from Theorem 3.6 and Remark 2.7.
(ii) ⇒ (i). Follows from [17, Theorem 3.2] using the same lines as the proof of

the preceding theorem. �

We now consider the problem of well-posedness in the vector-valued Triebel-
Lizorkin spaces F spq(0, 2π,X) with parameters 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0.
For this, assumption (H2) is no longer sufficient.

A condition which implies that (Mk)k∈Z is a Fourier multiplier for the scale F spq,
s ∈ R, 1 < p <∞, 1 < q ≤ ∞ is the Marcinkiewicz condition of order two which is
used in the proof of Theorem 4.5.

For 1 ≤ p <∞, 1 ≤ q ≤ ∞ and s ∈ R, a Marcinkiewicz condition of order three
is needed, namely,

sup
k∈Z

(‖Mk‖+ ‖k∆Mk‖+ k2‖∆2Mk‖+ |k|3‖∆3Mk‖) <∞. (4.5)

Our next result uses this condition to obtain characterization of F spq-well-posedness
of the Problem (3.1).

Theorem 4.6. Let X be a Banach space and let A, B, Λ, M be closed linear
operators in X such that D(A) ∩ D(B) ⊂ D(Λ) ∩ D(M). Suppose that γ is a
constant, b, c ∈ L1(R+), and consider bk, ck as in (3.3) such that (bk)k∈Z and
(ck)k∈Z satisfy (H3). Then for s > 0 and 1 ≤ p < ∞, 1 ≤ q ≤ ∞, the following
assertion are equivalent.

(i) (3.1) is F sp,q-well-posed.
(i) iZ ⊂ ρΛ,M,b̃,c̃(A,B) and {k2MNk : k ∈ Z}, {BNk : k ∈ Z}, {kΛNk : k ∈

Z}, and {kNk : k ∈ Z} are bounded, where

Nk = [k2M +A+ bkB + ikΛ + ikckI + γI]−1

Proof. (i) ⇒ (ii). Assume that (3.1) is F spq-well-posed. Then by Theorem 3.6,
iZ ⊂ ρΛ,M,b̃,c̃(A,B) and (k2MNk)k∈Z, (BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are
F spq-Fourier multipliers. The boundedness of {k2MNk : k ∈ Z}, {BNk : k ∈ Z},
(kΛNk)k∈Z, and {kNk : k ∈ Z} follows of Remark 2.7.

(ii)⇒ (i). In view of Theorem 3.6, it suffices to show that the families (k2MNk)k∈Z,
(BNk)k∈Z, (kΛNk)k∈Z, and (kNk)k∈Z are F spq-Fourier multipliers. Let Mk =
k2MNk, Bk = BNk, Hk = kNk and Sk = kΛNk. Since (H3) implies (H2) and
(H2) implies (H1), the verification of the Marcinkiewicz condition of order two and
one is equal to what was done in the proof of Theorem 4.4.

It remains to prove the following inequalities:

sup
k∈Z
‖k3∆3Mk‖ <∞, sup

k∈Z
‖k3∆3Bk‖ <∞,
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sup
k∈Z
‖k3∆3Sk‖ <∞, sup

k∈Z
‖k3∆3Hk‖ <∞.

But we obtain this using the same technique as used in the proof of the previous
theorems. �

The following remark concerns the independence on the parameters regarding
the results of Section 4.

Remark 4.7. • In Theorem 4.2, if the problem is well-posed for some p ∈ (1,∞),
then it well-posed for all p ∈ (1, ∞).
• Likewise, in Theorems 4.3, 4.4, 4.5, and 4.6, if the problem under consideration

is well-posed for one set of parameters in the range afforded by the corresponding
theorem then it is well-posed for any set of parameters in that range.

This is a direct consequence of statement (ii) in each of the mentioned theorems.

5. Examples and applications

A large number of partial differential equations arising in physics and in applied
sciences can be written in the form of equation (1.1); among them there are some
famous examples, such as the pseudo-parabolic equations and the Sobolev type
equations. Sobolev type equations have the form

Λu′ = Au+ f, (5.1)

generally denoting equations or systems in which spatial derivatives are mixed with
the time derivative of highest order. Showalter [54, 55] studied Sobolev type equa-
tions of the first and second order in time. Specifically, Equation 5.1 is called
strongly regular if Λ−1A is continuous, weakly regular if Λ is invertible but does
not dominate A and degenerate if Λ is not invertible. Strongly regular Sobolev
type equations are also widely known as pseudoparabolic. The Sobolev type equa-
tions are of interest not only for the sake of generalizations but also because they
arise naturally in a variety of applications (e.g. in acoustics, electromagnetics, vis-
coelasticity, heat conduction etc., see e.g. [40]). A general theory in the context of
generalized semigroups is developed in the monograph [44].

For the periodic case initially, Arendt and Bu [7] deal with the problem u′(t) =
Au(t) + f(t), u(0) = u(2π). This problem corresponds to (3.1) with M = B = 0,
Λ = −I, c = 0, and γ = 0. The additional condition of our definition of well-
posedness is obtained automatically by Remark 3.8. In this case their result are
equivalent to our result by Remarks 2.5 and 2.7.

Arendt and Bu [7] (see also the review paper [4]) consider the problem u′′(t) =
Au(t) +f(t), u(0) = u(2π), u′(0) = u′(2π). This problem corresponds to (3.1) with
M = I, Λ = B = 0 c = 0, and γ = 0. Here again the additional condition of our
definition of well-posedness is obtained automatically by Remark 3.8. In this case
their result are equivalent to our result by Remarks 2.7.

Keyantuo and Lizama [35, 36] considered well-posedness of (3.1) when B =
M = 0 and Λ is a scalar operator. As noted earlier, this problem is relevant for
viscoelasticity and was previously studied in the framework of periodic solutions
by Da Prato-Lunardi [25] among other references, and on the real line by [23, 26].
Second order equations are considered in this context in [37, 48]

The additional condition of our definition of well-posedness is obtained automat-
ically by Remark 3.8. Their results can be deduced from ours. Some additional
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papers on the subject are Bu [12, 13, 15]. Delay equations are considered in [16, 49]
with the method of operator-valued Fourier multipliers.

Bu [13] considered the well-posedness of (3.1) when B = Λ = 0, c = 0, and
γ. His results follow from ours. With our definition of well-posedness we do not
need the a priori the estimate [13, (2.2)]. Thus, in the reference [13], the author
considers the problem

(Mu′)′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π,

u(0) = u(2π), (Mu′)(0) = (Mu′)(2π).

It follows from Theorem 4.2 that this problem is Lp-well-posed if and only if
iZ ⊂ ρ0,M,0̃,0̃(A, 0) = ρM (A) and {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-
bounded, where Nk = (k2M + A)−1. In a similar way, we deduce the results in
Bsp,q and F sp,q using Theorem 4.4 and Theorem 4.6 respectively.

We introduce some facts on uniformly elliptic operators on domains of Rn to
discuss the examples that follow. Let Ω ⊂ Rn be open, n ≥ 1. We consider
measurable functions αik, βk, γk, and α0 (1 ≤ j, k ≤ n) on Ω. We assume that
the following uniform ellipticity condition holds: The functions αkj , βk, γk, α0 are
bounded on Ω, i.e., αkj , βk, γk, α0 ∈ L∞(Ω,C) for 1 ≤ j, k ≤ n and the principal
part is elliptic; i.e., there exists a constant η > 0 such that

Re(
n∑

j,k=1

αkj(x)ξjξk) ≥ η|ξ|2 for all ξ ∈ Cn, a.e. x ∈ Ω. (5.2)

The largest possible η in (5.2) is called the ellipticity constant of the matrix
(αjk)1≤j,k≤n. Then we consider the elliptic operator L : W 1,2

loc (Ω) → D(Ω)′ given
by

Lu = −
n∑

k,j=1

Dj(αkjDku) +
n∑
k=1

(βkDku−Dk(γku)) + α0u.

With the help of bilinear forms we will define various realizations of L ∈ L2(Ω)
corresponding to diverse boundary conditions. Let V be a closed subspace of
W 1,2(Ω) containing W 1,2

0 (Ω). We define the form αV : V × V → C by

αV (u, v) =
∫

Ω

[ n∑
k,j=1

αkjDku(Djv) +
n∑
k=1

(βkvDku+ γkuDkv) + α0uv
]
dx.

Then αV is densely defined, accretive, and closed sesquilinear form on L2(Ω) (see
[46, Chapter 4 p. 100-101]). Denote by AV the operator on L2(Ω) associated
with αV . Then −AV generates a C0-semigroup TV on L2(Ω) (see [46, Proposition
1.51]). It follows from the definition of the associated operator that AV u = Lu for
all u ∈ D(AV ). We will say that we have:

• Dirichlet boundary conditions if V = W 1,2
0 (Ω);

• Neumann boundary conditions if V = W 1,2(Ω);
We consider Dirichlet boundary conditions with Ω bounded and we assume the
following additional conditions: αkj is real-valued with αkj = αjk, βk = γk = 0,
α0 ≥ 0. Then, in this case the semigroup TV is positive, ‖TV (t)‖L(L2(Ω)) ≤ 1 for
all t ≥ 0, and TV is given by an integral kernel pV (t, x, y) such that there exist
constants C > 0, b > 0, and δ > 0 such that

|pV (t, x, y)| ≤ Ct−n/2e−δte−
|x−y|2

4bt (5.3)
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for every t > 0 and a.e. x, y ∈ Ω, see [46, Theorem 4.2, Corollary 6.14 and Theorem
4.28] and [27]. For every r ∈ (1,∞), the C0-semigroup TV extends to a bounded
C0-semigroup Tr on Lr(Ω) with ‖Tr(t)‖L(Lr(Ω)) ≤ 1 for all t ≥ 0, by [46, Theorem
4.28]. By (5.3) there exist Mr > 0, and δr > 0 depending only on r such that
‖Tr(t)‖L(Lr(Ω)) ≤ Mre

−δrt for all t > 0 and r ∈ (1,∞). Denote now by −Ar
the corresponding infinitesimal generator on Lr(Ω). If λ ∈ C, Reλ > −δ, then
λ ∈ ρ(−Ar) and

R(λ,−Ar)u =
∫ ∞

0

e−λtTr(t)udt for all u ∈ Lr(Ω), (5.4)

by [6, Theorem 3.1.7].
Let r ∈ (1,∞). The C0-semigroup Tr extends to a bounded holomorphic semi-

group on the sector Σπ/2, where Σθ is the sector in the complex right half plane
of angle θ ∈ (0, π]. By [6, Theorem 3.7.11] we have that Σπ ⊂ ρ(−Ar) and
supλ∈Σπ−ε ‖λR(λ,−Ar)‖ < ∞ for all ε > 0. Denote by σ(Ar) the spectrum of
the operator Ar on Lr(Ω). By [46, Theorem 7.10], we have that σ(Ar) = σ(A2) ⊂
(0,∞) for all r ∈ (1,∞). By [4, Section 7.2.6] we have that λR(λ,−Ar) is R-
bounded for all λ ∈ Σπ/2+θr with 0 < θr ≤ π/2. Since λ → R(λ,−Ar) is an-
alytic on Σπ ∪ {λ ∈ C : Reλ > −δr}, it follows that R(λ,−Ar) is R-bounded
on every compact subset of Σπ ∪ {λ ∈ C : Reλ > −δr} by [28, Proposition
3.10]. By Remark 2.9, we have that R(λ,−Ar) and λR(λ,−Ar) are R-bounded
on Σπ/2+θr ∪ {λ ∈ C : Reλ ≥ −δr/2}. Using Kahane’s principle, we obtain that
R(λ,Ar) and λR(λ,Ar) are R-bounded on C \ Σθr ∪ {λ ∈ C : Reλ ≤ δr/2}.

We conclude, with some examples using uniformly elliptic operators in Lr(Ω)
just discussed. General references on uniformly elliptic operators in Lp−spaces and
the associated heat kernel estimates are [27] and [46].

Example 5.1. Let us consider the boundary value problem (in which L is a uni-
formly elliptic operator as defined above)

∂

∂t
(m(x)

∂u(t, x)
∂t

) + L
∂u(t, x)
∂t

= −Lu(t, x)−
∫ t

−∞
b(t− s)Lu(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(t, x) =
∂u(t, x)
∂t

= 0, (t, x) ∈ [0, 2π]× ∂Ω,

u(0, x) = u(2π, x), m(x)
∂u(0, x)
∂t

= m(x)
∂u(2π, x)

∂t
, x ∈ Ω,

(5.5)

where f ∈ Lp(0, 2π;Lr(Ω)) for 1 < p, r <∞, m is a real-valued measurable function
on Ω such that m ∈ L∞(Ω). This is the degenerate wave equation with fading
memory. The non-degenerate equation is studied in [1], and the reference list of this
paper contains additional works on that topic. Maximal regularity for the damped
wave equation in the absence of memory effects has been studied in [20] and [37].
The problem (5.5) can also be considered as a modified version of a problem which
is considered in Favini-Yagi [32, Example 6.24 p. 197]. They do not incorporate
the delay aspect of the equation. They restrict their study to the Hölder spaces.
The authors are considered with the evolutionary problem as well. For periodic
boundary conditions, we obtain complete characterization of well-posedness in the
three scales of spaces: Lp, Bspq, and F spq.
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We can rewrite problem (5.5) in as follows (where Ar was defined above):

∂

∂t
(m(x)

∂u(t, x)
∂t

) +Ar
∂u(t, x)
∂t

= −Aru(t, x)−
∫ t

−∞
b(t− s)Aru(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(0, x) = u(2π, x), m(x)
∂u(0, x)
∂t

= m(x)
∂u(2π, x)

∂t
, x ∈ Ω.

(5.6)

If we suppose that bk defined by (3.3) satisfies (H1) and the additional condition
| Im bk| < 1 for all k ∈ Z, it follows that k2m(x)

1+bk+ik /∈ (0,∞) for all x ∈ Ω and
all k ∈ Z. Therefore iZ ⊂ ρ−Ar,M,b̃,0̃(−Ar,−Ar), where M is the multiplication

operator bym. By Remark 3.1, we have that there existsN ∈ N such that k2m(x)
ik+1+bk

∈
C \ Σθr ∪ {λ ∈ C : Reλ ≤ δr/2} for all x ∈ Ω and all k ∈ Z whit |k| ≥ N . Then
{( k2

ik+1+bk
M − Ar)−1 : k ∈ Z, |k| ≥ N} and { k2

ik+1+bk
M( k2

ik+1+bk
M − Ar)−1 : k ∈

Z, |k| ≥ N} are R-bounded. Since

k

ik + 1 + bk
Ar(

k2

ik + 1 + bk
M −Ar)−1

= − k

ik + 1 + bk
I +

k

ik + 1 + bk

k2

ik + 1 + bk
M(

k2

ik + 1 + bk
M −Ar)−1,

it follows that { k
ik+1+bk

Ar( k2

ik+1+bk
M − Ar)−1 : k ∈ Z, |k| ≥ N} is R-bounded as

well by Remark 2.9. Since Nk = 1
ik+1+bk

( k2

ik+1+bk
M − Ar)−1, we have shown that

{k2MNk : k ∈ Z, |k| ≥ N}, {kArNk : k ∈ Z, |k| ≥ N} and {kNk : k ∈ Z, |k| ≥ N}
are R-bounded. Also by Remark 2.9, we have that {kNk : k ∈ Z}, {kArNk : k ∈ Z}
and {k2MNk : k ∈ Z} are R-bounded. Therefore, by Theorem 4.2, it follows that
(5.6) is Lp(0, 2π;Lr(Ω))-well-posed for all 1 < p <∞. Since R-boundedness implies
uniformly boundedness, if we suppose that f ∈ Bspq(0, 2π;Lr(Ω)) and bk satisfies
(H2) with | Im bk| < 1 for all k ∈ Z, then we have that (5.6) is Bspq(0, 2π;Lr(Ω))-
well-posed for all s > 0, 1 ≤ p, q ≤ ∞ by Theorem 4.4. Observe that here we
include the scale of vector-valued Hölder spaces Cs, 0 < s < 1. In the F spq case if
f ∈ F spq(0, 2π;Lr(Ω)) and bk satisfies (H3) with | Im bk| < 1 for all k ∈ Z, then we
have that (5.6) is F spq(0, 2π;Lr(Ω))-well-posed for all s > 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞,
by Theorem 4.6. Observe that if s >, 1 < p <∞ and 1 < q ≤ ∞ we only need the
(H2) condition for this scale. As a particular example we have that b(t) = e−εt t

ν−1

Γ(ν)

with ε > 0 and ν > 0 satisfies the required conditions for bk for all the cases.

Example 5.2. Let us consider the boundary value problem

∂

∂t
(m(x)

∂u(t, x)
∂t

) + L
∂u(t, x)
∂t

= Lu(t, x) +
∫ t

−∞
b(t− s)Lu(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(t, x) =
∂u(t, x)
∂t

= 0, (t, x) ∈ [0, 2π]× ∂Ω,

u(0, x) = u(2π, x), m(x)
∂u(0, x)
∂t

= m(x)
∂u(2π, x)

∂t
, x ∈ Ω,

(5.7)
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where f ∈ Lp(0, 2π;Lr(Ω)) for 1 < p, r < ∞, m is a complex-valued measurable
function on Ω such that m ∈ L∞(Ω), m(x) ∈

∑
θr
∪{0} for all x ∈ Ω. Here, as in

the previous example (and similarly in Example 5.3 below), L is a uniformly elliptic
operator.

Following Example 5.1, we can rewrite the problem (5.7) in the form

∂

∂t
(m(x)

∂u(t, x)
∂t

) +Ar
∂u(t, x)
∂t

= Aru(t, x) +
∫ t

−∞
b(t− s)Aru(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(0, x) = u(2π, x), m(x)
∂u(0, x)
∂t

= m(x)
∂u(2π, x)

∂t
, x ∈ Ω.

(5.8)

If we suppose that bk defined by (3.3) satisfies (H1) and the additional condition
Re bk > −1 for all k ∈ Z, then k2m(x)

1+bk−ik ∈ Σπ/2+θr ∪ {0} for all x ∈ Ω and all

k ∈ Z. Therefore iZ ⊂ ρ−Ar,M,b̃,0̃(Ar, Ar) and {( k2

1+bk−ikM + Ar)−1 : k ∈ Z},
{ k2

1+bk−ikM( k2

1+bk−ikM +Ar)−1 : k ∈ Z} are R-bounded, here M is the multiplica-

tion operator by m. By Remarks 2.9 and 3.1, we have that { k
1+bk−ik ( k2

1+bk−ikM +
Ar)−1 : k ∈ Z} is also R-bounded. Since

k

1 + bk − ik
Ar(

k2

1 + bk − ik
M +Ar)−1

=
k

1 + bk − ik
I − k

1 + bk − ik
k2

1 + bk − ik
M(

k2

1 + bk − ik
M +Ar)−1,

it follows that { k
1+bk−ikAr(

k2

1+bk−ikM + Ar)−1 : k ∈ Z} is R-bounded as well

by Remark (2.9). Since Nk = 1
1+bk−ik ( k2

1+bk−ikM + Ar)−1, we have shown that
{k2MNk : k ∈ Z}, {kArNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded.
Therefore, by Theorem 4.2, we have that (5.8) is Lp(0, 2π;Lr(Ω))-well-posed for
all 1 < p <∞. Since R-boundedness implies uniformly boundedness, if we suppose
that f ∈ Bspq(0, 2π;Lr(Ω)) and bk satisfies (H2) with Re bk > −1 for all k ∈ Z, then
we have that (5.8) is Bspq(0, 2π;Lr(Ω))-well-posed for all s > 0, 1 ≤ p, q ≤ ∞ by
Theorem 4.4. Observe that here we include the scale of vector-valued Hölder spaces
Cs, 0 < s < 1. In the F spq case if f ∈ F spq(0, 2π;Lr(Ω)) and bk satisfies (H3) with
Re bk > −1 for all k ∈ Z, then we have that (5.8) is F spq(0, 2π;Lr(Ω))-well-posed
for all s > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, by Theorem 4.6. Observe that if s > 0,
1 < p < ∞ and 1 < q ≤ ∞ we only need the (H2) condition for this scale. As in
the Example 5.1, a particular example of b(t) we have b(t) = e−ε t

ν−1

Γ(ν) with ε > 0
and ν > 0 that fulfills the required conditions for bk in all the cases.
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Example 5.3. Consider another initial-boundary value problem.
∂

∂t
(m2(x)

∂u(t, x)
∂t

)−m1(x)
∂u(t, x)
∂t

= Lu(t, x) +
∫ t

−∞
b(t− s)Lu(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(t, x) =
∂u(t, x)
∂t

= 0, (t, x) ∈ [0, 2π]× ∂Ω,

u(0, x) = u(2π, x), m2(x)
∂u(0, x)
∂t

= m2(x)
∂u(2π, x)

∂t
, x ∈ Ω,

(5.9)

where m1 and m2 are real-valued measurable functions on Ω such that m ∈ L∞(Ω),
m2(x) ≥ 0, τ < |m1(x)| ≤ µ for some τ, µ > 0, and f ∈ Lp(0, 2π;Lr(Ω)) for
1 < p, r <∞.

Following the Example 5.1, we can rewrite the problem (5.9) in the form
∂

∂t
(m2(x)

∂u(t, x)
∂t

)−m1
∂u(t, x)
∂t

= Aru(t, x) +
∫ t

−∞
b(t− s)Aru(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(0, x) = u(2π, x), m2(x)
∂u(0, x)
∂t

= m2(x)
∂u(2π, x)

∂t
, x ∈ Ω.

(5.10)

If we assume that Re bk > −1 for all k ∈ Z, then k2m2(x)+ikm1(x)
bk+1 /∈ (−∞, 0)

for all x ∈ Ω and all k ∈ Z. Therefore iZ ⊂ ρΛ,M,b̃,0̃(Ar, Ar), where Λ and M
are the multiplication operators by m1 and m2 respectively. By Remark 3.1, we
have that there exists N ∈ N such that k2m2(x)+ikm1(x)

bk+1 ∈ Σπ/2+θr for all x ∈ Ω

and all k ∈ Z whit |k| ≥ N . Then {k
2m2(x)+ikm1(x)

bk+1 (k
2m2(x)+ikm1(x)

bk+1 + Ar)−1 :
k ∈ Z, |k| ≥ N, x ∈ Ω} are R-bounded. Since { 1

km2(x)+im1(x) : k ∈ Z, x ∈

Ω} is bonded, { k
bk+1 (k

2m2(x)+ikm1(x)
bk+1 + Ar)−1 : k ∈ Z, |k| ≥ N, x ∈ Ω} are R-

bounded by Remark 2.9. Since m1 is bounded, by Remark 2.9 we have that
{km1(x)
bk+1 (k

2m2(x)+ikm1(x)
bk+1 + Ar)−1 : k ∈ Z, |k| ≥ N, x ∈ Ω} are R-bounded. There-

fore, {k
2m2(x)
bk+1 (k

2m2(x)+ikm1(x)
bk+1 + Ar)−1 : k ∈ Z, |k| ≥ N, x ∈ Ω} are R-bounded.

Since Nk = 1
bk+1 ( k2

bk+1M + i k
bk+1Λ +Ar)−1, we have show that {kNk : k ∈ Z, |k| ≥

N}, {kΛNk : k ∈ Z, |k| ≥ N} and {k2MNk : k ∈ Z, |k| ≥ N} are R-bounded. By
Remark 2.9, we have that {kNk : k ∈ Z}, {kΛNk : k ∈ Z} and {k2MNk : k ∈ Z}
are R-bounded. Under the same conditions over bk in the Example 5.2 and f ∈ Y
we can apply Theorems 4.2, 4.4 and 4.6 to obtain that the (5.10) is Y-well-posed.
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Example 5.4.

Let us now consider the boundary-value problem

∂

∂t
(m2(x)

∂u(t, x)
∂t

)−m1(x)
∂u(t, x)
∂t

− ∂

∂t

∫ t

−∞
c(t− s)u(s, x)ds

= Lu(t, x) +
∫ t

−∞
b(t− s)Lu(s, x)ds

+
∫ t

−∞
b(t− s)m0(x)u(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(t, x) =
∂u(t, x)
∂t

= 0, (t, x) ∈ [0, 2π]× ∂Ω,

u(0, x) = u(2π, x), m2(x)
∂u(0, x)
∂t

= m2(x)
∂u(2π, x)

∂t
, x ∈ Ω,

(5.11)

where m0, m1, and m2 are real-valued measurable functions on Ω such that 0 ≤
m0(x) ≤ µ, τ < |m1(x)| ≤ µ, 0 ≤ m2(x), for some µ, τ > 0, all x ∈ Ω, and
f ∈ Lp(0, 2π;Lr(Ω)) for 1 < p, r <∞.

Following the Example 5.1, we can rewrite the problem (5.11) in the form

∂

∂t
(m2(x)

∂u(t, x)
∂t

)−m1(x)
∂u(t, x)
∂t

− ∂

∂t

∫ t

−∞
c(t− s)u(s, x)ds

= Aru(t, x) +
∫ t

−∞
b(t− s)m0(x)u(s, x)ds+ f(t, x), (t, x) ∈ [0, 2π]× Ω,

u(0, x) = u(2π, x), m2(x)
∂u(0, x)
∂t

= m2(x)
∂u(2π, x)

∂t
, x ∈ Ω.

(5.12)

If we suppose that Re bk ≥ 0 and k Im ck ≤ 0 for all k ∈ Z, we then have that
k2m2(x) + ikm1(x) + bkm0(x) + ikck /∈ (−∞, 0) for all x ∈ Ω and all k ∈ Z. There-
fore iZ ⊂ ρΛ,M,b̃,c̃(Ar, B), where B, Λ, and M are the multiplication operators by
m0, m1, and m2 respectively. In the similar way that in the Example 5.3 we can
show that {kNk : k ∈ Z}, {kBNk : k ∈ Z}, {kΛNk : k ∈ Z} and {k2MNk : k ∈ Z}
are R-bounded where Nk = (k2M + ikΛ + bkB + ikckI + Ar)−1. Typical cases of
functions b and c is the function e−εt, ε > 0. With f ∈ Y and the appropriate b,
and c we can obtain that the (5.12) is Y-well-posed.

In the case of Neumann boundary conditions, the operator Ar is not invertible.
To apply the results to this case, we can add in the right side of each of the above
equations the term ηu(t, x) for some η > 0. Then the above conclusions hold in
this case as well.

Example 5.5. The following equation is a modification of the one studied by Chill
and Srivastava [20]. Here we have include memory term.

u′′(t) + αA
1
2u′(t) = −Au(t) +

∫ t

−∞
b(t− s)Au(s, x)ds+ f(t),

t ∈ [0, 2π], u(0) = u(2π), u′(0) = u′(2π),
(5.13)

where A is a invertible sectorial operator in a Banach space X which admits a
bounded H∞ functional calculus of angle β (see for example [20], [28]) with β ∈
(0, π − 2 tan−1

√
4−α2

α ) if 0 < α < 2 or β ∈ (0, π) if α ≥ 2, f ∈ Bspq(0, 2π;X),
(1 ≤ p, q ≤ ∞, s > 0), and b ∈ L1(R+) is such that bk = b̃(ik) satisfies |CQbk| < 1

2
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where Q is a constant provided by [20, Lemma 4.1] and C is a constant provided
by the H∞ functional calculus.

In the same way as in the proof of theorem [20, Theorem 4.1] we have that
for k ∈ Z, ‖k2(k2 − αkiA

1
2 − A)−1‖ ≤ CP , ‖kA 1

2 (k2 − αkiA
1
2 − A)−1‖ ≤ CP ,

and ‖A(k2 − αkiA 1
2 − A)−1‖ ≤ CP . In this case for k ∈ Z, we have that Nk =

(k2 − αkiA 1
2 −A+ bkA)−1. Since ‖bkA(k2 − αkiA 1

2 −A)−1‖ ≤ 1
2 , we have

Nk = (k2 − αkiA 1
2 −A)−1

∞∑
n=0

(−1)n
(
bkA(k2 − αkiA 1

2 −A)−1
)n
,

which implies that ‖k2Nk‖ ≤ CP and ‖αkA 1
2Nk‖ ≤ CP for k ∈ Z. Now if bk

satisfy (H2), then we have that the problem 5.5 is Bspq-well-posed. This gives in
particular well-posedness in the Hölder spaces Cs(0, 2π;X), 0 < s < 1.

In a similar way, one can handle the case of the vector-valued Triebel-Lizorkin
spaces F spq(0, 2π;X), 1 ≤ p, q <∞, s > 0.
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