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BLOW-UP OF SOLUTIONS TO THE ROTATION B-FAMILY
SYSTEM MODELING EQUATORIAL WATER WAVES

MIN ZHU, YING WANG

Communicated by Tuncay Aktosun

Abstract. We consider the blow-up mechanism to the periodic generalized
rotation b-family system (R-b-family system). This model can be derived

from the f-plane governing equations for the geographical water waves with

a constant underlying current in the equatorial water waves with effect of
the Coriolis force. When b = 2, it is a rotation two-component Camassa-Holm

(R2CH) system. We consider the periodic R2CH system when linear dispersion

is absent (which model is called r2CH system) and derive two finite-time blow-
up results.

1. Introduction

It is known that for the geophysical water waves the forces with primary influ-
ence are the gravity and the Coriolis force induced by the Earth’s rotation. When
considering waves propagating in the equatorial ocean regions throughout the ex-
tent of the Pacific Ocean, it is found however that the Equatorial Undercurrent
is one essential feature and the effect of the Coriolis force is small, because of the
smallness of the variation in latitude of the EUC in the equatorial region. There
have recently appeared several works involving steady periodic rotational Equato-
rial water waves in the f-plane on topics like existence, regularity of free surface and
of the stream lines, symmetry and stability. This paper is to study the following
periodic generalized rotation b-family system (R-b-family system).

ut − uxxt −Aux + (b+ 1)uux
= σ(buxuxx + uuxxx)− µuxxx − (1− 2ΩA)ρρx + 2Ωρ(ρu)x,

ρt + (ρu)x = 0,

u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1)

u(0, x) = u0(x), ρ(0, x) = ρ0(x).

(1.1)

for t > 0 and x ∈ S, where u(x, t) is a horizontal velocity, ρ(t, x) is related to
the free surface elevation from equilibrium, the parameter A characterizes a linear
underlying shear flow, the real dimensionless constant σ is a parameter which pro-
vides the competition, or balance, in fluid convection between nonlinear steepening
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and amplification due to stretching, µ is a non-dimensional parameter and Ω char-
acterizes the constant rotational speed of the Earth. We can rewrite the periodic
R-b-family system (1.1) into the system

ut + (σu− µ)ux = −∂xG ∗
(

(µ−A)u+
b+ 1− σ

2
u2 +

(b− 1)σ
2

u2
x

+
1− 2ΩA

2
ρ2 − Ωρ2u

)
+ ΩG ∗ (ρ2ux),

ρt + uρx = −ρux,
u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1),

u(0, x) = u0(x), ρ(0, x) = ρ0(x).

(1.2)

for t > 0 and x ∈ S.
We denote G(x) = cosh(x−[x]− 1

2 )

2 sinh( 1
2 )

, the fundamental solution of 1 − ∂2
x on S, that

is, (1− ∂2
x)−1f = G ∗ f , we have the relation

G ∗ f(t, x) =
∫ 1

0

cosh
(
(x− y)− [x− y]− 1

2

)
2 sinh

(
1
2

) f(t, y)dy. (1.3)

The approach we adopt here to derive the R-b-family system is in the spirit
of Ivanov’s asymptotic perturbation analysis for the governing equations of two-
dimensional rotational gravity water waves[23]. And there are two factors force us
to do the asymptotic perturbation analysis. In the equatorial region there exist
the shallow water waves, for which we mean that the shallow water parameter
δ = h/λ < 0.07[8], where h is the mean depth of water and λ is the wavelength.
Actually, the equatorial region is characterized as a two-layer fluid with a shallow
upper region of warmer and less dense water overlying a motionless deep region
of cold water. The upper shallow water is less than 300 m deep [29] and usually
the wavelength of the surface waves can be 100S km or more. The equatorial
Rossby waves whose wavelength can be 500 km are evidence examples. Besides,
the westward travelling waves with a wavelength of 1000 km near 3 in the central
and eastern Pacific Ocean has been observed, and the wavelengths slightly in excess
of 2000 km can arise from the instabilities of surface Equatorial Currents. On the
other hand, to ensure the earth’s rotation to have a significant impact on the fluid
motion, one expects the Rossby number R0 = U

λΩ = O(1), where λ is the typical
horizontal length scale for the flow, U is the typical horizontal length scale for the
flow, U is the typical horizontal velocity scale for the fluid motion, and the symbol
O(1) means that the term is of the order of magnitude of one, or less. This in turn
implies that the smaller the characteristic velocity U is, the smaller L can be and
yet it still enables us to consider large-scale waves.

In fact, system (1.1) has significant relationship with several models describing
the motion of waves at the free surface of shallow water under the influence of
gravity.
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When b = 2, it becomes the rotation Camassa-Holm system (R2CH system)

ut − uxxt −Aux + 3uux = σ(2uxuxx + uuxxx)− µuxxx
− (1− 2ΩA)ρρx + 2Ωρ(ρu)x,

ρt + (ρu)x = 0,

u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1),

u(0, x) = u0(x), ρ(0, x) = ρ0(x).

(1.4)

for t > 0 and x ∈ S,
Moreover, we can rewrite the periodic R2CH system as the system

ut + (σu− µ)ux = −∂xG ∗
(

(µ−A)u+
3− σ

2
u2

+
σ

2
u2
x +

1− 2ΩA
2

ρ2 − Ωρ2u
)

+ ΩG ∗ (ρ2ux),

ρt + uρx = −ρux,
u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1),

u(0, x) = u0(x), ρ(0, x) = ρ0(x).

(1.5)

for t > 0 and x ∈ S.
If Ω = 0, without considering effect of the Earth’s rotation, then the following

functional is conserved

F (u, ρ) =
1
2

∫
R

(u3 + σuu2
x −Au2 − µu2

x + 2(ρ− 1)u+ u(ρ− 1)2)dx.

When b = 2,Ω = 0, system (1.1) is the generalized DGH system

ut − uxxt −Aux + 3uux = σ(2uxuxx + uuxxx)− µuxxx − ρρx,
ρt + (ρu)x = 0,

(1.6)

in which σ = 1, µ = 0. Then the equation recovers the standard two-component
integrable Camassm-Holm system

ut − uxxt −Aux + 3uux + ρρx = 2uxuxx + uuxxx,

ρt + (ρu)x = 0,
(1.7)

Moreover, in the case ρ = 0, (1.4) recovers the DGH equation and becomes the
Camassa-Holm equation. The CH equation is completely integrable for a large
class of initial data, for which it can be solved by the inverse scattering method
[11, 18]. In contrast to the KdV equation, the CH equation has three remarkable
distinctive properties. First, although CH is completely integrable, it can describe
wave breaking phenomenon: the solution remains bounded while its slope becomes
infinite in finite time. The second is the existence of peakons, which are nonanalytic
solitary waves that are global weak solutions and interact cleanly like solitons.
Indeed, the CH equation has the single peakon [6] and the multi-peakon solutions
[22]. It is significant that the peakons are orbitally stable: the shape is stable
under small perturbations [19, 25]. These peakons capture a feature of the waves
of greatest height for the free-boundary incompressible Euler equations [12, 16, 32].
The last one is the variety of interesting geometric formulations of the CH equation
[7, 17, 24, 27].

Well-posedness and wave breaking of the CH equation were studied in a number
of papers. It has been shown [14, 26, 31, 28] that the Cauchy problem is locally
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well-posed for initial data u0 ∈ Hs(R) with s > 3/2 . Moreover, if the initial
momentum density

m0(x) = m(0, x) = (1− ∂2
x)u0 = u0(x)− u′′0(x)

does not change sign, the Cauchy problem admits global solution for certain ini-
tial values [10, 14, 15], whereas solutions may blow up if their initial momentum
density m0 changes sign [10, 13, 14, 15]. After blow-up, the solutions to CH can
be continued uniquely as global weak solutions [4, 5]. Moreover, the existence of
global weak solution was investigated in [33, 34].

It is observed that system (1.1) we derived is a generalization of system with the
rotation of Earth-these effects feature significantly for such large scale phenomena
as currents. It is found that the consideration of the Coriolis force has introduced
a higher order nonlinear term into the generalized two-component b-family system,
which has interesting implications for the fluid motion, particular in the relation to
the wave breaking phenomena and the permanent waves.

In our case, appearance of the Earth’s rotation, however, introduces a cubic-
order nonlinear term ρ(ρu)x to R2CH system, which is difficult to estimate as
usually by using the conservation laws. To deal with this higher nonlinearity, we
reformulate the first equation in (1.4) into (1.5) with a nonlocal translate Ω∂xG∗ρ2,
and establish the Riccati differential inequality for Kx = ux + Ω∂xG ∗ ρ2. Then
by solving the inequality and use the fact that the term ΩG ∗ ρ2 is bounded, ux
blows up if and only if Kx blows up. But the advantage of considering K is that in
the equation for K and Kx, the cubic terms can be bounded by the conservation
laws, which enables one to carry out a standard procedure to reach a Riccati type
inequality for Kx

d

dt
Kx ≤ −K2

x + C,

and thus by choosing Kx sufficiently negative initially, the corresponding solution
blows up in finite time. A crucial ingredient in this argument is the use of the
“global” information of solutions (like the conservation laws) in deriving various
estimates. However the “local” structure of solutions is under appreciated. On the
other hand, the non-diffusive nature of the system indicates that the local structure
of data may strongly affect the evolution of the solutions, in particular, the blow-
ups. This has recently been evidenced in a class of CH-type equations in a series
of works of Brandolese and Cortez [1, 2, 3]and Zhu [36, 37, 38], and later extended
to some other quasilinear model equations with higher order nonlinearities. One
of the main ideas lies in understanding of the interplay between the solution and
its gradient. For this amounts to tracking the dynamics of K ± Kx along the
characteristics. Due to the nonlocal character involved in K, the conservation
law is still needed to establish the convolution estimate. However it is now much
apparent to see how rotation affects the wave-breaking. In particular, when the
Coriolis effect is turned off our wave-breaking criteria recovers the one for the
classical CH equation.

Our goal in the present paper to investigate the conditions for R2CH system to
ensure the occurrence of the wave-breaking phenomena or permanent waves. In
Section 2, we derived the R-b-family system as a model in the equatorial water
waves. In Section 3, we recall some basic results concerning the formation of sin-
gularities in the R-b-family system and R2CH system. In Section 4, we obtain
the r2CH system when linear dispersion is absent in R2CH system. Then we give
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two kinds of the wave-breaking criterion on which addresses the local structure of
the solutions and also indicates explicitly how rotation is involved. Moreover, we
further provide an upper bound of ux along each characteristics emanating from a
vanishing point of ρ0.

2. Derivation of the model

2.1. Governing equations. Assume that the Earth to be a perfect sphere of
radius 6371 km and with a constant rotational speed Ω = 73 × 10−6 rad/s round
the polar axis towards east. We choose a reference frame with the origin located
at a point on the earth’s surface and which is rotating with earth, setting x-axis
horizontally due east, the y-axis horizontally due north and the z-axis upwards. We
employ the f-plane approximation from the full geophysical governing equations [9]:

ut + uux + vuy + ωuz + 2Ωω = −px
vt + uvx + vvy + ωuz = −py,

ωt + uωx + vωy + ωωz − 2Ωu = −pz − g,
(2.1)

here (u, v, ω) is the fluid velocity, p is the pressure, t represents time.
At the wave surface, the pressure of the fluid matches the atmospheric pressure

patm and assume the fluid bed is impermeable, we impose the no-flux condition,
then follow the idea in to derive the rotation-two-component CH system with effect
of the Coriolis force. We use the undisturbed depth of the water h, as the vertical
scale, a typical wavelength λ, as the horizontal scale, and a typical amplitude of
the surface a, and we denote the dimensionless parameters ε = a/h and δ = h/λ.
Let z = h + η(t, x, y) be the surface of the ocean, and set z = h to be the mean
surface level for the flow, with z = 0 we denote the lower boundary of the water.
Under the assumption that the constant density of the water is one, the governing
equations in the region 0 ≤ z ≤ h+η(t, x, y) in the f-plane approximation comprise
the Euler equation we summarize the above equations then we have the form

ut + uux + ωux + 2Ωω = −px, 0 < z < h+ η(t, x)

ωt + uωx + ωωz − 2Ωu = −pz − g, 0 < z < h+ η(t, x)

ux + ωz = 0, 0 < z < h+ η(t, x)

uz − ωx = γ, 0 < z < h+ η(t, x)

p = patm, on z = h+ η(t, x),

ω = ηt + uηx, on z = h+ η(t, x),
ω = 0, on z = 0,

(2.2)

2.2. Derivation of the model. In this section, we follow the ideas in to derived
the rotation-two-component CH system with effect of the Coriolis force. We first
introduce a non-dimensional of the variables. For this purpose we use the undis-
turbed depth of the water h, as the vertical scale, a typical wavelength λ as the
horizontal scale, and a typical amplitude of the surface a, and we denote the di-
mensionless parameters ε = a/h and δ = h/λ. Then we make the following change
of variables

x→ λx, z → hz, η → aη, t→ λ√
gh
t, u→

√
ghu,
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Ω→
√
gh

h
Ω, p→ patm + g(h− z) + ghp, γ →

√
gh

h
γ

where, to avoid new notations, we have used the same symbols for the non-dimensional
variables x, z, η, t, u and ω, on the right-hand side. Therefore, the geographic water-
wave problem transforms into

ut + uux + ωuz + 2ωω = −px, 0 < z < 1 + εη(t, x)

δ2(ωt + uωx + ωωz)− 2Ωu = −pz, 0 < z < 1 + εη(t, x)

ux + ωz = 0, 0 < z < 1 + εη(t, x)

uz − δ2ωx = γ, 0 < z < 1 + εη(t, x)

p = εη, on z = 1 + εη(t, x),

ω = ε(ηt + uηx), on z = 1 + εη(t, x),
ω = 0, on z = 0,

(2.3)

We now consider the constant vorticity γ = A. Using the following scaling around
a laminar flow (a simplest nontrivial case):

u→ U + εu, ω →W + εw, p→ P + εp,

where (U,W,P ) is the solution to system (2.2), characterized by a flat surface η = 0
and for which every particle moves horizontally, with a speed that depends linearly
on the depth, that is,

U = Az,W = 0, P = ΩAz2 − ΩA,

the geophysical water-wave problem writes in the new scaling as
ut +Azux + (A+ 2Ω)ω + ε(uux + ωux) = −px, 0 < z < 1 + εη(t, x)

δ2(ωt +Azωx + ε(uωx + ωωz))− 2Ωu = −pz, 0 < z < 1 + εη(t, x)

ux + ωz = 0, 0 < z < 1 + εη(t, x)

uz − δ2ωx = 0, 0 < z < 1 + εη(t, x)

p− (1− 2ΩA)η + εΩAη2, on z = 1 + εη(t, x),

ω − (ηt + εuηx + εAηηx +Aηx) = 0, on z = 1 + εη(t, x),
ω = 0, on z = 0,

(2.4)

It then follow from (2.4) that

u = u0 − δ
z2

2
u0xx + o(ε2, δ4, εδ2), (2.5)

ω = −zu0,x + δ2 z
3

6
u0xxx + o(ε2, δ4, εδ2), (2.6)

where u0(x, t) is the leading order approximation for u. Note that u0 does not
depend on z in view of the above equation, since uz = 0 when δ → 0.

Combining (2.4) with (2.5) and (2.6), we obtain

ηt +Aηx + ((1 + εη)u0 + ε
A

2
η2)x − δ2 1

6
u0xxx = 0, (2.7)

ignoring terms of order o(ε2, δ4, εδ2). With the same method, we ignore the terms
of order o(ε2, δ4, εδ2).

p = (1− 2ΩA)η − εΩAη2 − δ2(
1− z2

2
u0xt +A

1− z3

3
u0xx)
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− 2Ωu0(1 + εη − z) + δ2Ω
1− z3

3
u0xx.

It is then inferred from (2.4) that

(u0 −
δ2

2
u0xx)t + ηx + εu0u0x − δ2A

3
u0xxx + 2Ω(ηt + aηx −

δ2

6
u0xxx)

− 2ΩAηx + δ2 Ω
3
u0xxx = 0

as a result of (2.7). Consequently, we deduce the following two equations

ηt +Aηx + ((1 + εη)u0 + ε
A

2
η2)x − δ2 1

6
u0xxx = 0,

(u0 −
δ2

2
u0xx)t + ηx + εu0u0x − δ2A

3
u0xxx + 2Ωηt = 0.

(2.8)

Letting both the parameters ε and δ tend to zero, we obtain from the system of
linear equations

ηt +Aηx + u0x = 0,
u0t + 2Ωηt + ηx = 0.

(2.9)

The equivalence of the above systems then gives
ηt +Aηx + u0x = 0,

u0t + (1− 2ΩA)ηx − 2Ωu0x = 0.
(2.10)

which is useful in our later calculation. In view of (2.9), we obtain

ηtt + (A− 2Ω)ηxt − ηxx = 0 (2.11)

The linear equation has a travelling wave solution η = η(x − ct) with a velocity c
satisfying

c2 − (A− 2Ω)c− 1 = 0.
There is one positive and one negative solution, representing left and right running
waves. We assume that we have only one of these waves. Then

η =
1

c−A
u0 = o(ε, δ2) =

2Ω + c

1− 2ΩA
u0 + o(ε, δ2).

Here we choose A 6= c as if A = c then we have from (2.10) that u0 is a constant,
and this is not the case we consider.

Let us introduce a new variable

ρ = 1 + εαη + ε2βη2 + εδ2νu0xx,

for some constants α, β and ν. These constants will be determined in our further
considerations. The variable ρ will be used instead of η has a tool for mathematical
simplification of our equations. The expansion of ρ2 in the same order of ε and δ2

is
ρ2 = 1 + 2εαη + ε2(α2 + 2β)η2 + 2εδ2νu0xx.

With this definition it is found

ρt +Aρx = εα(ηt +Aηx)− 2ε2βηu0x + εδ2ν(A− c)u0xxx.

which implies

ηt +Aηx =
ρt +Aρx

εα
+ ε

β

α
(ηu0)x − δ2 ν

α
(A− c)u0xxx.
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Then we rewrite in the form

ρt +Aρx
αε

+δ2(
ν

α
(c−A)− 1

6
)u0xxx+((1+ε(1+

A

2
2Ω + c

1− 2ΩA
+
β

α
)η)u0)x = 0. (2.12)

One can eliminate the u0xxx term by choosing

ν

α
=

1
6(c−A)

,

and with the choice

α = 1 +
A

2
2Ω + c

1− 2ΩA
+
β

α
,

we can write (2.12) in the form

ρt +Aρx + αε(ρu0)x = 0,

which contains only the variables ρ and u0 but not η. Expressing η in terms of ρ,

(ρ2)x
2εα

= ηx + ε
α2 + 2β

α
ηηx + δ2 ν

α
u0xxx,

(ρ2)t
2εα

= ηt + ε
α2 + 2β

α
ηηt + δ2 ν

α
u0xxt,

we have

ηx + 2Ωηt =
1− 2ΩA
εα

ρρx − 2Ωρ(ρu0)x − ε
α2 + 2β

α
ηcu0x

− δ2 ν

α
u0xxx − 2Ωδ2 ν

α
u0xxt.

(2.13)

Replacing ηx+2Ωηt in (2.8) by the above equation and a simple computation shows
that thus

(u0 − δ2u0,xx)t +A(u0 − δ2u0,xx)x −Au0,x + δ2(
2A
3
− ν

α
− c

2
+ 2Ωc

ν

α
)u0xxx

+ ε(1− α2 + 2β
α

· c(2Ω + c)
1− 2ΩA

)u0u0,x + (
1− 2ΩA
εα

)ρρx − 2Ωρ(ρu0)x = 0.

(2.14)
Then breaking u0u0,x as

u0u0,x = s(bmu0,x + u0mx) + (1− (b+ 1)s)u0u0,x +O(δ2). (2.15)

Here m = u0 − δ2u0,xx, then we obtain from (2.14) and (2.15) that

(u0 − δ2u0,xx)t +A(u0 − δ2u0,xx)x −Au0,x + δ2(
2A
3
− ν

α
− c

2
+ 2Ωc

ν

α
)u0xxx

+ εs(1− α2 + 2β
α

· c(2Ω + c)
1− 2ΩA

)(bmu0x + u0mx) +
1− 2ΩA

εα
ρρx − 2Ωρ(ρu0)x

+ ε(1− (b+ 1)s)(1− α2 + 2β2

α
· c(2Ω + c)

1− 2ΩA
)u0u0x = 0

(2.16)
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By the scaling u0 → 1
αεu0, x→ δx, t→ δt, we obtain

mt +Amx −Au0x + (
2A
3
− ν

α
− c

2
+ 2Ωc

ν

α
)u0xxx

+
s

α
(1− α2 + 2β

α
· c(2Ω + c)

1− 2ΩA
)(bmu0x + u0mx)

+ (1− 2ΩA)ρρx − 2Ωρ(ρu0)x

+
1− (b+ 1)s

α
(1− α2 + 2β

α

c(2Ω + c)
1− 2ΩA

)u0u0,x = 0,

m = u0 − u0xx,

ρt +Aρx + (ρu0)x = 0,

(2.17)

If we choose

1− α2 + 2β
α

c(2Ω + c)
1− 2ΩA

= (b+ 1)α

and denote

µ =
2A
3
− ν

α
− c

2
+ 2Ωc

ν

α
, σ = (b+ 1)s.

then we arrive at

mt +Amx −Au0x + µu0xxx + σ(bmu0x + u0mx)

+ (b+ 1)(1− σ)uu0x + (1− 2ΩA)ρρx − 2Ωρ(ρu0)x = 0,
m = u0 − u0xx,

ρt +Aρx + (ρu0)x = 0,

(2.18)

with the constant α, β, ν, µ and c satisfying

c2 − (A− 2Ω)c− 1 = 0,

α =
(1− 2ΩA) + 2c(2Ω + c)(1 + A

2
2Ω+c

1−2ΩA )
3(1− 2ΩA+ c(2Ω + c))

,

β = α2 − α(1 +
A

2
2Ω + c

1− 2ΩA
),

ν =
α

6(c−A)
,

µ =
2A
3
− ν

α
− c

2
+ 2Ωc

ν

α
.

With a further Galilean transformation x→ x−At, t→ t, we drop the terms Amx

and Aρx in (2.18) and hence get

ut − uxxt −Aux + (b+ 1)uux
= σ(buxuxx + uuxxx)− µuxxx − (1− 2ΩA)ρρx + 2Ωρ(ρu)x,

ρt + (ρu)x = 0,
(2.19)

Recalling the change of variables Ω →
√
gh
h Ω, A →

√
gh
h A, and noticing that Ω =

7.3×10−5rad/s, A is of order 10−2 and h is less than 300 m in the physical variables.
One then can assume that 1− 2ΩA > 0.
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3. Preliminaries

In this section, we recall some basic results concerning the formation of singu-
larities in the R-b-family system (1.1) and the R2CH system (1.4).

Let σ = 1, µ = 0, then the periodic of the R2CH system is been written as the
system

ut + uux = −∂xG ∗
(
−Au+ u2 +

1
2
u2
x +

1− 2ΩA
2

ρ2 − Ωρ2u
)

+ ΩG ∗ (ρ2ux),
ρt + uρx = −ρux,
u(0, x) = u(1, x),

ρ(0, x) = ρ(1, x).

(3.1)

for t > 0 and x ∈ S, which is called r2CH system. Similarity [21], we can get the
following the theorem about the periodic R-b-family system (1.1).

Theorem 3.1. Given z0 = (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3
2 , there exist a

maximal T = T (z0) > 0 and a unique solution z = (u, ρ) to system (1.1) such that

z = z(·; z0) ∈ C([0, T );Hs(S)×H(S)s−1) ∩ C1([0, T );Hs−1(S)×Hs−2(S)). (3.2)

Moreover, the solution depends continuously on the initial data, i.e. the mapping

z0 → z(·; z0) : Hs(S)×Hs−1(S)→ C([0, T );Hs(S)×Hs−1(S))∩C1([0, T );Hs−1×Hs−2)

is continuous.

Similar to the proof of [30, Theorem 6.2]. We have the following blow-up criterion
for the periodic R-b-family system (1.1).

Lemma 3.2 (Wave-breaking criteria). Assume that 1 − 2ΩA > 0. Let (u0, ρ0) ∈
Hs(S)×Hs−1(S) with s > 3/2, and T > 0 be the maximal time of existence of the
solution (u, ρ) to system (1.1) with initial data (u0, ρ0). Then the corresponding
solution (u, ρ) blows up in finite time T <∞ if and only if

lim
t→T−

sup
x∈S
|ux(t, x)| = +∞.

Lemma 3.3 ([35]). For every f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ C
∫

S
(f2 + α2f2

x)dx,

where

C =
cosh( 1

2α )
2α sinh( 1

2α )
.

Moreover C is the minimum value. so in this sense, C is the optimal constant
which is obtained by the associated Green function.

G =
cosh( xα −

[x]
α −

1
2α )

2α sinh( 1
2α )

.

Note that when α = 1, the constant C1 = e+1
2(e−1) is sharp.
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To study the wave-breaking problem, we now briefly give the needed results
without proof to pursue our goal. We consider the following associated Lagrangian
scales of the system (3.1),

∂q

∂t
= u(t, q), 0 < t < T,

q(0, x) = x, x ∈ S,
(3.3)

where u ∈ C1([0, T ), Hs−1(S)) is the first component of the solution (u, ρ) to (3.1).

Lemma 3.4 ([36]). Let (u, ρ) be the solution of system (3.1) with initial data
(u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, and T the maximal time of existence. Then
system (3.1) has a unique solution q ∈ C1([0, T ) × S,S). This equation satisfies
q(t, x+ 1) = q(t, x) + 1. Moreover, the map q(t, ·) is increasing diffeomorphisms of
S with

qx(t, x) = exp
(∫ t

0

ux(τ, q(τ, x))dτ
)
> 0, (t, x) ∈ [0, T )× S,

The above lemmas indicate that q(t, ·) : S→ S is diffeomorphisms of the line for
each t ∈ [0, T ). Hence, the L∞ norm of any function u(t, ·) ∈ L∞(S) is preserved
under the family of diffeomorphisms q(t, ·) with t ∈ [0, T ), that is

‖u(t, ·)‖L∞(S) = ‖u(t, q(t, ·))‖L∞(S), t ∈ [0, T ).

Similarly, we have

inf
x∈S

u(t, x) = inf
x∈S

u(t, q(t, x)), t ∈ [0, T ),

sup
x∈S

u(t, x) = sup
x∈S

u(t, q(t, x)), t ∈ [0, T ).

Lemma 3.5. ][20]] For all u ∈ H1(S), the following inequality holds

G ∗ (u2 +
1
2
u2
x) ≥ κu2(x),

with

κ =
1
2

+
arctan (sinh(1/2))

2 sinh(1/2) + 2arctan (sinh(1/2)) sinh2(1/2)
≈ 0.869.

Moreover, κ is the optimal constant obtained by the function

f0 =
1 + arctan (sinh(x− [x]− 1/2)) sinh(x− [x]− 1/2)

1 + arctan (sinh(1/2)) sinh(1/2)
.

We then prove several useful conservation laws of strong solutions to r2CH system
(3.1).

Lemma 3.6. Let (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T be the maximal
existence time of the solution (u, ρ) in the periodic of the r2CH system (3.1). Then
for all t ∈ [0, T ), we have∫

S
u2 + u2

x + (1− 2ΩA)(ρ− 1)2dx =
∫

S
u2

0 + u2
0x + (1− 2ΩA)(ρ0 − 1)2dx (3.4)

which means that

E(u, ρ) =
1
2

∫
S

(
u2 + u2

x + (1− 2ΩA)(ρ− 1)2
)
dx = E0(u0, ρ0).
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Proof. Multiplying the first equation of r2CH (3.1) by u and integrating by parts,
in view of the periodicity of u and ρ, we have

1
2
d

dt

∫
S
(u2 + u2

x)dx = −(1− 2ΩA)
∫

S
uρρx dx,

1
2
d

dt

∫
S
(1− 2ΩA)(ρ− 1)2dx = (1− 2ΩA)

∫
S
uρρx dx

Adding the above two equations, we obtain

d

dt

∫
S
u2 + u2

x + (1− 2ΩA)(ρ− 1)2dx = 0 . (3.5)

From the above equation, we obtain the statement of the lemma. �

Lemma 3.7. Let (u0, ρ0) ∈ Hs(S) × Hs−1(S), s > 3/2, and T be the maximal
existence time of the solution (u, ρ) in the periodic of the r2CH system (3.1). Then
for all t ∈ [0, T ), we have∫

S
u+ Ω(ρ− 1)2dx =

∫
S
u0 + Ω(ρ0 − 1)2dx, (3.6)∫

S
(ρ− 1)dx =

∫
S
(ρ0 − 1)dx. (3.7)

which means that

I1(u, ρ) =
∫

S
u+ Ω(ρ− 1)2dx =

∫
S
u0 + Ω(ρ0 − 1)2dx,

I2(u, ρ) =
∫

S
(ρ− 1)dx =

∫
S
(ρ0 − 1)dx.

Proof. Integrating the first equation of (3.1) by parts, in view of the periodicity of
u and G, we obtain

d

dt

∫
S
u(t, x)dx

=
∫

S
−∂xG ∗ (−Au+ u2 +

1
2
u2
x +

1− 2ΩA
2

ρ2 − Ωρ2u) + ΩG ∗ (ρ2ux)dx
(3.8)

Multiplying the second equation by Ω(ρ− 1) and integrating by parts, we have

d

dt

∫
S

Ω(ρ− 1)2dx =
∫

S
Ωu(ρ2)x dx. (3.9)

Adding the above two equations and using the identity G∗f = f+∂2
xG∗f , we obtain

d
dt

∫
S u+ Ω(ρ− 1)2dx = 0. On the other hand, integrating the second equation, we

obtain
d

dt

∫
S
(ρ− 1)dx = 0. (3.10)

This completes the proof. �
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4. Blow-up criteria

In this subsection we address the problem of the blow-up criteria of the periodic
r2CH system (3.1). The following blow-up criterion can be proved easily by Lemma
3.2, so that we omit its proof.

Lemma 4.1. Assume that 1− 2ΩA > 0. Let (u0, ρ0− 1) ∈ Hs(S)×Hs−1(S), with
s > 3/2, and T > 0 be the maximal time of existence of the solution (u, ρ) to r2CH
system (3.1) with initial data (u0, ρ0). Then the corresponding solution (u, ρ) blows
up in finite time T <∞ if and only if

lim
t→T−

{
inf
x∈S

ux(t, x)
}

= −∞.

For wave-breaking, one would like to choose some initial data such that ux ap-
proaches −∞ in finite time. The difficulty in the analysis of the dynamics of ux
sources from the last term Gx ∗ (ρ2ux), which fails to be controlled by the conser-
vation laws. Our idea is to absorb this term by considering the dynamics of the
quantity K := u + ΩG ∗ ρ2. The following lemma is about K, which is important
to Theorem 4.3.

Lemma 4.2. Let K := u+ ΩG∗ρ2. Then, R2CH system (1.4) can be written with
the following equation,

Kt+uKx = Ω(A−µ)∂xG∗ρ2+Ωσu∂xG∗ρ2−∂xG∗
(
(µ−A)u+

3− σ
2

u2+
σ

2
u2
x+

1
2
ρ2
)

and

Kxt + (σu− µ)Kxx

= −σ
2

(Kx − Ω∂xG ∗ ρ2)2 +
1 + 2Ω(µ−A)− 2Ωσu

2
ρ2 + ΩσuG ∗ ρ2

+ (A− µ)∂2
xG ∗ u+

3− σ
2

u2 −G ∗
(3− σ

2
u2 +

σ

2
u2
x +

1− 2Ω(A− µ)
2

ρ2
)
.

Proof. Recall the first equation in (1.4) in the form

ut − uxxt −Aux + 3uux
= σ(2uxuxx + uuxxx)− µuxxx − (1− 2ΩA)ρρx + 2Ωρ(ρu)x.

(4.1)

To deal with the high-order nonlinear term ρ(ρu)x, it is found that

ut − uxxt + 2Ωρρt = A(u− uxx + Ωρ2)x + (A− µ)uxxx − 3uux
+ σ(2uxuxxx + uuxxx)− µuxxx − ρρx.

(4.2)

Applying the operator (1− ∂2
x)−1 to both sides of (4.2), we have

(u+ Ω(1− ∂2
x)−1ρ2)t −A(u+ Ω(1− ∂2

x)−1ρ2)x

= (µ−A)[u+ Ω(1− ∂2
x)−1ρ2]x − (µ−A)Ω∂x(1− ∂2

x)−1ρ2

− σu[u+ Ω(1− ∂2
x)−1ρ2]x + Ωσu∂x(1− ∂2

x)−1ρ2

− ∂x(1− ∂2
x)−1[(µ−A)ux +

σ

2
u2
x +

3− σ
2

u2 +
1
2
ρ2].

(4.3)
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Taking K = u+ Ωp ∗ ρ2, we deduce that

Kt −AKx

= (µ−A)Kx − σuKx − Ω(µ−A)∂x(1− ∂2
x)−1ρ2 + Ωσu∂x(1− ∂2

x)−1ρ2

− ∂x(1− ∂2
x)−1

(
(µ−A)u+

3− σ
2

u2 +
σ

2
u2
x +

1
2
ρ2
)
.

(4.4)

And using that (1− ∂2
x)−1f = G ∗ f , we obtain the statement of Lemma.

Now we take derivative to equation (4.4) with respect to x, and use −∂2
xG ∗ f =

f −G ∗ f to obtain

Kxt + (σu− µ)Kxx

= −σu2
x + Ω(µ−A)(ρ2 −G ∗ ρ2) + Ωσu(G ∗ ρ2 − ρ2)− (µ−A)∂2

xG ∗ u

+
b+ 1− σ

2
(u2 −G ∗ u2) +

σ

2
u2
x −

σ

2
G ∗ u2

x +
ρ2

2
−G ∗ (

ρ2

2
)

A rearrangement of the equation leads to the lemma. This completes the proof. �

Theorem 4.3. Suppose that 1 − 2ΩA > 0. Let (u, ρ) be the solution of r2CH
system (3.1) with initial data (u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S) with s > 3

2 and T be
the maximal time of existence. Assume there exists a x0 such that

ρ0(x0) = 0, (4.5)

and

u0,x(x0) < −|u0(x0)− A

2
| − 4ΩC1 −

√√√√ 2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0). (4.6)

where the constant C1 is the following

C1 =
e

2(e− 1)
E0(u0, ρ0)

2(1− 2ΩA)
+

e

e− 1

( E0(u0, ρ0)
2(1− 2ΩA)

)1/2

+
e

2(e− 1)
.

Then the corresponding solution (u, ρ) to system (3.1) will blow up in finite time in
the following sense, there is a T1 with

0 < T1 ≤
8√

K2
0,x(x0)− (K0(x0)− A

2 )2
. (4.7)

with
K0(x) = u0(x) + Ω(1− ∂2

x)−1(ρ2)(0, x) (4.8)

such that
lim
t→T1

inf
x∈S

ux(t, x) = −∞,

Remark 4.4. Note that in the case when Ω = 0, the condition on the velocity
u reduces to the same one as for the classical Camassa-Holm equation with linear
dispersion. Here the appearance of the Coriolis effect brings up delicate interaction
between the surface and the velocity. To control the additional terms in the blow-up
analysis we are forced to use the conservation law of E(u, ρ), as can be seen from
the following proof.
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Proof. We have just need to consider s ≥ 3. We follow the characteristics of the
r2CH system to generate finite-time blow-up. Hence we define the characteristics
q(t, x) as

qt(t, x) = u(t, q(t, x)), x ∈ S, t ∈ [0, T ]
ρt + uρx = −ρux,

(4.9)

Then we can easily check that q ∈ C1([0, T ] × S,S) with qx(t, x) > 0 for all
([0, T ]× S,S). First we take σ = 1, µ = 0 then

Kxt + uKxx = −1
2

(Kx − Ω∂xG ∗ ρ2)2 +
1− 2ΩA− 2Ωu

2
ρ2 + ΩuG ∗ ρ2

+A∂2
xG ∗ u+ u2 −G ∗ (u2 +

1
2
u2
x +

1− 2ΩA
2

ρ2).
(4.10)

From now on, we abuse of notation by denoting

u(t) = u(t, q(t, x0), ux(t) = ux(t, q(t, x0)),

K(t) = K(t, q(t, x0)), Kx(t) = Kx(t, q(t, x0)).

We further denote by ′ the material derivative ∂t + u∂x along the characteristics
q(t, x0). Let

2G− = G+Gx =
ex

2 sinh(1
2 )
, 2G+ = G−Gx = − e−x

2 sinh( 1
2 )

for − 1
2 < x < 1

2 . Then from Lemma 4.2 and (4.10) we see that

(K +Kx)′ = −2G− ∗ (u2 −Au+
1
2
u2
x)− 1

2
u2
x + u2 −Au− (1− 2ΩA− 2Ωu)G− ∗ ρ2,

(K −Kx)′ = 2G+ ∗ (u2 −Au+
1
2
u2
x) +

1
2
u2
x − u2 +Au+ (1− 2ΩA− 2Ωu)G+ ∗ ρ2,

Applying Lemma 3.3, we have the following convolution estimates

ex

2 sinh(1
2 )
∗ (u2 −Au+

1
2
u2
x) =

ex

2 sinh(1
2 )
∗
(
(u− A

2
)2 +

1
2
u2
x −

A2

4
)

≥ 1
2

(u− A

2
)2 − A2

4(e− 1)

(4.11)

and
e−x

2 sinh(1
2 )
∗ (u2 −Au+

1
2
u2
x) =

e−x

2 sinh(1
2 )
∗
(
(u− A

2
)2 +

1
2
u2
x −

A2

4
)

≤ 1
2

(u− A

2
)2 +

A2

4(e− 1)

Then, these equations provide the bounds for (K ±Kx)′ as

(K +Kx)′ ≤ −1
2

[u2
x − (u− A

2
)2] +

A2

4(e− 1)
− (1− 2ΩA− 2Ωu)G+ ∗ ρ2. (4.12)

Using the same method, we have the inequality

(K −Kx)′ ≥ 1
2

[u2
x − (u− A

2
)2]− A2

4(e− 1)
+ (1− 2ΩA− 2Ωu)G− ∗ ρ2. (4.13)

Using the fact that

(K ±Kx)′ = [(K − A

2
)±Kx]′, (1− 2ΩA)p± ∗ ρ2 ≥ 0, (4.14)
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we can further deduce that

′ ≤ −1
2

[u2
x − (u− A

2
)2] +

A2

4(e− 1)
+ 2ΩuG+ ∗ ρ2,

[(K − A

2
)−Kx]′ ≥ 1

2
[u2
x − (u− A

2
)2]− A2

4(e− 1)
− 2ΩuG− ∗ ρ2.

(4.15)

Using convolution Lemma 3.5 and Lemma 3.6, the above estimates can be bounded
by

0 ≤ G± ∗ ρ2 = G± ∗ (ρ− 1)2 + 2G± ∗ (ρ− 1) +G± ∗ 1

≤ ‖G±‖L∞‖ρ− 1‖2L2 + 2‖G±‖L2‖ρ− 1‖L2 +
e1/2

4 sinh 1
2

≤ e1/2

4 sinh( 1
2 )
‖ρ− 1‖2L2 +

2e1/2

4 sinh(1
2 )
‖ρ− 1‖L2 +

e1/2

4 sinh(1
2 )

≤ e1/2

4 sinh( 1
2 )

E0(u0, ρ0)
2(1− 2ΩA)

+
e1/2

2 sinh(1
2 )

(
E0(u0, ρ0)

2(1− 2ΩA)
)1/2 +

e1/2

4 sinh(1
2 )

=
e

2(e− 1)
E0(u0, ρ0)

2(1− 2ΩA)
+

e

e− 1
(
E0(u0, ρ0)

2(1− 2ΩA)
)1/2 +

e

2(e− 1)
≡ C1.

(4.16)

where we have used Lemma 3.6 and the fact that

‖G±‖L∞ =
e1/2

4 sinh( 1
2 )

=
e

2(e− 1)
, ‖ρ− 1‖2L2 =

E0(u0, ρ0)
1− 2ΩA

.

and

|uG± ∗ ρ2| ≤ ‖u‖L∞‖G± ∗ ρ2|L∞ ≤
( e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

C1. (4.17)

Putting these equations together into (4.15), we can further conclude that

[(K − A

2
) +Kx]′

≤ −1
2

[u2
x − (u− A

2
)2] +

A2

4(e− 1)
+ 2ΩC1

(
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

,

[(K − A

2
)−Kx]′

≥ 1
2

[u2
x − (u− A

2
)2]− A2

4(e− 1)
− 2ΩC1

(
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

.

(4.18)

Then, using (K − A
2 ) +Kx = u+ ΩG ∗ ρ2 − A

2 + ux = (u− A
2 ) + ux + ΩG ∗ ρ2, we

can obtain the inequalities

(u− A

2
) + ux ≤ (K − A

2
) +Kx ≤ (u− A

2
) + ux + 2ΩC1,

(u− A

2
)− ux ≤ (K − A

2
)−Kx ≤ (u− A

2
)− ux + 2ΩC1.

(4.19)

Now if the assumption holds, we have

1
2

[u2
x − (u− A

2
)2]− A2

4(e− 1)
− 2ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0) > 0, (4.20)
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which implies

[(K − A

2
) +Kx]′(0) < 0, [(K − A

2
)−Kx]′(0) > 0. (4.21)

Hence at least for a short time t, K(t) +Kx(t) is non-increasing and K(t)−Kx(t)
is non-decreasing, then we have

(K(0)− A

2
) +Kx(0)

< −
( 2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

− 2ΩC1,

(K(0)− A

2
)−Kx(0)

>
( 2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

+ 2ΩC1.

(4.22)

The short time monotonicity indicates that the above bounds continue to hold, at
least for a short time. Therefore, we have

(u(t)− A

2
) + ux(t) < −

( 2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E(0)

)1/2

− 2ΩC1,

(u(t)− A

2
)− ux(t) >

( 2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E(0)

)1/2

+ 2ΩC1.

(4.23)

Then, plugging these to (4.19), shows that the monotonicity of (K − A
2 ) + Kx

persists and thus the bounds of the form in (4.22) continue to hold true, pushing
the monotonicity even further in time. Hence, we always have K(t)− A

2 −Kx(t) < 0
is non-increasing, and K(t)− A

2 −Kx(t) > 0 is non-decreasing, which allows us to
define the function

h(t) =

√
K2
x(t)− [K(t)− A

2
]2 > 0. (4.24)

Computing the derivative of h leads to

h′(t) =
−(K − A

2 +Kx)′(K − A
2 −Kx)− (K − A

2 +Kx)(K − A
2 −Kx)′

2
√
K2
x(t)− [K(t)− A

2 ]2

≥
(1

2
[u2
x − (u− A

2
)2]− A2

4(e− 1)
− 2ΩC1

√
e+ 1

2(e− 1)
E(u0, ρ0)

)
×

(K − A
2 −Kx)− (K − A

2 +Kx)

2
√
K2
x(t)− [K(t)− A

2 ]2

≥ 1
2

[u2
x − (u− A

2
)2]− A2

4(e− 1)
− 2ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0) > 0,

(4.25)

where we have used that

(K − A
2 −Kx)− (K − A

2 +Kx)
2

≥ h. (4.26)
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From (4.19) and (4.23), it follows that

0 < (K − A

2
)−Kx ≤ 2[(u− A

2
)− ux],

0 < −(K − A

2
)−Kx ≤ −(u− A

2
)− ux.

(4.27)

Therefore,

K2
x − (K − A

2
)2 ≤ 2[u2

x − (u− A

2
)2],

and hence

h′ ≥ 1
4
h2 − A2

4(e− 1)
− 2ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0). (4.28)

Evaluating (4.19) at initial time we have

(K(0)− A

2
) +Kx(0) ≤ (u0(x0)− A

2
) + u0,x(x0) + 2ΩC1

< −
( A2

2(e− 1)
+ 4ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

,

(K(0)− A

2
)−Kx(0) ≥ (u0(x0)− A

2
)− u0,x(x0)

>
( A2

2(e− 1)
+ 4ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0)

)1/2

.

(4.29)

Therefore

h2(0) >
2A2

e− 1
+ 16ΩC1

√
e+ 1

2(e− 1)
E0(u0, ρ0).

We see that h is increasing and in fact we have

h′ ≥ 1
8
h2.

This is enough to show that h blows up in finite time. Indeed, we can solve the
above equation to get

h(t) ≥ 8h(0)
8− th(0)

. (4.30)

Therefore

h(t)→ +∞, t→ 8
h(0)

.

On the other hand, since

h(t) ≤ −Kx = ux − Ωpx ∗ ρ2

and from (4.16) we know that

h(t) ≤ −ux + 2C1. (4.31)

Therefore −ux must blow up at time T ∗ with

T ∗ ≤ 8
h(0)

(4.32)

This completes the proof. �



EJDE-2018/78 BLOW-UP SOLUTIONS TO THE MODIFIED CH EQUATION 19

Now we give the other blow-up condition about the r2CH system. The following
method is an important method to obtain the blow-up time about the shallow wave
system.

Theorem 4.5. Suppose that 1− 2ΩA > 0. Let(u, ρ) be the solution of r2CH (3.1)
with initial data (u0, ρ0 − 1) ∈ Hs ×Hs−1 with s > 3

2 and T be the maximal time
of existence. Assume there exists a x0 such that

ρ0(x0) = 0, (4.33)

u0,x(x0) < −C3 − 2ΩC2. (4.34)

Then the corresponding solution (u, ρ) to system (3.1) blows up in finite time in the
following sense, there is a T2 with

0 < T2 <
1
C3

ln
M1(0) + ΩC2 − C3

M1(0) + ΩC2 + C3

=
1
C3

ln
u0,x(x0) + Ω∂0,xG ∗ ρ2(x0) + ΩC2 − C3

u0,x(x0) + Ω∂0,xG ∗ ρ2(x0) + ΩC2 + C3
.

(4.35)

such that limt→T1 infx∈S ux(t, x) = −∞, with

C2 =
1
2

1
1− 2ΩA

E(u0, ρ0 − 1) + I2(u0, ρ0) +
1
2
,

1
2
C2

3 = Ω
(

e+ 1
2(e− 1)

E0(u0, ρ0)
)1/2

C1 +
|A|
2
E

1/2
0 (u0, ρ0)

+
e+ 1

2(e− 1)
E0(u0, ρ0) +

e

4(e− 1)
E0(u0, ρ0).

Proof. We have just need to consider s ≥ 3. Given x ∈ S, let

M1(t) = Kx(t, q(t, x)), γ(t) = ρ(t, q(t, x)), t ∈ [0, T ), (4.36)

where q(t, x) is defined by (3.3). Along with the trajectory of q(t, x), we have

γ′(t) = −γux, t ∈ [0, T ). (4.37)

Taking x = x0, the assumption γ(0) = ρ0(x0) = 0 and Lemma 3.4 imply

γ(t) ≡ 0, t ∈ [0, T ). (4.38)

Then (4.10) has the form

M ′1(t) = −1
2

(M1 − Ω∂xG ∗ ρ2)2 + f(t, q(t, x0)) (4.39)

at (t, q(t, x0)), where “′” is the derivative with respect to t and

f(t, q(t, x0)) = ΩuG ∗ ρ2 +A∂2
xG ∗ u+ u2 −G ∗ (u2 +

1
2
u2
x +

1− 2ΩA
2

ρ2). (4.40)
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Combining the estimates

|∂xG ∗ ρ2| = |
∫ x

0

sinh(x− y − 1
2 )

2 sinh(1
2 )

ρ2dy +
∫ 1

x

sinh(x− y + 1
2 )

2 sinh(1
2 )

ρ2dy|

≤
sinh( 1

2 )
2 sinh(1

2 )

∫ x

0

ρ2dy +
sinh( 1

2 )
2 sinh(1

2 )

∫ 1

x

ρ2dy

=
1
2

∫ 1

0

ρ2dy

=
1
2

(
∫ 1

0

[(ρ− 1)2 + 2(ρ− 1) + 1]dx)

≤ 1
2

1
1− 2ΩA

E(u0, ρ0 − 1) + I2(u0, ρ0) +
1
2
≡ C2

(4.41)

and

|uG ∗ ρ2| ≤ ‖u‖L∞‖G ∗ ρ2‖L∞ ≤
(

e+ 1
2(e− 1)

E0(u0, ρ0)
)1/2

C1, (4.42)

u2 ≤
∫

S
(u2 + u2

x)dx ≤ e+ 1
2(e− 1)

E(u0, ρ0), (4.43)

|A∂2
xG ∗ u| ≤ |A|‖∂xG‖L2‖ux‖L2 ≤ |A|

2
‖ux‖L2 ≤ |A|

2
E1/2(u0, ρ0), (4.44)

|G ∗ (u2 +
1
2
u2
x)| ≤ ‖G‖L∞‖u2 +

1
2
u2
x‖L2 ≤ e

4(e− 1)
E0(u0, ρ0) (4.45)

Then, from (4.41)-(4.45), it follows that

f ≤ Ω
(

e+ 1
2(e− 1)

E0(u0, ρ0)
)1/2

C1 +
|A|
2
E1/2(u0, ρ0)

+
e+ 1

2(e− 1)
E0(u0, ρ0) +

e

4(e− 1)
E0(u0, ρ0)

=
1
2
C2

3 .

(4.46)

By (4.46), we deduce the inequality

M ′1(t) ≤ −1
2

(M1 − Ω∂xG ∗ ρ2)2 +
1
2
C2

3 , t ∈ [0, T ). (4.47)

If the assumption (4.34) holds, then

M ′1(0) = u0,x(x0) + Ω∂0,xG ∗ ρ2(x0) < u0,x(x0) + ΩC2 < −C3 − ΩC2. (4.48)

We now claim that
M1(t) < −C3 − ΩC2, ∀t ∈ [0, T ). (4.49)

In fact, as M1(0) < −C3 − ΩC2 and M1(t) is continuous, failure of (4.47) would
ensure the existence of some t0 ∈ (0, T0) such that M1 < −C3 − ΩC2 on [0, t0),
while M1(t0) = −C3 − ΩC2. But then we would have

dM1(t)
dt

< 0, a.e. t ∈ [0, t0). (4.50)

Being locally Lipschitz, the function M1(t) is absolutely continuous on [0, t0], and
therefore an integration of the previous inequality would lead us to

M1(t0) ≤M1(0) < −C3 − ΩC2, (4.51)
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which contradicts our assumption M1(t0) = −C2 − ΩC1. Hence (4.49) holds, im-
plying that M ′(t) is strictly decrease on [0, T ). Then

M ′1(t) ≤ −1
2

(M1 + ΩC2)2 +
1
2
C2

3 , t ∈ [0, T ). (4.52)

Solving the inequality gives
M1(0) + ΩC2 + C3

M1(0) + ΩC2 − C3
eC2t − 1 ≤ 2C3

M1(t) + ΩC2 − C3
≤ 0. (4.53)

In view of 0 < M1(0)+ΩC1+C2
M1(0)+ΩC1−C2

< 1, we deduce that there exists T1 satisfying

0 < T2 <
1
C2

ln
M1(0) + ΩC2 − C3

M1(0) + ΩC2 + C3

=
1
C2

ln
u0,x(x0) + Ω∂0,xG ∗ ρ2(x0) + ΩC2 − C3

u0,x(x0) + Ω∂0,xG ∗ ρ2(x0) + ΩC2 + C3
.

such that limt→T1 M1(t) = −∞, i.e. limt→T1 ux(t) = −∞, as a result of the
boundness of ∂xG ∗ ρ2. This completes the proof. �

An interesting question is weather ux has an upper bound. The investigation on
this issue gives the following result.

Proposition 4.6. Assume that 1 − 2ΩA > 0. Let (u0, ρ0 − 1) ∈ Hs ×Hs−1 with
s > 3/2, and T > 0 be the maximal time of existence of the solution (u, ρ) to system
r2CH with initial data (u0, ρ0). Then for x ∈ {Λ := x ∈ S : ρ0(x) = 0}, we have
that ux(t, q(t, x)) is bounded from above for t ∈ [0, T ).

Proof. We need only to prove this proposition for s > 3. Given x ∈ S. From
Theorem 4.5, we have

f ≤ C2
E(0), (4.54)

where the CE(0) denotes a constant that depends only on E(0). Given any x ∈ S,
let us define

P (t) = M1(t)− ‖u0,x‖L∞ − 2ΩC1 − 2CE(0),

where C1 is defined by (4.16). Observing P (t) is a C1-differentiable function in
[0,t) and satisfies

P (0) = M1(0)− ‖u0,x‖L∞ − 2ΩC1 − 2CE(0)

≤ u0,x(x) + ΩGx ∗ ρ2(0, x)− ‖u0,x‖∞L − 2ΩC1 ≤ 0

where we used the estimate (4.42). We now claim that

P (t) ≤ 0, ∀t ∈ [0, T ). (4.55)

On the contrary assume that there is t0 ∈ [0, T ) such that P (t0) > 0. Let t1 =
{max t < t0;P (t) = 0}. Then P (t1) = 0 and P ′(t1) ≥ 0, or equivalently,

M1(t1) = ‖u0,x‖L∞ + 2ΩC1 + 2CE(0), (4.56)

M ′1(t1) ≥ 0. (4.57)

By (4.54) and (4.56), it follows that

M ′1(t1) = −1
2

(M1(t1)− Ω∂xG ∗ ρ2)2 + f

≤ −1
2

(‖u0,x‖∞L + 2CE(0))2 + C2
E(0) < 0

(4.58)
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which is a contradiction to (4.57). This verifies the estimate in (4.55). Therefore,
for any such that ρ(x) = 0,

sup
t∈[0,T )

ux(t, q(t, x)) + Ω∂xG ∗ ρ2(t, q(t, x)) ≤ ‖u0,x‖∞L + 2CE(0) + ‖u0,x‖L∞ .

which implies

sup
t∈[0,T )

ux(t, q(t, x)) ≤ ‖u0,x‖∞L + 4ΩC1 + 2CE(0).

This completes the proof. �
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