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Abstract. This article concerns the existence of positive solutions of the non-

linear Choquard equation

−∆u+ a(x)u = b(x)
“ 1

|x|
∗ |u|2

”
u, u ∈ H1(R3),

where the coefficients a and b are positive functions such that a(x)→ κ∞ and
b(x) → µ∞ as |x| → ∞. By comparing the decay rate of the coefficients a

and b, we prove the existence of positive ground and bound stat solutions of
Choquard equation.

1. Introduction

In this article studies the existence of positive solution of the nonlinear Choquard
equation

−∆u+ a(x)u = b(x)
( 1
|x|
∗ |u|2

)
u, u ∈ H1(R3), (1.1)

where the coefficients a(x) and b(x) are positive functions such that lim|x|→∞ a(x) =
κ∞ > 0 and lim|x|→∞ b(x) = µ∞ > 0.

Equation (1.1) is called the nonlinear Choquard or Choquard-Pekar equation. It
has several physical origins. Equation (1.1) first appeared as early as in 1954, in a
work by Pekar describing the quantum mechanics of a polaron at rest [34]. In 1976,
Choquard used (1.1) to describe an electron trapped in its own hole, in a certain
approximation to Hartree-Fock theory of one component plasma [22]. In 1996,
Penrose proposed (1.1) as a model of self-gravitating matter, in a programme in
which quantum state reduction is understood as a gravitational phenomenon [31].
In this context equation of type (1.1) is usually called the nonlinear Schrodinger-
Newton equation. In general, many mathematicians study the existence of the
solitary solutions of the nonlinear generalized Choquard equation

iψt −∆ψ +K(x)ψ − b(x)
( 1
|x|α

∗ |ψ|p
)
|ψ|p−2ψ = 0, (x, t) ∈ RN × R+. (1.2)
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where N ≥ 1, α ∈ (0, N), N−2
N+α < 1

p <
N

N+α . To obtain the solitary solutions of
(1.2), we set ψ(t, x) = u(x)eiωt (ω is a constant) in (1.2) and get the stationary
equation of the form

−∆u+ a(x)u = b(x)
( 1
|x|α

∗ |u|p
)
|u|p−2u, u ∈ H1(RN ), (1.3)

where a = K(x) − ω. Obviously, if N = 3, α = 2 and p = 2 the equation (1.3)
reduces to (1.1). In recent years, many papers are concerned with the existence
of solutions of (1.3). Lieb [22] proved the existence and uniqueness of the ground
state to (1.2). Lions [23] obtained the existence of a sequence of radially symmetric
solutions for (1.3) by using variational methods. Papers [1, 38] showed the existence
of multi-bump solutions of (1.3). Recently, papers [19, 26, 37] showed some partial
uniqueness of the positive solutions of (1.3). Papers [18, 27] showed the existence
of positive and nodal solution of (1.3). For more results on this direction one can
refer to [5, 12, 13, 14, 15, 16, 17, 28, 29, 30, 32, 33] and the references therein.

It is worth to point out that in most of the papers mentioned above, the search
for the positive ground state solutions to (1.3). In the present paper we consider
a nonautonomous situation that has to be studied in a different way. We will find
the positive solution which different from positive ground state solution. Here a
solution u of (1.1) is nontrivial if u 6= 0. A solution of (1.1) is a nontrivial bound
state solution if u is a nontrivial solution. A solution u with u > 0 is called a
positive solution. A solution is called a nontrivial ground state solution (or positive
ground state solution) if its energy is minimal among all the nontrivial solutions
(or all the positive solutions) of (1.1). Here the energy functional corresponding to
(1.1) is defined by

Iλ(u) =
1
2

∫
R3

(
|∇u|2 + a(x)u2

)
− 1

4

∫
R3
b(x)φuu2, u ∈ H1(R3). (1.4)

We set
a(x) = κ∞ + λκ(x), b(x) = µ∞ + µ(x), (1.5)

where λ ∈ R+ and we assume
(A1) κ ∈ L3/2(R3), κ ≥ 0, κ 6= 0, lim|x|→∞ κ(x) = 0;
(A2) µ ∈ L2(R3), µ ≥ 0, µ 6= 0, lim|x|→∞ µ(x) = 0.

Hence, equation (1.1) can be rewritten as

−∆u+ (κ∞ + λκ(x))u = (µ∞ + µ(x))φu(x)u, u ∈ H1(R3). (1.6)

The purpose of this paper is to describe some phenomena that can occur when the
coefficients are competing. For each λ ∈ [0,∞), we prove the existence of positive
ground state solution of (1.6) if κ(x) decays faster than µ(x). Conversely, if µ(x)
decays faster than κ(x), we find the threshold value λ∗ > 0 such that (1.6) has a
ground state solution if λ ∈ [0, λ∗), and no ground state solution for λ ∈ [λ∗,∞).
Furthermore, we find the positive bound state solution of (1.6) if λ ∈ [λ∗,∞).
Our study mainly motivated by the recent works [11, 10], while the authors study
the existence of positive solutions of Schrödinger equation and Schrödinger-Poisson
system with competing coefficients. Comparing to the previous works [11, 10], we
encounter new difficulty in finding the positive solutions of (1.6). Precisely, we let
u0 denote the sign-changing solution of the Schödinger equation

−∆u+ κ∞u = µ∞|u|p−2u, u ∈ H1(RN ). (1.7)
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It is easy to check that J∞(u0) ≥ 2k∞ (see [11]), where

k∞ = inf J∞ and J∞(u) =
1
2

∫
RN

(|∇u|2 + κ∞u
2)− µ∞

p

∫
RN
|u|p. (1.8)

In [11, 10], this fact was play an important role in recovering the compactness and
finding the bound state solution. However, the situation is totally different in our
case. In fact, consider the Choquard equation

−∆u+ κ∞u = µ∞φu(x)u, u ∈ H1(R3). (1.9)

According to [18], we know that the energy of sign-changing solution of (1.9) is
strictly less than two times the least energy level of (1.9). This brings the difficulty
in recovering the compactness. We shall use the idea of [25, 36] and consider our
problem in convex set H1

+(R3) to overcome this difficult, where H1
+(R3) := {u ∈

H1(R3) : u ≥ 0}.
Now we are ready to give the main results of the paper. We first state the results

when κ(x) decays faster than µ(x).

Theorem 1.1. For τ ∈ (0, 1), we assume that (A1), (A2) hold and

(A3) lim|x|→∞ κ(x)|x|e
2τ

1−τ
√
κ∞|x| = 0, lim|x|→∞ µ(x)e

2τ
1+τ
√
κ∞|x| = +∞.

Then for all λ ∈ R+, Equation (1.6) always has a positive ground state solution.

Next we study the case when µ(x) decays faster than κ(x).

Theorem 1.2. Assume that (A1), (A2) hold, and for some τ ∈ (0, 1), σ ∈ (0, κ∞),
and c1, c2 > 0, we have

(A4) lim inf |x|→∞ κ(x)e
4τ

1+τ
√
σ|x| ≥ c1 and lim sup|x|→∞ µ(x)e

4τ
1−τ
√
σ|x| ≤ c2.

Then there exist a number λ∗ > 0, such that for all λ ∈ [0, λ∗), Equation (1.6)
has a positive ground state solution, while if λ ∈ [λ∗,+∞), Equation (1.6) has no
positive ground state solution. Additionally, if we assume that

(A5) lim sup|x|→∞ κ(x)|x|2e2
√
κ∞|x| ≤ c3 for some c3 > 0,

then for λ ∈ [λ∗,+∞), Equation (1.6) has a positive solution.

Remark 1.3. To the best our knowledge, this is the first results on the existence
of positive solution of Choquard equation (1.6) with competing coefficients. We
believe our arguments can also work on the generalized Choquard equation (1.3)
and other nonlocal problems. This is an interesting issue that can be pursued in
the future.

2. Preliminary results

Throughout this article we shall use the following notation.
• The scalar product in H1(R3) is defined by

(u, v) =
∫

R3
[∇u∇v + κ∞uv]

and the norm is defined by ‖u‖ =
√

(u, u), where κ∞ > 0 is given in (1.6);
• the norm of D1,2(R3) defined by ‖u‖2D1,2 =

∫
R3 |∇u|2;

• c∗ or c, ci denote different positive constants;
• the norm in Lp(R3) defined by |u|pp =

∫
R3 |u|p.
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In this part we given some basic knowledge which will be used in the later.
Considering for all u ∈ H1(R3), the linear functional Ju defined in D1,2(R3) by

Ju(v) =
∫

R3
u2v.

We infer from the Hölder inequality that

|Ju(v)| ≤ C|u|212/5‖v‖D1,2 . (2.1)

By the Lax-Milgram theorem, we know that there exists unique φu ∈ D1,2(R3) such
that ∫

R3
∇φu∇v =

∫
R3
u2v ∀v ∈ D1,2(R3). (2.2)

So, φu is a weak solution of −∆φ = u2 and the following formula holds

φu(x) =
∫

R3

u2(y)
|x− y|

dy =
1
|x|
∗ u2. (2.3)

Moreover, φu > 0 when u 6= 0.
We recall the following classical Hardy-Littlewood-Sobolev inequality (see [21,

Theorem 4.3]). Assume that f ∈ Lp(R3) and g ∈ Lq(R3). Then one has∫
R3

∫
R3

f(x)g(y)
|x− y|t

dxdy ≤ c(p, q, t)|f |p|g|q, (2.4)

where 1 < p, q <∞, 0 < t < N and 1
p + 1

q + t
3 = 2. By (2.4) we know that∫

R3

∫
R3

u2(x)u2(y)
|x− y|

dxdy ≤ c|u|412/5 ≤ c‖u‖
4. (2.5)

It is well-known that solutions of (1.6) correspond to critical points of the energy
functional

Iλ(u) =
1
2

∫
R3

(
|∇u|2 + (κ∞ + λκ(x))u2

)
− 1

4

∫
R3

(µ∞ + µ(x))φuu2, (2.6)

for u ∈ H1(R3). From (2.5), we know that Iλ is well defined, and that

I ′λ(u)[v] =
∫

R3
[∇u∇v + (κ∞ + λκ(x))uv]−

∫
R3

(µ∞ + µ(x))φuuv, (2.7)

for all v ∈ H1(R3). We define the operator Φ : H1(R3)→ D1,2(R3) as

Φ[u] = φu.

From [10, Proposition 2.2-2.3] we know that Φ has the following properties.

Lemma 2.1. (1) Φ is continuous;
(2) Φ maps bounded sets into bounded sets;
(3) Φ[tu] = t2Φ[u] for all t ∈ R;
(4) If un ⇀ u ∈ H1(R3) then Φ[un]→ Φ[u] in D1,2(R3). Moreover,∫

R3
µ(x)φun(x)u2

n →
∫

R3
µ(x)φu(x)u2,∫

R3
µ(x)φun(x)unφ→

∫
R3
µ(x)φu(x)uφ,

for all φ ∈ H1(R3).
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It is easy to verify that, whatever λ ∈ R is, the function Iλ is bounded neither
from above nor from below. Hence, it is convenient to consider Iλ restricted to a
natural constraint, the Nehari manifold. We set

Nλ :=
{
u ∈ H1(R3)\{0} : I ′λ(u)u = 0

}
. (2.8)

The next lemma contains the statement of the main properties of Nλ.

Lemma 2.2. Assume that (A1), (A2) hold. Then for all λ ∈ R+, we have
(i) Nλ is a C1 regular manifold diffeomorphic to the sphere of H1(RN );

(ii) Iλ is bounded from below on Nλ by a positive constant;
(iii) u is a free critical point of Iλ if and only if u is a critical point of Iλ

constrained on Nλ.

Proof. (i) Let u ∈ H1(R3)\{0} be such that ‖u‖ = 1. We claim that there exists a
unique t ∈ (0,+∞) for which tu ∈ Nλ. In fact, considering the equation

I ′λ(tu)[tu] = t2[
∫

R3
|∇u|2 + (k∞ + λk(x))u2 − t2

∫
R3

(µ∞ + µ(x))φuu2] = 0. (2.9)

It is clear that it admits a unique positive solution tλ(u) > 0 and that corresponding
point tλ(u)u ∈ Nλ, the projection of u on Nλ, is such that

Iλ(tλ(u)u = max
t≥0

Iλ(tu).

Similar to the proof of (2.5), we infer from u ∈ Nλ and (A1)-(A2) that

‖u‖2 ≤
∫

R3
|∇u|2 + (k∞ + λk(x))u2 =

∫
R3

(µ∞ + µ(x))φuu2 ≤ c‖u‖4. (2.10)

This implies that
‖u‖ ≥ c > 0. (2.11)

Set Gλ(u) := I ′λ(u)[u]. By the regularity of Iλ we know that Gλ ∈ C1(H1(R3),R).
Moreover, by using (2.11), we obtain that

G′λ(u)[u] = −2
∫

R3
|∇u|2 + (k∞ + λk(x))u2 ≤ −2c < 0. (2.12)

(ii) For all u ∈ Nλ, one sees that

Iλ(u) =
1
4

∫
R3
|∇u|2 + (k∞ + λk(x))u2 ≥ 1

4
‖u‖2 ≥ C > 0. (2.13)

(iii) If u 6= 0 is a critical point of Iλ, then I ′λ(u) = 0 and then u ∈ Nλ. On the
other hand, if u is a critical point of I ′λ constrained on Nλ, then there exist ` ∈ R
such that

0 = I ′λ(u)[u] = Gλ(u) = `G′λ(u)[u].

We infer from (2.12) that ` = 0. �

Next we consider the limit functional I∞ : H1(R3)→ R, defined as

I∞(u) =
1
2

∫
R3

(
|∇u|2 + k∞u

2
)
− 1

4

∫
R3
µ∞φu(x)u2, u ∈ H1(R3).

and the related natural constraint

N∞ :=
{
u ∈ H1(R3)\{0} : I ′∞(u)u = 0

}
.
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Obviously, critical points of I∞ are solutions of the limit problem at infinity

−∆u+ κ∞u = µ∞φu(x)u, in R3,

−∆φ = u2, u ∈ H1(R3).
(2.14)

Clearly, the conclusions of Lemma 2.2 hold for I ′∞ and N∞. Furthermore, for any
u ∈ H1(R3)\{0}, it is easy to see that there exists unique t(u) > 0 such that
t(u)u ∈ N∞. Set

m∞ := inf{I∞(u), u ∈ N∞}. (2.15)
From [27, 26], we know that m∞ is achieved by a radially symmetric function w,
unique up to translations, and decreasing when the radial coordinate increases.
Precisely, there exists a constant c∗ > 0 such that

lim
|x|→+∞

|w(x)‖x|1−c
∗
e
√
κ∞|x| = constant. (2.16)

In what follows, for any y ∈ R3, we use the translation symbol

wy := w(· − y). (2.17)

Set
mλ := inf{Iλ(u), u ∈ Nλ}. (2.18)

Then the following properties of mλ and m∞ hold.

Lemma 2.3. Suppose that (A1), (A2) hold. Then for λ ≥ 0 we have

0 < mλ ≤ m∞. (2.19)

Proof. Let λ ≥ 0 be fixed. The first inequality of (2.19) is a straight consequence
of (2.13). In order to show the second inequality we should construct a sequence
{un} ⊂ Nλ and limn Iλ(un) = m∞. To this aim, let us consider (yn)n, with
yn ∈ R3, |yn| → +∞, as n→ +∞ and we set un = tnwyn , where wyn is defined in
(2.17) and tn = tλ(wyn) such that un = tnwyn ∈ Nλ. We observe that

Iλ(un)

=
t2n
2

∫
R3
|∇wyn |2 + (κ∞ + λκ(x))w2

yn −
t4n
4

∫
R3

(µ∞ + µ(x))φwyn (x)w2
yn

=
t2n
2

[
‖w‖2 + λ

∫
R3
κ(x+ yn))w2

]
− t4n

4

∫
R3

(µ∞ + µ(x+ yn))φw(x+ yn)w2.

(2.20)
Moreover, from tnwyn ∈ Nλ it follows that

t2n =
‖w‖2 + λ

∫
R3 κ(x+ yn)w2∫

R3 µ∞φww2 +
∫

R3 µ(x+ yn)φw(x+ yn)w2
.

It is clear that

lim
n→∞

∫
R3
κ(x+ yn)w2 = 0,

lim
n→∞

∫
R3
µ(x+ yn)φw(x+ yn)w2 = 0.

Thus, we infer that

tn → 1, Iλ(un)→ m∞, as n→ +∞. (2.21)

�
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By apply the well-known concentration-compactness principle[24] and maximum
principle[39], we have the following results for mλ.

Lemma 2.4. If the strictly inequality

mλ < m∞ (2.22)

holds, then mλ is achieved by a positive function. Moreover, all the minimizing
sequences are relatively compact.

Lemma 2.5. Assume that λ = 0, (A1), (A2) hold. Then (1.6) has a positive
ground state solution.

Proof. Note that

I0(u) =
1
2
‖u‖2 − 1

4

∫
R3

(µ∞ + µ(x))φu(x)u2,

I∞(u) =
1
2
‖u‖2 − 1

4

∫
R3
µ∞φu(x)u2.

Thus, we infer that m0 ≤ m∞. To complete the proof we only need to show that
m0 < m∞. Assume, by contradiction, that w ∈ N∞ and I∞(w) = m∞ = m0.
Then there exists tn > 0 such that tnwyn ∈ N0, and tn → 1, as n → ∞. This
implies that

m∞ = m0 ≤ I0(tnwyn) < I∞(w) = m∞.

This is impossible. �

The next lemma analyzes the behavior of some sequences of {un} ⊂ Nλn .

Lemma 2.6. Suppose that (A1), (A2) hold. Let (λn)n be a sequence of positive
numbers, for all n ∈ N, and un ∈ Nλn be such that Iλn(un) ≤ C. Then {un}n is
bounded in H1(R3).

Proof. We infer from {un} ⊂ Nλn that

Iλn(un) =
1
4

(
‖un‖2 + λn

∫
R3
κ(x)u2

n

)
≤ C. (2.23)

Thus the conclusion holds. �

Lemma 2.7. Assume that (A1), (A2) hold. Let un ∈ Nλn be such that Iλn(un) ≤
C, and λn →∞, as n→∞. Then, for all R > 0,

un|BR → 0, in L2(BR), λn

∫
R3
κ(x)u2

n ≤ C,∫
R3
µ(x)φunu

2
n → 0, as n→ +∞.

(2.24)

Proof. Since {un} satisfies the inequality (2.23), one can check that the first two
conclusions of (2.24) are true. Next we prove the third one. By (A2), we know that
for any ε > 0, there exists R > 0 such that for all x ∈ R3 \BR, µ(x) < ε. Thus we
infer from Lemma 2.6 that∫

R3\BR
µ(x)φunu

2
n ≤ ε

∫
R3\BR

φun(x)u2
n ≤ εC. (2.25)
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On the other hand, by Hardy-Littlewood-Sobolev inequality, one sees that∫
BR

µ(x)φunu
2
n ≤ C

∫
BR

φunu
2
n ≤ C

(∫
BR

u
12
5
n

) 5
6

→ 0, as n→∞. (2.26)

From (2.25)-(2.26), we know that the conclusions hold. �

3. Properties of the map λ 7→ mλ

In this section we shall show that the monotonicity property of the map λ 7→ mλ.

Lemma 3.1. Assume that (A1), (A2) hold. Then the map λ 7→ mλ is nondecreas-
ing.

Proof. For u ∈ H1(R3)\{0}, λ ∈ R+ and tλ(u)u ∈ Nλ, we have

[tλ(u)]2 =
‖u‖2 + λ

∫
R3 κ(x)u2∫

R3 [µ∞ + µ(x)]φuu2
.

If λ1, λ2 ∈ R+ such that λ1 < λ2, then tλ1(u) ≤ tλ2(u). Moreover, tλ1(u) = tλ2(u)
if and only if

∫
R3 κ(x)u2 = 0. So, we obtain

Iλ1(tλ1u) =
t2λ1

4

(
‖u‖2 +

∫
R3
λ1κ(x)u2

)
≤
t2λ2

4

(
‖u‖2 +

∫
R3
λ2κ(x)u2

)
= Iλ2(tλ1u).

(3.1)

Therefore, by the arbitrariness of u, we obtain that mλ1 ≤ mλ2 . �

Remark 3.2. We observe that if u ∈ H1(R3)\{0}, and λ1 < λ2, λ1, λ2 ∈ R+, then

tλ1(u) = tλ2(u) ⇐⇒
∫

R3
κ(x)u2 = 0.

Next we prove some properties for mλ and m∞.

Lemma 3.3. Assume that (A1), (A2) hold. If there exists ν ∈ R+ such that
mν = m∞, then we have mλ = m∞ for all λ > ν. Moreover, mλ is not achieved.

Proof. By Lemmas 2.4 and 3.1, we deduce that

m∞ = mν ≤ mλ ≤ m∞.

Thus, we obtain mλ = m∞.
Next we shall prove that mλ is not achieved. Arguing by contradiction, we

assume that there exists uλ ∈ Nλ such that Iλ(uλ) = mλ = m∞. Let tν =
tν(uλ) > 0 be such that tνuλ ∈ Nν . By using the same arguments as in Lemma 3.1
and Remark 3.2, we can get tν < 1, and thus

m∞ = mν ≤ Iν(tνuλ) < Iλ(uλ) = m∞.

This is a contradiction. �

As a consequence of Lemma 3.3, we have the following results.

Corollary 3.4. Assume that (A1), (A2) hold. Then there exists at most one num-
ber ν ∈ R+ such that mν = m∞ and it is achieved.
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Let us define
λ∗ := sup{λ ∈ R+ : mλ < m∞}. (3.2)

Then the following lemma states the role of λ∗.

Proposition 3.5. Suppose that λ∗ < +∞. Then

mλ∗ = m∞. (3.3)

and
sup{λ ∈ R+ : mλ < m∞} = min{λ ∈ R+ : mλ = m∞}. (3.4)

Proof. We use the contradiction method. If mλ∗ < m∞, then there exists u∗ ∈ Nλ∗

such that Iλ∗(uλ∗) = mλ∗ . Let (λn)n be a sequence of number such that λn ↘ λ∗.
By Lemma 3.3, we know that mλn = m∞. Moreover, there exist tn := tλn(uλ∗)
such that tnuλ∗ ∈ Nλn . By the definition of tn, we obtain tn → 1, as n→∞. So,
we obtain

m∞ = mλn ≤ Iλn(tnuλ∗) =
1
4
t2n[‖uλ∗‖2 +

∫
R3
λnκ(x)u2

λ∗ ],

−−−−−−→
n→ +∞1

4
[‖uλ∗‖2 +

∫
R3
λ∗κ(x)u2

λ∗ ] = Iλ∗(uλ∗) = m∗ < m∞.

This is a contradiction. Finally, (3.4) is easily obtain from (3.3). �

Next we show the continuity of the map λ 7→ mλ.

Lemma 3.6. Let (A1), (A2) be satisfied. Then the map λ 7→ mλ is continuous for
λ ∈ R+.

Proof. We divide into the following two cases to prove the results.
Case 1. λ∗ =∞. By the definition of λ∗, we infer that for each λ ∈ R+, mλ < m∞.
By Lemma 2.4, there exists uλ ∈ Nλ such that Iλ(uλ) = mλ. Let {λn} be such that
λn → λ, and tn := tλn(uλ) be such that tnuλ ∈ Nλn . Then, by using the definition
of tn, we obtain that tn → 1 as n→∞. Hence, one sees that

mλn ≤ Iλn(tnuλn) =
1
4
t2n[‖uλ‖2 + λn

∫
R3
κ(x)u2

λn ]

−−−−−−→
n→ +∞ 1

4
[‖uλ‖2 + λ

∫
R3
κ(x)u2

λ]

= Iλ(uλ) = mλ.

(3.5)

This implies
lim sup

n
mλn ≤ mλ. (3.6)

Since mλn < m∞ for all n ∈ N, we deduce from Lemma 2.4 that there exist
un ∈ Nλn such that Iλn(un) = mλn . Moreover, one infers from Lemma 2.7 that
the sequence {un} is bounded in H1(R3).

Let t̃n := tλ(un) be such that t̃nun ∈ Nλ. Since

1 =
‖un‖2 + λn

∫
R3 κ(x)u2

n∫
R3(µ∞ + µ(x))φunu2

n

, (t̃n)2 =
‖un‖2 + λ

∫
R3 κ(x)u2

n∫
R3(µ∞ + µ(x))φunu2

n

.

we deduce that t̃n → 1 and |Iλ(t̃nun)−mλn | → 0, as n→ +∞. Thus, we obtain

mλ ≤ lim sup
n

mλn . (3.7)

Combining (3.6) and (3.7), we obtain the conclusion as required.
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Case 2. λ∗ ∈ R+. For any λ ∈ (0, λ∗), we can use the same arguments as Case 1
to obtain the conclusion. On the other hand, for any λ ∈ (λ∗,+∞), λ 7→ mλ is a
constant map. Therefor, we just need to prove the continuity when λ = λ∗.

Let {λn} be a sequence of number and λn → λ∗ By (3.3), if λn ↘ λ∗, the result
is trivial. So, in the following we study the case λn ↗ λ∗. By the definition of
Nλ∗ , for fixed ε > 0, there exists uε ∈ Nλ∗ such that Iλ∗(uε) < mλ∗ + ε. Let
tn,ε := tλn(uε) be such that tn,εuε ∈ Nλn . On can easy to deduce that tn,ε → 1, as
n→ +∞. Moreover, we have

mλn ≤ Iλn(tn,εuε) =
1
4
t2n,ε[‖uε‖2 + λn

∫
R3
κ(x)u2

ε]

−−−−→n→∞ 1
4

[‖uε‖2 + λ∗
∫

R3
κ(x)u2

ε] = Iλ∗(uε) < mλ∗ + ε.

Thus, we obtain
lim sup

n
mλn ≤ mλ∗ + ε.

By the arbitrariness of ε, we can obtain

lim sup
n

mλn ≤ mλ∗ .

On the other hand, for all n, mλn < m∞, we can use the same arguments as Case
1 to showing that

lim inf
n

mλn ≤ mλ∗ .

This completes the proof. �

Remark 3.7. By the continuity of the map λ 7→ mλ and the fact that m0 < m∞,
we infer that λ∗ > 0.

4. Two kinds of possible situations for λ∗

In this section we study the properties of λ∗ according to the decay of the
functions κ(x) and µ(x). Let us first consider the case when κ(x) decays faster
than µ(x).

Lemma 4.1. Assume that (A1)–(A3) hold. Then we have that λ∗ = +∞, where
λ∗ is defined in (3.2).

Proof. First, we infer from Lemma 2.5 that m0 < m∞. So, in the following we
only need to consider the case λ > 0. For fixed λ > 0, we choose tn such that
un = tnwyn ∈ Nλ, where yn and tn are chose as in the proof of Lemma 2.3.
Moreover, as in (2.21), we infer that tn ≥ c > 0. Thus, we obtain that

mλ ≤ Iλ(un) = I∞(tnw) +
t2n
2

[
λ

∫
R3
κ(x+ yn))w2 − t2n

2

∫
R3
µ(x+ yn))φww2

]
≤ I∞(w) +

t2n
2

[
λ

∫
R3
κ(x+ yn))w2 − c

∫
R3
µ(x+ yn))φww2

]
= m∞ +

t2n
2

[
λ

∫
R3
κ(x+ yn))w2 − c

∫
R3
µ(x+ yn))φww2

]
.

(4.1)
Hence, we obtain the conclusion if we show that, for large n,∫

R3
[λκ(x+ yn)w2 − Cµ(x+ yn)φww2] < 0. (4.2)
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This is equivalent to prove that, for large n,

I1 :=
∫

R3\Bτ|yn|

[λ
2
κ(x+ yn)w2 − Cµ(x+ yn)φww2

]
< I2 :=

∫
Bτ|yn|

[
Cµ(x+ yn)φww2 − λ

2
κ(x+ yn)w2

]
To estimate I1, from (2.16) we have

I1 <

∫
R3\Bτ|yn|

λκ(x+ yn)w2

< λ
[ ∫

R3\Bτ|yn|
|κ(x+ yn)| 32

]2/3[ ∫
R3\Bτ|yn|

|w|6
]1/3

< ce−2τ
√
κ∞|yn|.

(4.3)

Now we estimate the I2 term. By (A3), for all ε > 0 and M > 0, there exists n0 ≥ 1
such that, for all n ≥ n0 and for all x ∈ Bτ |yn|,

κ(x+ yn) ≤ ε(1− τ)−1|yn|−1e−2τ
√
κ∞|yn|, µ(x+ yn) ≥Me−2τ

√
κ∞|yn|. (4.4)

By [20, Lemmas 2.3 and 2.6], we know that

φw(x) =
∫

R3

w2(y)
|x− y|

dy ∼ 1
|x|
, as |x| → ∞. (4.5)

Thus, we infer that, for n sufficiently large and for all x ∈ Bτ |yn|,

Cφw(x)− λκ(x+ yn)
µ(x+ yn)

>
C

2
φw(x).

Hence, one sees that

I2 =
∫
Bτ|yn|

µ(x+ yn)w2[Cφw(x)− λκ(x+ yn)
µ(x+ yn)

]

>
C

2

∫
Bτ|yn|

µ(x+ yn)φww2 > CMe−2τ
√
κ∞|yn|

∫
B1

φww
2

> CMe−2τ
√
κ∞|yn|.

(4.6)

Combining (4.3)-(4.6), together with the arbitrariness of M , we can conclude that
I1 < I2. This completes the proof. �

Next we consider the case when κ(x) decays slower than µ(x).

Lemma 4.2. Suppose that (A1), (A2), (A4) hold. Then λ∗ ∈ R+, where λ∗ is
defined in (3.2).

Proof. We use the contradiction method. Assume that for all λ ∈ R+, mλ < m∞.
By proposition 3.5. Let {λn} be a diverging sequence. From Lemma 2.4, there
exist {un} such that for all n ∈ N ,

un > 0, un ∈ Nλn , Iλn(un) = mλn < m∞, I ′λn(un) = 0.

We infer from Lemma 2.6 that {un} is bounded in H1(R3). Let θn = θun be such
that θnun ∈ N∞. A direct computation show that

θ2
n =

‖un‖2

µ∞
∫

R3 φu(x)u2
. (4.7)
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We claim that
Iλn(θnun) < I∞(θnun). (4.8)

Otherwise, one sees that

m∞ ≤ I∞(θnun) ≤ Iλn(θnun) ≤ Iλn(un) = mλn < m∞. (4.9)

This is impossible. So, the claim (4.8) holds. Moreover, we deduce from the bound-
edness of ‖un‖ that there exist two numbers c, C > 0 such that

c ≤ θn ≤ C. (4.10)

From (4.8) we infer that

λn
2

∫
R3
κ(x)u2

n −
θ2
n

4

∫
R3
µ(x)φun(x)u2

n < 0. (4.11)

We deduce from (2.24) and (4.10) that

λn
2

∫
R3
κ(x)u2

n → 0, as n→∞. (4.12)

Since un ∈ Nλn and θnun ∈ N∞, we deduce from (2.5) that

c
(∫

R3
φun(x)u2

n

)1/2

≤ ‖un‖2 = µ∞

∫
R3
φun(x)u2

n,

µ∞(θ2
n − 1)

∫
R3
φun(x)u2

n =
∫

R3
µ(x)φun(x)u2

n − λn
∫

R3
κ(x)u2

n = o(1).
(4.13)

These together with (2.24) imply that

lim
n
θn = 1. (4.14)

Hence, one infers from (2.24) and (4.12) that

m∞ > Iλ(un) = Iλn(θnun) + o(1)

= I∞(θnun) +
θnλn

2

∫
R3
κ(x)u2

n −
θ2
n

4

∫
R3
µ(x)φun(x)u2

n

= I∞(θnun) + o(1)

≥ m∞ + o(1).

(4.15)

This implies
I∞(θnun)→ m∞, as n→ +∞. (4.16)

By the uniqueness of the family of minimizers of I∞ on N∞, there exists sequence
{yn} such that yn ∈ R3 and

θnun − wyn → 0 in H1(R3) as n→ +∞,
where w is given by (2.16). Set vn(x) = un(x+ yn). We infer from (4.14) that

vn → w in H1(R3) as n→ +∞.
Since, for all n, vn is a solution of

−∆u+ (κ∞ + λκ(x+ yn)u = (µ∞ + µ(x+ yn)φu(x)u. (4.17)

By the Schauder interior(see [35]), we know that vn → w in C2
loc(R3). Moreover,

from the decay estimates (see [27]), one deduces that for some σ ∈ (0,
√
κ∞)

|vn(x)| ≤ ce−
√
σ|x|. (4.18)
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By (4.11), it suffices to show that for n large enough,
λn
2

∫
R3
κ(x+ yn)v2

n −
3
8

∫
R3
µ(x+ yn)φvnv

2
n > 0. (4.19)

That is, we need to prove that for τ ∈ (0, 1),

I1 :=
∫
Bτ|yn|

[
λn
2
κ(x+ yn)v2

n −
3
8
µ(x+ yn)φvnv

2
n]

< I2 :=
∫

R3\Bτ|yn|
[
3
8
µ(x+ yn)φvnv

2
n −

λn
2
κ(x+ yn)v2

n]
(4.20)

To estimate I1, from (A4) we have that for all x ∈ Bτ |yn|,

κ(x+ yn) ≥ c1e−4τ
√
σ|yn| and µ(x+ yn) ≤ c2e−4τ

√
σ|yn|.

Thus, for any C > 0 and x ∈ Bτ |yn|, we infer that if n is large enough,

λn
2
− cκ(x+ yn)

µ(x+ yn)
>
λn
4
.

Since vn → w in C2
loc(R3), it follows that

I1 ≥
∫
Bτ|yn|

κ(x+ yn)v2
n

(λn
2
− cµ(x+ yn)

κ(x+ yn)

)
> cλn

∫
Bτ|yn|

κ(x+ yn)v2
n

> cλne
−4τ
√
σ|yn|

∫
B1

v2
n > cλne

−4τ
√
σ|yn|.

(4.21)

On the other hand, from (4.18) one infers that

I2 <

∫
R3\Bτ|yn|

3
8
µ(x+ yn)φvnv

2
n ≤ c

(∫
R3\Bτ|yn|

v
12
5
n

)5/3

< ce−4τ
√
σ|yn|. (4.22)

Hence, by the divergence of λn, for large n, we can conclude that I2 < I1. This
completes the proof. �

Proof of Theorem1.1. By Lemmas 2.4 and 4.1, we know that the conclusions of
Theorem 1.1 hold. �

5. Proof of Theorem 1.2

As we already pointed out in the introduction, new difficulty arises here. That
is, according to [18], we know that any sign-changing solution u of (2.14) such that
I∞(u) < 2m∞. From this we can not prove that Iλ satisfies the (PS)c-condition
for c ∈ (m∞, 2m∞). Motivated by [25, 36], we shall consider our problem in convex
set H1

+(R3) to overcome the difficult, where H1
+(R3) := {u ∈ H1(R3) : u ≥ 0}.

For any point u ∈ H1
+(R3), we define

J(u) = sup
u1∈H1

+(R3), ‖u−u1‖<1

〈 I ′(u), u− u1〉. (5.1)

It is easy to check that J is continuous on H1
+(R3). We define

N +
λ = Nλ ∩H1

+(R3), (5.2)

d = inf
u∈Nλ

I(u), d+ = inf
u∈N +

λ

I(u). (5.3)
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Next we study the properties of the Palais-Smale sequence of (1.6) on H1
+(R3) at

level c, for c ∈ (m∞, 2m∞).

Lemma 5.1. Suppose that (A1), (A2) hold. Let {un} ⊆ N +
λ be a sequence such

that Iλ(un) is bounded, and J(un) → 0 strongly in H1
+(R3). Then, up to a sub-

sequence, there exist a solution ū of (Iλ), a number k ∈ N ∪ {0}, k functions
u1, . . . , uk of H1

+(R3) and k sequence of points (yjn), yjn ∈ R3, 0 ≤ j ≤ k such that,
as n→ +∞,

un −
k∑
j=1

uj(· − yjn)→ ū in H1
+(R3), Iλ(un)→

k∑
j=1

I∞(uj) + Iλ(ū),

|yjn| → +∞, |yjn − yjn| → +∞ (if i 6= j),

and uj are weak solutions of (2.14).

Moreover, we notice that in the case k = 0, the above holds without uj.

Proof. We claim that I ′(un)→ 0 as n→∞. To prove this we first prove that {un}
is bounded in H1(R3). We assume that ‖un‖ → ∞ as n → ∞. It is very easy to
see that

yn = un ±
un

1 + ‖un‖
∈ H1

+(R3). (5.4)

So, we infer from J(un)→ 0 as n→∞, that

〈I ′(un),
un

1 + ‖un‖
〉 → 0 as n→∞. (5.5)

Thus, we obtain

0←
I(un)− 1

4 〈I
′(un), un〉

1 + ‖un‖
=

1
4‖un‖

2 + 1
4

∫
R3 λκ(x)u2

n

1 + ‖un‖

≥
1
4‖un‖

2

1 + ‖un‖
→ ∞.

(5.6)

as n→∞. This is contradiction. So, ‖un‖ is bounded. Moreover, as in (5.4)-(5.6)
we obtain that I ′λ(un)un → 0 as n→∞.

We now use an idea from [25, Theorem 7] to claim that I ′(un) → 0 as n → ∞.
Since ‖un‖ is bounded, without loss of generality we assume that un ⇀ u0 in
H1(R3), un → u0 in Lploc(RN )(∀p ∈ (2, 2∗)), and un(x)→ u0(x) a.e., in R3, where
u0 ≥ 0. From the assumption we can infer that J(un) = on(1), where on(1)→ 0 as
n → ∞. Let εn > 0 be such that limn→∞ εn = 0 and limn→∞ on(1)ε−1

n = 0. For
any g1 ∈ C∞0 (R3), we set

u1,n = un + εng1 + g1,εn ∈ H1
+(R3), (5.7)

where g1,εn = −min{0, un + εng1} ≥ 0. By the definition of J we know that

〈I ′(un), un − u1,n〉 ≤ J(un) = on(1). (5.8)

So,

〈I ′(un), g1〉 ≥ −ε−1
n 〈I ′(un), g1,εn〉+ ε−1

n on(1). (5.9)
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By a direct computations we can show that

− 〈I ′(un), g1,εn〉

= −
∫

R3
(∇un∇g1,εn + (κ∞ + λκ(x))ung1,εn + (µ∞ + µ(x))φunung1,εn)

=
∫

Ωn

(∇un∇(un + εng1) + (κ∞ + λκ(x))un(un + εng1))

−
∫

Ωn

(µ∞ + µ(x))φunun(un + εng1)

≥ εn
∫

Ωn

(∇un∇g1 + (κ∞ + λκ(x))ung1)− (µ∞ + µ(x))φunung1)

−
∫

Ωn

(µ∞ + µ(x))φunu
2
n

≥ εn
∫

Ωn

(∇un∇g1 + (κ∞ + λκ(x))ung1)− (µ∞ + µ(x))φunung1)

− ε2
n

∫
Ωn

(µ∞ + µ(x))φung
2
1 .

(5.10)

where Ωn := {x ∈ R3 : un(x) + εng1 < 0}. Form ‖un‖ is bounded, we infer that
|
∫

Ωn
(µ∞ + µ(x)) φung

2
1 | and

|
∫

Ωn

(∇un∇g1 + (κ∞ + λκ(x))ung1)− (µ∞ + µ(x))φunung1) |

are bounded. Moreover, since |Ωn| → 0 as n→∞, we can obtain that:

− 〈I ′(un), g1,εn〉 ≥ o(εn). (5.11)

By letting n→∞, we infer from (5.9) and (5.11) that

lim
n→∞

〈I ′(un), g1〉 ≥ 0, ∀g1 ∈ C∞0 (R3). (5.12)

Reversing the sign of g1 and since C∞0 (R3) is dense in H1(R3), We infer that
limn→∞〈I ′(un), g1〉 = 0, for all g1 ∈ H1(R3). So, I ′(un) → 0 as n → ∞ and the
claim holds.

The rest of proof is similar to [3, Theorem 4.1], and we omit the details here. �

Now we are ready to prove the compactness condition for the functional Iλ.

Lemma 5.2. Assume that (A1), (A2) hold on H1
+(R3). If mλ = m∞, then the

functional Iλ satisfies the (PS) condition at level c, for c ∈ (m∞, 2m∞).

Proof. Let {un} be a Palais-Smale sequence of Iλ constrained on N +
λ at level c, for

c ∈ (m∞, 2m∞). Applying Lemma 5.1 we can get that for any solution of (2.14)
satisfies u ≥ 0 and I∞ ≥ m∞. Moreover, any critical point ū of (Iλ) is such that
Iλ(ū) ≥ mλ = m∞. Thus, we know that k must be zero, and the conclusion of this
lemma holds. �

Let us now recall the barycenter definition of a function u ∈ H1
+(R3)\{0}, which

has introduced in [6]. Set

µ̂(u)(x) =
1

|B1(0)|

∫
|B1(x)|

|u(y)|,



16 J. WANG, M. QU, L. XIAO EJDE-2018/63

which belongs to L∞(R3) and is continuous; and set

û(x) =
[
µ̂(u)(x)− 1

2
max µ̂(x)

]+
, û ∈ C0(R3).

We define that β : H1
+(R3) \ {0} → R3 as

β(u) =
1
|û|1

∫
R3
xû(x) ∈ R3.

Since û has compact support, β is well defined. Moreover, the following properties
hold

(a) β is continuous in H1
+(R3);

(b) if u is a radial function, β(u) = 0;
(c) for all t 6= 0 and u ∈ H1

+(R3) \ {0}, β(tu) = β(u);
(d) given z ∈ R3 and setting uz(x) = u(x− z), β(uz) = β(u) + z.

Let
Bλ

0 := inf{Iλ(u) : u ∈ N +
λ , β(u) = 0}.

Lemma 5.3. Assume that (A1), (A2) hold. If λ ≥ 0 be fixed, and let mλ = m∞
be not achieved. then

mλ = m∞ < Bλ
0 .

Proof. We use the contradiction method. Let {un} ⊆ N +
λ be such that β(un) = 0

and Iλ(un) = m∞+ on(1). From the Ekeland variational principle(see [39] or [25]),
we can obtain there exist a sequence of functions {vn} such that

vn ∈ N+, Iλ(vn) = m∞ + on(1), J(vn)→ 0,

|β(vn)− β(un)| = on(1).
(5.13)

Since mλ is not achieved, (vn)n can not be relatively compact, by Lemma 5.1, the
equality

vn = wyn + o(1).
must be true with |yn| → +∞, which contradicts (5.13). �

Let ξ ∈ R3 with |ξ| = 1 and Σ = ∂B2(ξ). We define

w =
w( ∫

R3 φww2
)1/4 (5.14)

and for any y ∈ R3, wy = w(· − y). Observing that w satisfies

−∆w + κ∞w = Mφww, (5.15)

and by a direct computation we obtain that

M = 2m1/2
∞ µ1/2

∞ . (5.16)

For any ρ > 0 and (z, s) ∈ Σ× [0, 1], we define

ψρ(z, s) = (1− s)wρz + swρξ.

Let Ψρ : Σ× [0, 1]→ N +
λ be defined by

Ψρ(z, s) = tλz,sψρ(z, s),

where tλz,s > 0 be such that tλz,sψρ(z, s) ∈ N +
λ . Then we have the following results

to describe the property of Bλ
0 .
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Lemma 5.4. Assume that (A1), (A2) hold and let λ > 0 be fixed. Then for all
ρ > 0 we have

Bλ
0 ≤ T λ

ρ := max
Σ×[0,1]

Iλ(Ψρ(z, s)).

Proof. Since β(Ψρ(z, 0)) = ρz, we assert that β ◦ Ψρ(Σ × {0}) is homotopically
equivalent in R3\{0} to ρΣ, then, we can find (z, s) ∈ Σ × [0, 1] and satisfied
β(Ψρ(z, s)) = 0, and, naturally,

Bλ
0 ≤ Iλ(Ψρ(z, s)) ≤ T λ

ρ .

This completes the proof. �

Lemma 5.5. Let assumptions (A1), (A2), (A4) hold. Then there exist ρ0 > 0 such
that for ρ > ρ0,

T λ
ρ < 2m∞.

Proof. The idea of the proof is similar to that used in [7, 8], and we just sketch it
here for reader’s convenience. Observing that

Iλ(Ψρ(z, s)) =
1
4

{ ‖ψρ(z, s)‖2 + λ
∫

R3 κ(x)ψ2
ρ(z, s)

[
∫

R3(µ∞ + µ(x))φψρ(z,s)(x)ψ2
ρ(z, s)]1/2

}2

Let us first evaluate

N λ
ρ (z, s)

:= ‖ψρ(z, s)‖2 + λ

∫
R3
κ(x)ψ2

ρ(z, s)

= (1− s)2‖wρz‖2 + 2s(1− s)(wρz,wρξ)H1
+

+ s2‖wρξ‖2

+ λ
[
(1− s)2

∫
R3
κ(x)w2

ρz + 2s(1− s)
∫

R3
κ(x)wρzwρξ + s2

∫
R3
κ(x)w2

ρξ

]
.

Since w satisfies (5.15), it follows that ‖wρz‖2 = ‖wρξ‖2 = M, and

(wρz,wρξ)H1 = M
∫

R3
φwρzwρzwρξ = M

∫
R3
φwρξwρξwρz.

Then, from [4, Proposition 1.2] or [2, Lemma 3.7], and (4.5) and (A5) and the facts
|z| ≥ 1 and c∗ > 0, we infer that

ερ =
∫

R3
φwρzwρzwρξ =

∫
R3
φwρξwρξwρz ∼ |2ρ|2c

∗−1e−2ρ
√
κ∞ ,∫

R3
κ(x)w2

ρz ≤ c|ρz|2c
∗−2 log |ρz|e−2|ρz|√κ∞ < c log(3ρ)ρ2c∗−2e−2ρ

√
κ∞ = o(ερ),∫

R3
κ(x)w2

ρξ ≤ c|ρξ|2c
∗−2 log |ρξ|e−2|ρξ|√κ∞ < cρ2c∗−2e−2ρ

√
κ∞ log ρ = o(ερ),∫

R3
κ(x)wρzwρξ ≤ c

(∫
R3
κ(x)w2

ρz +
∫

R3
κ(x)w2

ρξ

)
= o(ερ).

So
N λ
ρ (z, s) = [(1− s)2 + s2]M + 2s(1− s)Mερ + o(ερ).

Moreover, by [9, lemma 2.7], we obtain

Dλ
ρ (z, s) :=

∫
R3

(µ∞ + µ(x))φψρ(z,s)(x)ψ2
ρ(z, s)
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≥ [(1− s)4 + s4]µ∞ + 3[(1− s)3s+ (1− s)s3]µ∞ερ.

Hence
N λ
ρ (z, s)

(Dλ
ρ (z, s))1/2

≤ 1

µ
1/2
∞

{ [(1− s)2 + s2]M
[(1− s)4 + s4]1/2

+ 2γ(s)Mερ + o(ερ)
}

where

γ(s) =
(1− s)s

[(1− s)4 + s4] 1
2

(1
4
− 3s2(1− s)2

2(1− s)4 + 2s4

)
.

By a direct computation we obtain that γ(1/2) < 0, hence, there exists I 1
2
, neigh-

borhood of 1/2, satisfied γ(1/2) < c < 0 for all t ∈ I 1
2
. Hence, for ρ enough

large,

max
{ N λ

ρ (z, s)
Dλ
ρ (z, s)1/2

|z ∈ Σ, s ∈ I 1
2

}
≤

1
4M + 2cMερ + o(ερ)

µ
1/2
∞

<
1
4
µ−1/2
∞ M;

On the another hand, we have

lim
ρ→+∞

max
{ N λ

ρ (z, s)
Dλ
ρ (z, s)1/2

|z ∈ Σ, s ∈ [0, 1]\I 1
2

}
≤ µ−1/2

∞ M max
{ [(1− s)2 + s2]

[(1− s)4 + s4]1/2
|s ∈ [0, 1]\I 1

2

}
<

1
4
µ−1/2
∞ M.

When ρ is large enough,

max
Σ×[0,1]

N λ
ρ (z, s)

Dλ
ρ (z, s)1/2

<
1
4
µ−1/2
∞ M.

By (5.16), we have

T λ
ρ <

1
4

(21/2µ−1/2
∞ M)2 = 2m∞.

This completes the proof. �

Lemma 5.6. Let the assumptions of lemma 5.3 hold. Then for ρ > 0 sufficiently
large,

A λ
ρ := max

Σ
Iλ(Ψρ(z, 0)) < Bλ

0 .

Proof. From (5.14), (5.15) and (5.16), we have that for sufficiently large ρ,

Iλ(Ψρ(z, 0)) =
1
4

{ ‖wρz‖2 + λ
∫

R3 κ(x)w2
ρz

[
∫

R3(µ∞ + µ(x))φwρzw2
ρz]1/2

}2

=
1
4

[
µ−1/2
∞ M + oρ(1)

]2
= m∞ + oρ(1).

From lemma 5.3 the conclusion follows. �

Proof of Theorem1.2. Let λ∗ be the number which has defined in (3.2). We infer
from Proposition 4.2 that λ∗ ∈ R+. Then, we deduce from Proposition 2.5 that if
λ < λ∗, then mλ < m∞. Furthermore, mλ is achieved.

Next we consider the case λ > λ∗. From Lemma 3.3 and Proposition 3.5, one
deduces that mλ = m∞, and mλ is not achieved. Thus, we can not use minimization
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to solve (1.6). However, we can prove that (1.6) has a higher energy than m∞ exists.
For any c ∈ R, we let Icλ := {u ∈ N +

λ : Iλ(u) ≤ c}. By Lemmas 5.4-5.6, we have
the following inequalities

m∞ ≤ A λ
ρ < Bλ

0 ≤ T λ
ρ < 2m∞.

We end the proof by showing that there exists a number c∗ ∈ [Bλ
0 ,T

λ
ρ ] which is a

critical level of Iλ|N +
λ

. We use the contradiction arguments. Assume that this is
not the case. Then the Palais-Smale condition holds in (m∞, 2m∞) by Lemma 5.2.
We can apply usual deformation arguments(see [39]) and assert the existence of a

number δ > 0 and a continuous function η : I
T λ
ρ

λ → I
Bλ

0−δ
λ such that Bλ

0 − δ > A λ
ρ

and η(u) = u for all u ∈ IBλ
0−δ

λ . Thus, we see that

0 /∈ β ◦ η ◦Ψρ(Σ, [0, 1]). (5.17)

On the other hand, since Ψρ(Σ, [0, 1]) ⊂ IA λ
ρ

λ , β ◦ η ◦Ψρ(Σ, [0, 1]) is homeomorphic
to ρΣ in R3\{0}. So, one has

0 ∈ β ◦ η ◦Ψρ(Σ, [0, 1]),

which contradicts (5.17).
Finally, because for any λ ∈ R+, we can find a solution uλ of (1.6) with Iλ(uλ) <

2m∞. Moreover, since we find the second solution in H1
+(R3), we conclude that it

is positive. �
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