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SEMICLASSICAL GROUND STATES FOR NONLINEAR
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Abstract. In this article, we study the Schrödinger-Poisson system

−ε2∆u+ V (x)u+ φ(x)u = Q(x)u3, x ∈ R3,

−ε2∆φ = u2, x ∈ R3,

where ε > 0 is a parameter, V and Q are positive bounded functions. We estab-

lish the existence of ground states for ε small, and describe the concentration
phenomena of ground states as ε→ 0.

1. Introduction and statement of main results

The Schrödinger-Poisson system

−ε2∆u+ V (x)u+ φu = l(x, u), x ∈ R3,

−ε2∆φ = u2, x ∈ R3,
(1.1)

was first introduced in [6] as a physical model describing a charged wave interact-
ing with its own electrostatic field in quantum mechanics. The unknowns u and
φ represent the wave functions associated to the particle and electric potential,
the function V is an external potential, and the nonlinearity l(x, u) simulates the
interaction between many particles or external nonlinear perturbations. For more
information on the physical aspects, we refer the reader to [6].

There are many results on the existence and concentration of solutions for (1.1)
and similar problems. Equation (1.1) is usually studied in two cases when ε is
regarded as a small parameter, and when ε is fixed (ε = 1). For fixed ε, see
[1, 2, 3, 4, 5, 7, 16, 17, 18, 19, 21, 26, 27, 28] and references therein. In this article,
we study onlythe case ε is small. So we shall recall some results for this case. In
[15] the authors considered the system

−ε2∆u+ V (x)u+ φ(x)u = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.2)

and proved that (1.2) has a single bump solution, which concentrates on the critical
points of V (x). Later, D’Aprile and Wei [8] constructed positive radially symmetric
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bound states of (1.2) with f(u) = up, 1 < p < 11
7 . By applying a standard

Lyapunov-Schmidt reduction methods, Ruiz and Vaira [22] proved the existence of
multi-bump solutions of (1.2), whose bumps concentrate around a local minimum
of the potential V (x) when f(u) = up and 3 < p < 5. On the other hand, He [12]
considered the system

−ε2∆u+ V (x)u+ φ(x)u = f(u), x ∈ R3,

−ε2∆φ = u2, x ∈ R3,
(1.3)

where f is of subcritical growth and:

f ∈ C1(R3), f(s) = o(s3) as s → 0, f(s)
s3 is increasing on (0,∞),

there exists µ > 4 such that 0 < µF (s) := µ
∫ s

0
f(t)dt ≤ sf(s),

s > 0, and
f ′(s)s2 − 3f(s)s ≥ Csσ, C > 0, σ ∈ (4, 6).

(1.4)

By using Ljusternik-Schnirelmann theory and minimax methods, he showed the
multiplicity of positive solutions of (1.3) which concentrate on the minima of V (x)
as ε→ 0. Later, Wang et al. [24] studied the system

−ε2∆u+ V (x)u+ φ(x)u = b(x)f(u), x ∈ R3,

−ε2∆φ = u2, x ∈ R3.
(1.5)

Suppose that V (x) has at least one minimum, b(x) has at least one maximum, and
f satisfies some weaker conditions than (1.4), namely

f ∈ C(R3), f(s) = o(s3) as s→ 0,
f(s)
s3

is increasing on (0,∞),

F (s)
s4
→∞ as s→∞,

Wang et al. obtained the existence and concentration of positive ground states for
(1.5) using the method of Nehari manifold and minimax methods. He and Zou [13]
considered the existence and concentration behavior of ground states of (1.1) with
critical growth,

−ε2∆u+ V (x)u+ φ(x)u = |u|4u+ f(u), x ∈ R3,

−ε2∆φ = u2, x ∈ R3,

where f satisfies (1.4) and f(t) ≥ λtσ for all t > 0, where σ ∈ (3, 5). Recently, He
et al. [14] studied the system

−ε2∆u+ V (x)u+ φ(x)u = λ|u|p−2u+ |u|4u, x ∈ R3,

−ε2∆φ = u2, x ∈ R3,

where 3 < p ≤ 4. Under certain assumptions on the potential V , they constructed
a family of positive solutions which concentrates around a local minimum of V .

It seems that, the existence and concentration of ground states for (1.1) with
three times growth have not been studied. So in the paper we shall fill this gap. In
the sequel, we consider the system

−ε2∆u+ V (x)u+ φu = Q(x)u3, x ∈ R3,

−ε2∆φ = u2, x ∈ R3.
(1.6)
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To state the main results, we need some notation. Set:

νmin = min
x∈R3

V (x), V := {x ∈ R3 : V (x) = νmin}, ν∞ := lim inf
|x|→∞

V (x) <∞,

qmax = max
x∈R3

Q(x), Q := {x ∈ R3 : Q(x) = qmax}, q∞ := lim sup
|x|→∞

Q(x) <∞.

We use the following assumptions
(A1) V,Q ∈ C(R3) ∩ L∞(R3) with νmin > 0 and infx∈R3 Q(x) > 0;

(A2) νmin < ν∞, and there exist R > 0 and xmin ∈ V such that Q(xmin) ≥ Q(x)
for all |x| ≥ R.

(A3) qmax > q∞, and there exist R > 0 and xmax ∈ Q such that V (xmax) ≤ V (x)
for all |x| ≥ R.

Observe that, for case (A2), we can assume that Q(xmin) = maxx∈V Q(x) and set

AV := {x ∈ V : Q(x) = Q(xmin)} ∪ {x 6∈ V : Q(x) > Q(xmin)};

while for case (A3), we can assume that V (xmax) = minx∈Q V (x) and set

AQ := {x ∈ Q : V (x) = V (xmax)} ∪ {x 6∈ Q : V (x) < V (xmax)}.

This kind of structure was recently introduced by Ding and Liu [9] which generalized
the case by Rabinowitz in [20].

The system (1.6) can be easily transformed into a Schrödinger equation with a
nonlocal term. Actually, for all u ∈ H1(R3) and fixed ε > 0, considering the linear
functional Lu defined in D1,2(R3) by

Lu(v) =
∫

R3
u2vdx.

By the Hölder inequality and the Sobolev inequality, we have

|Lu(v)| ≤ |u|212
5
|v|6 ≤ C|u|212

5
‖v‖D1,2 . (1.7)

Hence the Lax-Milgram theorem implies that there exists a unique φεu ∈ D1,2(R3)
such that

ε2
∫

R3
∇φεu∇vdx = Lu(v) =

∫
R3
u2vdx, ∀v ∈ D1,2(R3). (1.8)

Namely, φεu is the unique solution of −ε2∆φεu = u2. Moreover, φεu can be expressed
as

φεu(x) =
1

4πε2

∫
R3

u2(y)
|x− y|

dy.

Substituting φεu into the first equation of (1.6), we obtain

− ε2∆u+ V (x)u+ φεu(x)u = Q(x)u3. (1.9)

Let Lε denote the set of all positive ground states of (1.9). Now we state our main
results.

Theorem 1.1. Let (A1) and (A2) hold. Then for any ε > 0 small we have:
(1) Equation (1.6) has a positive ground state ψε = (wε, φεwε) in H1(R3)×D1,2(R3);
(2) Lε is compact in H1(R3);
(3) If additionally V and Q are uniformly continuous functions, then wε satisfies:
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(i) there exists a maximum point xε ∈ R3 of wε, such that limε→0 dist(xε,AV ) =
0. Setting vε(x) := wε(εx + xε), for any sequence xε → x0, ε → 0, vε con-
verges in H1(R3) to a ground state v of

−∆u+ V (x0)u+ φu(x)u = Q(x0)u3,

where φu(x) = 1
4π

∫
R3

u2(y)
|x−y|dy.

In particular, if V ∩ Q 6= ∅, then limε→0 dist(xε,V ∩ Q) = 0 and up to a
subsequence, vε converges in H1(R3) to a ground state v of

−∆u+ νminu+ φu(x)u = qmaxu
3,

(ii) |wε(x)| ≤ Cexp
(
− cε |x− xε|

)
, where C, c > 0.

Theorem 1.2. Suppose that (A1), (A3) hold. Then, all the conclusions of Theorem
1.1 remain true with AV replaced by AQ.

Outline for the proof. Compared with the previous results [12, 13, 14, 24], the main
difficulty is the lack of the higher-order term and the competing effect of the nonlocal
term with three times growth term, which causes that the standard method of
Nehari manifold is invalid. Inspired by [10], by restricting the functional in a set, the
functional has a unique maximum point along the nontrivial direction u in H1(R3).
Then we use the one-to-one correspondence of the functionals on the manifold and
an open set of the unit sphere to establish the new method of Nehari manifold.
We also would like to point out that, using the similar ideas, we [25] showed the
existence of classical ground states of system (1.1) with ε = 1 when the potentials
are asymptotically periodic. However, in this paper, we prove the existence and
concentration of semiclassical ground states for system (1.1) with small enough ε.
In addition, in the period of investigating the concentration behavior of ground
states, the competing effect of the nonlocal term φu and three times growth term
Q(x)u3 makes that some estimations and verifications become complex. �

In this paper we use the following notation. For 1 ≤ p ≤ ∞, the norm in Lp(R3)
is denoted by | · |p.

∫
R3 f(x)dx will be represented by

∫
R3 f(x). For any r > 0 and

x ∈ R3, Br(x) denotes the ball centered at x with the radius r.
This article is organized as follows. In Section 2 we introduce the variational

framework. In Section 3 we study the autonomous problem. In Section 4 we are
devoted to investigating an auxiliary problem. In Section 5, we give the proof of
Theorems 1.1 and 1.2.

2. The new method of Nehari manifold

For the proof of our theorems, we shall consider an equivalent equation to (1.9).
By making the change of variable x→ εx, the problem (1.9) turns out to be

−∆u+ V (εx)u+ φu(x)u = Q(εx)u3, u ∈ H1(R3), (2.1)

where H1(R3) is the Sobolev space with standard norm

‖u‖2 =
∫

R3
(|∇u|2 + u2).

Let S1 = {u ∈ H1(R3) : ‖u‖2 = 1}. From assumption (A1), it follows that

‖u‖2ε =
∫

R3
(|∇u|2 + V (εx)u2)
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is an equivalent norm on H1(R3). The functional associated with the equation (2.1)
is

Iε(u) =
1
2
‖u‖2ε +

1
4

∫
R3
φuu

2 − 1
4

∫
R3
Q(εx)u4.

Now we recall some standard properties of φu, see [25].

Lemma 2.1. Let (A1) hold. For any ε > 0, we have:
(i) If un ⇀ u in H1(R3), then φun ⇀ φu in D1,2(R3).

(ii) If un ⇀ u in H1(R3), then
∫

R3 φununv →
∫

R3 φuuv, for any v ∈ C∞0 (R3).

Below we describe the variational framework for our problem. Firstly we give
the Nehari manifold Nε corresponding to Iε:

Nε = {u ∈ H1(R3)\{0} : 〈I ′ε(u), u〉 = 0},
where

〈I ′ε(u), u〉 = |∇u|22 +
∫

R3
V (εx)u2 +

∫
R3
φuu

2 −
∫

R3
Q(εx)u4,

and the least energy on Nε is defined by cε := infNε Iε.

Lemma 2.2. Let (A1) hold. Then Iε is coercive on Nε.

Proof. For all u ∈ Nε, we have

Iε(u) = Iε(u)− 1
4
〈I ′ε(u), u〉 =

1
4
‖u‖2ε . (2.2)

Then Iε|Nε is coercive. �

Next we introduce a set to construct the new method of Nehari manifold as in
[25]. Define

Θε := {u ∈ H1(R3) :
∫

R3
φuu

2 <

∫
R3
Q(εx)u4}.

As in [25], we can show that Θε 6= ∅ since infR3 Q > 0 by (A1). Set

hε(t) := Iε(tu) =
t2

2
‖u‖2ε +

t4

4
[∫

R3
φuu

2 −
∫

R3
Q(εx)u4

]
,

using the similar argument in [25], we obtain the following two lemmas.

Lemma 2.3. Let (A1) hold. Then for any ε > 0, we have:
(i) For all u ∈ Θε, there exists a unique tε := tε(u) > 0 such that h′ε(t) > 0

for 0 < t < tε, and h′ε(t) < 0 for t > tε. Moreover, tεu ∈ Nε and Iε(tεu) =
maxt>0 Iε(tu).

(ii) If u 6∈ Θε, then tu 6∈ Nε for any t > 0.
(iii) For each compact subset W of Θε ∩ S1, there exists CW > 0 such that

tw ≤ CW for all w ∈W .

Lemma 2.4. Under assumption (A1), for ε > 0 we have:
(1) cε > 0;
(2) ‖u‖2ε ≥ 4cε for all u ∈ Nε.

From Lemma 2.3 (i), we define the mapping m̂ε : Θε → Nε by m̂ε(u) = tεu. In
addition, ∀v ∈ R+u we have m̂ε(v) = m̂ε(u). Let Uε := Θε∩S1, we easily infer that
Uε is an open subset of S1. Define mε := m̂ε|Uε . Then mε is a bijection from Uε to
Nε. Moreover, by Lemmas 2.3 and 2.4, as in the proof of [23, Proposition 3.1], we
have the following result.
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Lemma 2.5. If (A1) is satisfied, then the mapping mε is a homeomorphism between
Uε and Nε, and the inverse of mε is given by m−1

ε (u) = u
‖u‖ .

By Lemma 2.5, the least energy cε has the following minimax characterization:

cε := inf
u∈Nε

Iε(u) = inf
u∈Uε

max
t≥0

Iε(tu). (2.3)

Considering the functional Ψε : Uε → R given by Ψε(w) := Iε(mε(w)), as in [23,
Corollary 3.3] we easily deduce the following statement.

Lemma 2.6. Let (A1) hold. Then the following results hold:

(1) If {wn} is a PS sequence for Ψε, then {mε(wn)} is a PS sequence for Iε.
If {un} ⊂ Nε is a bounded PS sequence for Iε, then {m−1

ε (un)} is a PS
sequence for Ψε.

(2) w is a critical point of Ψε if and only if mε(w) is a nontrivial critical point
of Iε. Moreover, infNε Iε = infUε Ψε.

3. Autonomous problem

This section concerns the autonomous equation. Precisely, for any positive con-
stants ν and q, we consider

−∆u+ νu+ φu(x)u = qu3, u ∈ H1(R3). (3.1)

The functional of (3.1) is denoted by

Jν,q(u) =
1
2

∫
R3

(|∇u|2 + ν|u|2) +
1
4

∫
R3
φuu

2 − q

4

∫
R3
|u|4.

The Nehari manifold corresponding to (3.1) is defined by

Mν,q = {u ∈ H1(R3)\{0} : 〈J ′ν,q(u), u〉 = 0},

and the least energy on Mν,q is defined by mν,q := infMν,q
Jν,q.

Denote

Θq = {u ∈ H1(R3) :
∫

R3
φuu

2 < q

∫
R3
u4}.

Then as (2.3), mν,q has the following characterization:

mν,q := inf
Mν,q

Jν,q = inf
w∈Θq∩S1

max
t>0

Jν,q(tw). (3.2)

From [25] we have the following result.

Lemma 3.1. For any ν, q > 0, problem (3.1) has a positive ground state uν,q with
Jν,q(uν,q) = mν,q.

The following lemma describes the behavior of the least energy for different
parameters ν, q > 0, which will play an important role in proving the existence
results for (2.1).

Lemma 3.2. Let νi, qi > 0, i = 1, 2, with min{ν2 − ν1, q1 − q2} ≥ 0. Then
mν1,q1 ≤ mν2,q2 . If additionally max{ν2 − ν1, q1 − q2} > 0, then mν1,q1 < mν2,q2 .
In particular, mν1,qi < mν2,qi if ν1 < ν2 and mνi,q2 < mνi,q1 if q2 > q1.
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Proof. We prove that mν1,q1 ≤ mν2,q2 for example. From Lemma 3.1, choose u to
be a positive ground state of problem (3.1) with ν = ν2 and q = q2. Then u ∈ Θq2

and

mν2,q2 = Jν2,q2(u) = max
t≥0

Jν2,q2(tu).

With the use of q1 ≥ q2, u ∈ Θq1 . Then there exists t0 > 0 such that Jν1,q1(t0u) =
maxt≥0 Jν1,q1(tu). By min{ν2−ν1, q1−q2} ≥ 0, we obtain Jν1,q1(t0u) ≤ Jν2,q2(t0u).
Then by (3.2) we have

mν1,q1 = inf
w∈Θq1∩S1

max
t≥0

Jν1,q1(tw) ≤ max
t≥0

Jν1,q1(tu) = Jν1,q1(t0u)

≤ Jν2,q2(t0u) ≤ Jν2,q2(u) = mν2,q2 .

�

4. An auxiliary problem

Now, we are ready to introduce the auxiliary problem for (2.1). For any νmin ≤
ã ≤ ν∞, q∞ ≤ b̃ ≤ qmax. Set

V ãε (x) := max{ã, V (εx)}, Qb̃ε(x) := min{b̃, Q(εx)},

and consider the auxiliary equation

−∆u+ V ãε (x)u+ φu(x)u = Qb̃ε(x)u3. (4.1)

The functional is

I ã,b̃ε (u) =
1
2

∫
R3

(|∇u|2 + V ãε (x)u2) +
1
4

∫
R3
φuu

2 − 1
4

∫
R3
Qb̃ε(x)u4,

and the Nehari manifold is

N ã,b̃
ε = {u ∈ H1(R3)\{0} : 〈(I ã,b̃ε )′(u), u〉 = 0},

and the least energy on N ã,b̃
ε is denoted by cã,b̃ε . Moreover, as in Section 2, denote

Θb̃
ε := {u ∈ H1(R3) :

∫
R3
φuu

2 <

∫
R3
Qb̃ε(x)u4}.

and cã,b̃ε can be characterized by

cã,b̃ε = inf
u∈N ã,b̃ε

I ã,b̃ε (u) = inf
u∈Θb̃ε∩S1

max
t>0

I ã,b̃ε (tu). (4.2)

Lemma 4.1. mã,b̃ ≤ cã,b̃ε .

Proof. For any u ∈ Θb̃
ε ∩ S1, we have u ∈ Θb̃ ∩ S1 since b̃ ≥ Qb̃ε(x). Then

mã,b̃ ≤ max
t>0

Jã,b̃(tu) ≤ max
t>0

I ã,b̃ε (tu).

By the arbitrary of u, from (4.2) we obtain that mã,b̃ ≤ cã,b̃ε . �
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5. Proof of the main results

In this part, we only prove Theorem 1.1, since the arguments for Theorem 1.2
are quite similar. Without loss of generality, we may assume that xmin := 0 ∈ V in
(A2) or xmin := 0 ∈ V ∩ Q if V ∩ Q 6= ∅. Denote

d := Q(0) = max
x∈V

Q(x) ≥ Q(x), ∀|x| ≥ R

and consider the functional Iε.

Lemma 5.1. lim supε→0 cε ≤ mV (y1),Q(y1), where y1 ∈ R3. In particular, lim supε→0 cε ≤
mV (0),Q(0) := mνmin,d.

Proof. Since (3.1) has a positive ground state for each ν, q > 0, we can take u ∈
MV (y1),Q(y1) such that JV (y1),Q(y1)(u) = mV (y1),Q(y1). Then∫

R3
(|∇u|2 + V (y1)|u|2) +

∫
R3
φuu

2 =
∫

R3
Q(y1)|u|4. (5.1)

Then for small ε > 0, it holds∫
R3

(|∇u|2 + V (εx+ y1)|u|2) +
∫

R3
φuu

2 =
∫

R3
Q(εx+ y1)u4 + oε(1).

Set wε(x) = u(x− y1
ε ). Then∫

R3
(|∇wε|2 + V (εx)|wε|2) +

∫
R3
φwεw

2
ε =

∫
R3
Q(εx)w4

ε + oε(1). (5.2)

Since for small ε > 0, ∫
R3
Q(εx)w4

ε −
∫

R3
φwεw

2
ε ≥ C > 0, (5.3)

we have that wε ∈ Θε. So there exists tε > 0 such that tεwε ∈ Nε. Then

t2ε

∫
R3

(|∇wε|2 + V (εx)|wε|2) + t4ε

∫
R3
φwεw

2
ε = t4ε

∫
R3
Q(εx)w4

ε . (5.4)

By (5.2) and (5.4) we obtain

(t2ε − 1)
[∫

R3
Q(εx)w4

ε −
∫

R3
φwεw

2
ε

]
= oε(1).

Using (5.3) we have that tε → 1 as ε→ 0. Since tεwε ∈ Nε, one has

cε ≤ Iε(tεwε) =JV (y1),Q(y1)(tεwε) +
t2ε
2

∫
R3

(V (εx)− V (y1))w2
ε

+
t4ε
4

∫
R3

(Q(y1)−Q(εx))|wε|4

=JV (y1),Q(y1)(tεwε) +
t2ε
2

∫
R3

(V (εx+ y1)− V (y1))u2

+
t4ε
4

∫
R3

(Q(y1)−Q(εx+ y1))|u|4.

Therefore,

cε ≤ JV (y1),Q(y1)(tεwε) + oε(1) = JV (y1),Q(y1)(tεu) + oε(1) = JV (y1),Q(y1)(u) + oε(1).

Then
lim sup
ε→0

cε ≤ JV (y1),Q(y1)(u) = mV (y1),Q(y1).
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In particular, we take y1 = 0, it follows that

lim sup
ε→0

cε ≤ mV (0),Q(0) = mνmin,d.

�

Lemma 5.2. The minimax value cε is achieved if ε is small enough. Hence, problem
(2.1) has a positive ground state if ε is small enough.

Proof. Assume that wn ∈ Uε satisfies that Ψε(wn) → infUε Ψε. By the Ekeland
variational principle, we may suppose that Ψ′ε(wn)→ 0. Then from Lemma 2.6 (1)
it follows that I ′ε(un)→ 0, where un = mε(wn) ∈ Nε. By Lemma 2.6 (2), we have
Iε(un) = Ψε(wn)→ cε. By Lemma 2.2, we obtain that {un} is bounded in H1(R3).
Up to a subsequence, we assume that un ⇀ ũε in H1(R3), un → ũε in L2

loc(R3) and
un → ũε a.e. on R3. Then I ′ε(ũε) = 0. Below we discuss for two cases.

(i) ũε 6= 0 if ε is small enough. Then ũε ∈ Nε. So Iε(ũε) ≥ cε. On the other
hand,

Iε(ũε)−
1
4
〈I ′ε(ũε), ũε〉 =

1
4
‖ũε‖2ε ≤

1
4
‖un‖2ε + on(1)

= Iε(un)− 1
4
〈I ′ε(un), un〉+ on(1) = cε + on(1).

(5.5)

Then Iε(ũε) ≤ cε. Therefore, Iε(ũε) = cε, and then un → ũε in H1(R3) by (5.5).
(ii) There exists a sequence εj with ũεj = 0. For each fixed j, there exists a

sequence un ∈ Nεj such that un ⇀ ũεj = 0 in H1(R3). By cεj > 0 in Lemma 2.4,
it is easy to see that {un} is non-vanishing. Then there exists xn ∈ R3 and δ0 > 0
such that ∫

B1(xn)

u2
n(x)dx > δ0. (5.6)

Select ã ∈ (νmin, ν∞). Since un ∈ Nεj , we know that

|∇un|22 +
∫

R3
V (εjx)u2

n +
∫

R3
φunu

2
n =

∫
R3
Q(εjx)u4

n.

It is easy to see that∫
R3

(V ãεj (x)− V (εjx))u2
n =

∫
{x|V (εjx)≤ã}

(ã− V (εjx))u2
n = on(1). (5.7)

Similarly,∫
R3

(Qdεj (x)−Q(εjx))u4
n =

∫
{x|Q(εjx)≥d}

(Q(εjx)− d)u4
n = on(1). (5.8)

Then

|∇un|22 +
∫

R3
V ãεj (x)u2

n +
∫

R3
φunu

2
n =

∫
R3
Qdεj (x)u4

n + on(1).

By (5.6), we obtain that∫
R3
Qdεj (x)u4

n −
∫

R3
φunu

2
n ≥

∫
R3
V ãεj (x)u2

n + on(1) ≥ C
∫

R3
u2
n + on(1) > δ > 0.

(5.9)
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Hence, un ∈ Θd
εj . Then there exists tn > 0 such that tnun ∈ N ã,d

εj . We claim that
tn is bounded. Otherwise, assume that tn →∞. By tnun ∈ N ã,d

εj , we know that

|∇un|22 +
∫

R3
V ãεj (x)u2

n + t2n

∫
R3
φunu

2
n = t2n

∫
R3
Qdεj (x)u4

n. (5.10)

By (5.9), there is a contradiction for (5.10) if tn → ∞. Therefore, tn is bounded.
Then

cã,dεj ≤ I
ã,d
εj (tnun)

= Iεj (tnun) +
1
2

∫
R3

[V ãεj (x)− V (εjx)]t2nu
2
n −

1
4

∫
R3

[Qdεj (x)−Q(εjx)]t4nu
4
n.

By the boundedness of tn, (5.7) and (5.8), we obtain

cã,dεj ≤ Iεj (tnun) + on(1) ≤ Iεj (un) + on(1).

Hence cã,dεj ≤ cεj as n→∞. However, from Lemma 4.1, it holds

mã,d ≤ cã,dεj ,

leading to mã,d ≤ cεj . Taking the limit j →∞ and using Lemma 5.1, we obtain

mã,d ≤ mνmin,d,

which is a contradiction to Lemma 3.2 since ã > νmin.
Now we find the ground state ũε for (2.1). Using the standard argument, we can

further find a positive ground state for (2.1). This completes the proof. �

Denote Jε as the set of all positive ground states of (2.1).

Lemma 5.3. Let (A1), (A2) hold. Then Jε is compact in H1(R3) for all small
ε > 0.

Proof. Let the bounded sequence {un} ⊂ Jε ∩ Nε be such that Iε(un) = cε and
I ′ε(un) = 0. Without loss of generality we assume that un ⇀ u ∈ H1(R3). As done
in the proof of Lemma 5.2, we obtain that un → u > 0, u ∈ Nε and Iε(u) = cε.
Then u ∈Jε. �

Lemma 5.4. Suppose that (A1), (A2) are satisfied, and V,Q are uniformly con-
tinuous. Let uε be the positive ground state obtained in Lemma 5.2. Then there
is yε ∈ R3 such that limε→0 dist(εyε,AV ) = 0, and for each sequence εyε → y0,
vε(x) := uε(x+ yε) converges in H1(R3) to a ground state v of

−∆u+ V (y0)u+ φu(x)u = Q(y0)u3, u > 0.

In particular, if V ∩ Q 6= ∅, it follows that limε→0 dist(εyε,V ∩ Q) = 0, and up to
subsequences, vε converges in H1(R3) to a ground state v of

−∆u+ νminu+ φu(x)u = qmaxu
3, u > 0.

Proof. Let un be the positive ground states of problem (2.1) with parameter εn → 0.
It is easy to see that un is bounded and non-vanishing. Then there exists δ > 0
such that ∫

B1(yn)

|un|2dx ≥ δ. (5.11)



EJDE-2018/61 SEMICLASSICAL GROUND STATES 11

Setting vn(x) = un(x+ yn), Ṽεn(x) = V (εn(x+ yn)) and Q̃εn(x) = Q(εn(x+ yn)),
we see that vn solves the below problem

−∆u+ Ṽεn(x)u+ φu(x)u = Q̃εn(x)u3,

with energy functional

Ĩεn(vn) =
1
2
(∫

R3
|∇vn|2 + Ṽεn(x)v2

n

)
+

1
4

∫
R3
φvnv

2
n −

1
4

∫
R3
Q̃εn(x)v4

n.

Since vn is also bounded in H1(R3), from (5.11), we may assume that vn ⇀ v 6= 0
in H1(R3).
Claim 1: The sequence εnyn must be bounded. Otherwise if εnyn →∞, then we
may suppose that V (εnyn) → V0 ≥ ν∞ > νmin and Q(εnyn) → Q0 ≤ d := Q(0).
Since V and Q are uniformly continuous functions, it follows that for R > 0 and
|x| ≤ R,

|Ṽεn(x)− V0| ≤ |V (εn(x+ yn))− V (εnyn)|+ |V (εnyn)− V0| → 0.

Similarly,
|Q̃εn(x)−Q0| → 0, ∀|x| ≤ R.

Then for each η ∈ C∞0 (R3), we infer that

lim
n→∞

∫
R3
Ṽεn(x)vnη =

∫
R3
V0vη, lim

n→∞

∫
R3
Q̃εn(x)v3

nη =
∫

R3
Q0v

3η. (5.12)

Moreover, by Lemma 2.1 (ii), we have

lim
n→∞

∫
R3
φvnvnη =

∫
R3
φvvη.

Thus, v solves
−∆v + V0v + φv(x)v = Q0v

3 in R3. (5.13)

From Fatou’s lemma and Lemma 5.1 it follows that

mνmin,d ≥ lim inf
n→∞

cεn = lim inf
n→∞

[Iεn(un)− 1
4
〈I ′εn(un), (un)〉]

= lim inf
n→∞

[Ĩεn(vn)− 1
4
〈Ĩ ′εn(vn), (vn)〉]

= lim inf
n→∞

1
4

∫
R3

(|∇vn|2 + Ṽεn(x)|vn|2)

≥ 1
4

∫
R3

(|∇v|2 + V0|v|2)

= JV0,Q0(v)− 1
4
〈J ′V0,Q0

(v), v〉 ≥ mV0,Q0 .

(5.14)

However, from the fact that νmin < V0 and d ≥ Q0, Lemma 3.2 implies that
mνmin,d < mV0,Q0 . This is a contradiction. Hence {εnyn} is bounded and we
suppose that εnyn → y0.
Claim 2:

y0 ∈ AV := {x ∈ V : Q(x) = Q(xmin)} ∪ {x 6∈ V : Q(x) > Q(xmin)}.

If y0 6∈ AV , then it is easy to see that

mνmin,d < mV (y0),Q(y0). (5.15)
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Repeating the arguments of Claim 1 again, we have mνmin,d ≥ mV (y0),Q(y0). This
contradicts with (5.15). Therefore, y0 ∈ AV . Namely, limεn→0 dist(εnyn,AV ) = 0.
In particular, if V ∩ Q 6= ∅, it follows that limε→0 dist(εyε,V ∩ Q) = 0.
Claim 3: vn converges strongly to v in H1(R3). Following the arguments in the
proof of Claim 1, we know that v is a solution of the equation

−∆v + V (y0)v + φv(x)v = Q(y0)v3.

Moreover, as (5.14) we obtain

mV (y0),Q(y0) ≤
1
4

∫
R3

(|∇v|2 + V (y0)v2)

≤ lim inf
n→∞

1
4

∫
R3

(|∇vn|2 + Ṽεn(x)|vn|2) = lim inf
n→∞

cεn .

By Lemma 5.1, we know that lim infn→∞ cεn ≤ mV (y0),Q(y0). Then

lim
n→∞

∫
R3
|∇vn|2 =

∫
R3
|∇v|2, (5.16)

lim
n→∞

∫
R3
Ṽεn(x)|vn|2 =

∫
R3
V (y0)v2. (5.17)

In addition, since V is uniformly continuous, we know that

lim
n→∞

∫
R3
Ṽεn(x)|v|2 =

∫
R3
V (y0)v2.

This combining with (5.17) we obtain vn → v in L2(R3). By (5.16), we know that
vn → v in H1(R3). Hence, if V ∩ Q 6= ∅, up to subsequences, vn converges in
H1(R3) to a ground state v of

−∆u+ νminu+ φu(x)u = qmaxu
3, u > 0.

�

Lemma 5.5. Suppose that (A1), (A2) are satisfied, and V,Q are uniformly con-
tinuous. Set vn := un(x + yn), where un is the positive ground state obtained in
Lemma 5.2 and yn is given in (5.11). Then:

(i) there exist δ′ and M > 0 such that δ′ ≤ |vn|∞ ≤M for all n ∈ N.
(ii)

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

Moreover, there exist C, c > 0 such that

vn(x) ≤ Ce−c|x|, ∀x ∈ R3.

Proof. As in the proof of Lemma 5.4, we have that vn is the solution of

−∆vn + Ṽεn(x)vn + φvn(x)vn = Q̃εn(x)v3
n,

and vn → v 6= 0 in H1(R3). Then

lim
R→∞

(∫
|x|≥R

(v2
n + v6

n)
)

= 0, uniformly for n ∈ N. (5.18)

Using [13, Proposition 3.3], we obtain that vn ∈ Lt(R3) for all t ≥ 2 and

|vn|t ≤ Ct‖vn‖H1(R3),
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where Ct does not depend on n. Then for t > 3, |v3
n| t2 ≤ C for all n. Thus by [11,

Theorem 8.17], we infer that for all y ∈ R3,

sup
B1(y)

vn(x) ≤ C
(
|vn|L2(B2(y)) + |v3

n|L t2 (B2(y))

)
. (5.19)

This implies that |vn|∞ is uniformly bounded. Recall that by (5.11),

δ ≤
∫
B1(yn)

|un|2dx ≤ |B1||vn|2∞.

Then |vn|∞ ≥ δ′, for all n. Combining (5.19) with (5.18), we obtain

lim
|x|→∞

vn(x) = 0 uniformly for all n ∈ N.

Then we can take ρ0 > 0 such that

Q̃εn(x)v3
n ≤

νmin

2
vn,

for all |x| > ρ0. Consequently,

−∆vn +
Ṽεn(x)

2
vn leqQ̃εn(x)v3

n −
Ṽεn(x)

2
vn ≤ 0,

for all |x| ≥ ρ0. Let s and T be positive constants such that

s2 <
νmin

2
, vn(x) ≤ Te−sρ0 ,

for all |x| = ρ0. Hence, the function ψ(x) = Texp(−s|x|) satisfies

−∆ψ +
Ṽεn(x)

2
ψ ≥ (

νmin

2
− s2)ψ > 0,

for all x 6= 0. Thereby, taking η = max{vn−ψ, 0} ∈ H1
0 (|x| > ρ0) as a test function,

we obtain

0 ≥
∫

R3

(
∇vn∇η +

Ṽεn(x)
2

vnη
)

≥
∫

R3

(
(∇vn −∇ψ)∇η +

Ṽεn(x)
2

(vn − ψ)η
)

≥ νmin

2

∫
{x∈R3:vn>ψ}

(vn − ψ)2 ≥ 0,

for all |x| > ρ0. Therefore, the set Ωn := {x ∈ R3 : |x| > ρ0 and vn > ψ(x)} is
empty. Then we know that there exists C, c > 0 such that

vn(x) ≤ Ce−c|x|,∀x ∈ R3.

This completes the proof. �

Proof of Theorem 1.1. Going back to (1.6) with the substitution of variables x 7→ x
ε ,

Lemma 5.2 implies that (1.6) has a positive ground state wε = uε(xε ) for ε > 0 small.
Lemma 5.3 implies that Lε is compact in H1(R3). Set εn → 0 as n → ∞. If bn
denotes a maximum point of vn, then from Lemma 5.5 (i), it follows that it is
bounded. Then we assume that bn ∈ BR(0). Thereby, the global maximum point
of un is zn := bn + yn and then xn := εnzn is the maximum point of wn. From the
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boundedness of bn, by Lemma 5.4 we obtain that limn→∞ xn = y0, which together
with the continuity of V gives

lim
n→∞

V (xn) = V (y0), lim
n→∞

Q(xn) = Q(y0).

Then from Lemma 5.4, the proof of the conclusion (3)(i) in Theorem 1.1 is complete.
Moreover, from Lemma 5.5, by the boundedness of bn we obtain

wn(x) = un(
x

εn
) = vn(

x

εn
−yn) = vn(

x

εn
−xn
εn
−bn) ≤ Ce−c|

x
εn
− xnεn −bn| ≤ Ce−

c
εn
|x−xn|.

Thus, for small ε > 0, we have that

wε(x) ≤ Ce− cε |x−xε|.

�

Proof of Theorem 1.2. If the potential functions V and Q satisfy condition (A3),
we can assume that xmax := 0 ∈ Q in (A3) or xmax := 0 ∈ V ∩ Q if V ∩ Q 6= ∅.
Denote

e := V (0) = min
x∈Q

V (x) ≤ V (x), ∀|x| ≥ R.

The rest is similar to the proof of Theorem 1.1. �
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