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Abstract. In this article, we establish some new composition theorems on

measure pseudo almost automorphic functions via measure theory. The ob-

tained compositions theorems generalize those established under the well-
known Lipschitz conditions or the classical uniformly continuous conditions.

Then using the theories of resolvent operators and fixed point theorem, we in-

vestigate the existence and uniqueness of measure pseudo almost automorphic
solutions to a fractional differential equation in Banach spaces.

1. Introduction

The almost automporphic function introduced by Bochner [6] is seen as a sig-
nificant generalization of the classical almost periodic function. Since then, almost
automorphic functions have been considerably investigated and undergone some
interesting, natural and powerful generalizations. The concept of asymptotically
almost automorphic functions was introduced by N’Guérékata [22]. Liang, Xiao
and Zhang [15, 29] further developed the theory of pseudo almost automorphic
functions suggested by N’Guérékata in [21]. Blot et al. [4] introduced the notion
of weighted pseudo almost automorphic functions with values in a Banach space,
which seems to be more general and complicated than pseudo-almost automorphic
functions. One can refer to [1, 2, 10, 11, 12, 20, 21, 23, 27, 30] and references
therenin for more results on above mentioned functions and their applications in
differential equations. In 2012, Blot, Cieutat and Ezzinbi [5] applied the abstract
measure theory to define an ergodic function and established fundamental proper-
ties of measure pseudo almost automorphic functions, and thus the classical theories
of pseudo almost automorphic functions and weighted pseudo almost automorphic
functions become particular cases of this approach. After that, the measure pseudo
almost automorphic function has been developed in different ways, see for instance
[8, 13, 28] and references therein.
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Fractional calculus can be seen a generalization of the ordinary differentiation
and integration to arbitrary non-integer order, and has been recognized as one of
the most powerful tools to describe long-memory processes in the last decades.
Many phenomena from physics, chemistry, mechanics, electricity can be modeled
by ordinary and partial differential equations involving fractional derivatives, we
refer to [3, 14, 25, 26, 31, 32] and references therein for more developments on this
topic.

Inspired by above mentioned works [5, 23], the aim of this work is first to es-
tablish some new composition theorems on measure pseudo almost automorphic
functions via measure theory. The obtained compositions theorems generalize those
based upon the well-known Lipschitz conditions or the classical uniformly continu-
ous conditions. These composition theorems are new even for (weighted-) pseudo
almost automorphic functions. Then using the theories of resolvent operators and
fixed point theorem, we investigate the existence and uniqueness of measure pseudo
almost automorphic solutions to the following fractional differential equation

Dαu(t) = A u(t) +
∫ t

−∞
a(t− s)A u(s)ds+ f(t, u(γ(t))), t ∈ R, (1.1)

where (X, ‖ · ‖) is a Banach space, A is a closed linear operator defined on Banach
space X, a ∈ L1

loc(R+) is a scalar-valued kernel, f, γ are appropriate functions
satisfying some properties specified later, and for α > 0, the fractional derivative
Dα is understood in the sense of Weyl.

The rest of this article is organized as follows. In Section 2, we introduce some
basic definitions, lemmas, and preliminary results which will be used throughout
this paper. In Section 3, we first establish new composition theorems of measure
pseudo almost automorphic functions, and then we investigate the existence and
uniqueness of measure pseudo almost automorphic mild solutions to equation (1.1).

2. Preliminaries

This section presents some preliminary results needed in the sequel. Throughout
this article, (X, ‖ · ‖) denotes a Banach space and BC(R,X) denotes the Banach
space of bounded continuous functions from R to X, equipped with the supremum
norm ‖f‖∞ = supt∈R ‖f(t)‖. We also denote by B(X) the space of bounded linear
operators from X into X endowed uniform operator topology.

Definition 2.1 ([6]). A continuous function f : R→ X is said to be almost auto-
morphic if for every sequence of real numbers {s′n}n∈N, there exists a subsequence
{sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(R,X).

Definition 2.2 ([16, 30]). A continuous function f : R → X (resp. R × X → X)
is called pseudo-almost automorphic if it can be decomposed as f = g + φ, where
g ∈ AA(R,X) (resp. AA(R×X,X)) and φ ∈ PAA0(R,X) (resp. PAA0(R×X,X)).
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Denote by PAA(R,X) (resp. PAA(R× X,X)) the set of all such functions, where

PAA0(R,X) :=
{
φ ∈ BC(R,X) : lim

r→∞

1
2r

∫ r

−r
‖φ(t)‖dt = 0

}
,

PAA0(R× X,X) :=
{
φ ∈ BC(R× X,X) : lim

r→∞

1
2r

∫ r

−r
‖φ(t, x)‖dt = 0

uniformly for x in any bounded subset of X
}
.

Let U denote the set of all functions (weights) ρ : R→ (0,∞), which are locally
integrable over R such that ρ > 0 almost everywhere. For a given r > 0 and for
each ρ ∈ U, we set

m(r, ρ) =
∫ r

−r
ρ(t)dt.

We denote by U∞ the set of all ρ ∈ U with limr→∞m(r, ρ) =∞.

Definition 2.3 ([4]). Let ρ ∈ U∞. A bounded continuous function f : R→ X(resp.
R×X→ X) is called weighted pseudo almost automorphic if it can be decomposed
as f = g + φ, where g ∈ AA(R,X) (resp. AA(R × X,X)) and φ ∈ PAA0(R,X, ρ)
(resp. PAA0(R × X,X, ρ)). The class of all such functions will be denoted by
WPAA(R,X, ρ) (resp. WPAA(R× X,X, ρ)), where

PAA0(R,X, ρ) :=
{
φ ∈ BC(R,X) : lim

r→∞

1
m(r, ρ)

∫ r

−r
‖φ(t)‖ρ(t)dt = 0

}
;

PAA0(R× X,X, ρ) :=
{
φ ∈ BC(R× X,X) : lim

r→∞

1
m(r, ρ)

∫ r

−r
|φ(t, x)|ρ(t)dt = 0

uniformly for x in any bounded subset of X
}
.

Let B denote the Lebesgue σ-field of R andM be the set of all positive measures
µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R with a < b. For
µ ∈M and τ ∈ R, let µτ denote the positive measures on B defined by

µτ (A) = µ({a+ τ : a ∈ A}), A ∈ B.
For µ ∈M, we always assume that the following hypothesis holds throughout this
paper:

(A1) For all τ ∈ R, there exist β > 0 and bounded interval I such that

µτ (A) ≤ βµ(A),

when A ∈ B satisfies A ∩ I = ∅.

Definition 2.4 ([5]). Let µ ∈ M. A bounded continuous function f : R → X is
said to be µ-ergodic if

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖f(t)‖dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).

Definition 2.5 ([5]). Let µ ∈ M. A continuous function f : R → X is said to be
measure pseudo almost automorphic if f is written in the form: f = g + φ, where
g ∈ AA(R,X) and φ ∈ ε(R,X, µ). We denote the space of all such functions by
PAA(R,X, µ).
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Definition 2.6 ([5]). Let µ ∈ M. A continuous function f : R × X → X is said
to be µ-pseudo almost automorphic if f is written in the form: f = g + φ, where
g ∈ AA(R×X,X) and φ ∈ ε(R×X,X, µ). We denote the space of all such functions
by PAA(R× X,X, µ), where

ε(R× X,X, µ) :=
{
φ ∈ BC(R× X,X) : lim

r→∞

1
µ([−r, r])

∫
[−r,r]

‖φ(t, x)‖dµ(t) = 0

uniformly for x in any bounded subset of X.

Definition 2.7 ([5]). Let µ1 and µ2 ∈M. µ1 is said to be equivalent to µ2(µ1 ∼ µ2)
if there exist constants α and β > 0 and a bounded interval I(eventually I = ∅)
such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A),

for A ∈ B satisfying A ∩ I = ∅.

Now we recall some basic facts on µ-ergodicity and µ-pseudo almost automorphy.

Lemma 2.8 ([5, Lemma 3.2]). Let µ ∈M. Then µ satisfies (A1) if and only if µ
and µτ are equivalent for all τ ∈ R.

Lemma 2.9 ([5, Theorem 3.5]). Let µ ∈ M satisfy (A1). Then ε(R,X, µ) is
translation invariant, therefore PAA(R,X, µ) is also translation invariant.

Lemma 2.10 ([5, Theorem 2.14]). Let µ ∈ M and I be the bounded interval
(eventually I = ∅). Assume that f ∈ BC(R,X). Then the following assertions are
equivalent.

(I) f ∈ ε(R,X, µ);
(II) limr→+∞

1
µ([−r,r]\I)

∫
[−r,r]\I ‖f(t)‖dµ(t) = 0;

(III) For any ε > 0, limr→+∞
µ({t∈[−r,r]\I:‖f(t)‖>ε})

µ([−r,r]\I) = 0.

Lemma 2.11 ([5, Theorem 4.1]). Let µ ∈ M and f ∈ PAA(R,X, µ) be such that
f = g + φ, where g ∈ AA(R,X) and φ ∈ ε(R,X, µ). If PAA(R,X, µ) is translation
invariant, then {g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}, (the closure of the range of f).

Lemma 2.12 ([5, Theorem 4.7]). Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then the decomposition of a µ-pseudo almost automorphic
function in the form f = g + φ where g ∈ AA(R,X) and φ ∈ ε(R,X, µ) is unique.

Lemma 2.13 ([5, Theorem 4.9]). Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then (PAA(R,X, µ), ‖ · ‖∞) is a Banach space.

Definition 2.14 ([23]). Given a function f : R → X, the Wely fractional integral
of order α > 0 is defined by

D−αf(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1

f(s)ds, t ∈ R

when this integral is convergent. The Wely fractional derivative Dαf of order α > 0
is defined by

Dαf(t) :=
dn

dtn
D−(n−α)f(t), t ∈ R

where n = [α] + 1.
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Definition 2.15. [23] Let A be a closed and linear operator with domain D(A )
defined on a Banach space X, and α > 0. Given a ∈ L1

loc(R+), the operator A is
called the generator of an α-resolvent family, if there exist ω ≥ 0 and a strongly
continuous function Sα : [0,∞)→ B(X) such that { λα

1+â(λ) : Reλ > ω} ⊂ ρ̄(A ) and
for all x ∈ X,(

λα − (1 + â(λ))A
)−1

x =
1

1 + â(λ)

( λα

1 + â(λ)
−A

)−1

x

=
∫ ∞

0

e−λtSα(t)x dt, Reλ > 0,

where â denotes the Laplace transform of a, ρ̄(A ) denotes the resolvent set of A .
In this case, Sα(t)t≥0 is called the α-resolvent family generated by A .

Sufficient conditions for {Sα(t)}t≥0 ⊂ B(X) to be a resolvent family can be found
in [9, 17, 19].

3. Main results

This section first shows new composition theorems for µ-pseudo almost auto-
morphic functions, and then the theorems obtained are applied to existence and
uniqueness of µ-pseudo almost automorphic solutions to the problem (1.1).

Let µ ∈M and the set B(r, µ) be defined as

B(r, µ) :=
{
ν : R→ R+ : lim

r→∞

1
µ([−r, r])

∫
[−r,r]

ν(t)dµ(t) <∞
}
.

3.1. Composition theorems of µ-pseudo almost automorphic functions.

Theorem 3.1. Let µ ∈ M and f = g + h ∈ PAA(R × X,X, µ) with g ∈ AA(R ×
X,X), h ∈ ε(R× X,X, µ). Assume that the following condition are satisfied:

(A2) There exists a function L(·) ∈ B(r, µ) such that

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖

for all x, y ∈ X and t ∈ R;
(A3) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for

t ∈ R.
If u = u1 + u2 ∈ PAA(R,X, µ) with u1 ∈ AA(R,X), u2 ∈ ε(R,X, µ). Then the
function f(·, u(·)) belongs to PAA(R,X, µ).

Proof. Since f ∈ PAA(R × X,X, µ) and u ∈ PAA(R,X, µ), we have by definition
that f = g + h and u = u1 + u2 where g ∈ AA(R × X,X), h ∈ ε(R × X,X, µ),
u1 ∈ AA(R,X) and u2 ∈ ε(R,X, µ). The function f can be decomposed as

f(t, u(t)) = g(t, u1(t)) + f(t, u(t))− g(t, u1(t))

= g(t, u1(t)) + f(t, u(t))− f(t, u1(t)) + h(t, u1(t)).

Define

G(t) = g(t, u1(t)), F (t) = f(t, u(t))− f(t, u1(t)), H(t) = h(t, u1(t)).

Then f(t, u(t)) = G(t) +F (t) +H(t). Since the function g satisfies condition (A3),
it follows [15, Lemma 2.2] that the function g(·, u1(·)) ∈ AA(R,X). To show that
f(·, u(·)) ∈ PAA(R,X, µ), it is sufficient to show that F +H ∈ ε(R,X, µ).
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Initially, we prove that F ∈ ε(R,X, µ). Clearly, f(t, u(t))−f(t, u1(t)) ∈ BC(R,X),
without loss of generality, we assume that ‖f(t, u(t))− f(t, u1(t))‖ ≤ C. Owing to
the fact that u2 ∈ ε(R,X, µ) and Lemma 2.10 (III), for any ε > 0, we get

lim
r→∞

µ({t ∈ [−r, r] : ‖u2(t)‖ > ε})
µ([−r, r])

= 0.

Therefore,

1
µ([−r, r])

∫
[−r,r]

‖F (t)‖dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

‖f(t, u(t))− f(t, u1(t))‖dµ(t)

=
1

µ([−r, r])

∫
{t∈[−r,r]:‖u2(t)‖>ε}

‖f(t, u(t))− f(t, u1(t))‖dµ(t)

+
1

µ([−r, r])

∫
[−r,r]\{t∈[−r,r]:‖u2(t)‖>ε}

‖f(t, u(t))− f(t, u1(t))‖dµ(t)

≤ Cµ({t ∈ [−r, r] : ‖u2(t)‖ > ε})
µ([−r, r])

+
1

µ([−r, r])

∫
[−r,r]\{t∈[−r,r]:‖u2(t)‖>ε}

L(t)‖u2(t)‖dµ(t)

≤ Cµ({t ∈ [−r, r] : ‖u2(t)‖ > ε})
µ([−r, r])

+ ε
1

µ([−r, r])

∫
[−r,r]

L(t)dµ(t).

Taking into account that L(·) ∈ B(r, µ), we obtain

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖F (t)‖dµ(t) = 0,

which shows that F (·) ∈ ε(R,X, µ).
Next, we show that H ∈ ε(R,X, µ). Since u(t), u1(t) are bounded, we can choose

a bounded subset B ⊂ X such that u(R), u1(R) ⊂ B. Since g satisfies the condition
(A3), then for any ε > 0, there exists a constant δ > 0 such that x, y ∈ B and
‖x − y‖ ≤ δ imply that ‖g(t, x) − g(t, y)‖ ≤ ε for all t ∈ R. Put δ0 = min{ε, δ},
then

‖h(t, x)− h(t, y)‖ ≤ ‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ (L(t) + 1)ε.

for all x, y ∈ B with ‖x− y‖ ≤ δ0.
Set I = u1([−r, r]). Then I is compact in R since the image of a compact

set under a continuous mapping is compact. So we can find finite open balls Ok,
(k = 1, 2, . . . ,m) with center xk ∈ I and radius δ small enough such that I ⊂ ∪mk=1Ok
and

‖h(t, u1(t))− h(t, xk)‖ ≤ (L(t) + 1)ε, u1(t) ∈ Ok, t ∈ [−r, r].

Suppose ‖h(t, xq)‖ = max1≤k≤m ‖h(t, xk)‖, where q is an index number among
{1, 2, . . . ,m}. The set Bk = {t ∈ [−r, r] : u1(t) ∈ Ok} is open in [−r, r] and
[−r, r] = ∪mk=1Bk. Let

E1 = B1, Ek = Bk \ ∪k−1
j=1Bj (2 ≤ k ≤ m).
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Then Ei ∩ Ej = ∅ when i 6= j, 1 ≤ i, j ≤ m. Observing that

1
µ([−r, r])

∫
[−r,r]

‖h(t, u1(t))‖dµ(t)

=
1

µ([−r, r])

∫
∪mk=1Ek

‖h(t, u1(t))‖dµ(t)

≤ 1
µ([−r, r])

m∑
k=1

∫
Ek

(‖h(t, u1(t))− h(t, xk)‖+ ‖h(t, xk)‖)dµ(t)

≤ 1
µ([−r, r])

m∑
k=1

∫
Ek

(L(t) + 1)εdµ(t) +
1

µ([−r, r])

m∑
k=1

∫
Ek

‖h(t, xk)‖dµ(t)

≤ ε
[
1 +

1
µ([−r, r])

∫
[−r,r]

L(t)dµ(t)
]

+
1

µ([−r, r])

∫
[−r,r]

‖h(t, xq)‖dµ(t).

Taking into account L(·) ∈ B(r, µ) and h ∈ ε(R× X,X, µ), we obtain

lim
r→+∞

1
µ([−r, r])

∫
[−r,r]

‖h(t, u1(t))‖dµ(t) = 0.

That is, h(·, u1(·)) ∈ ε(R,X, µ). Hence f(·, u(·)) ∈ PAA(R,X, µ), which completes
of the proof. �

Remark 3.2. (1) Condition (A2) covers the classical Lipschitz condition as a
special case. In fact, let L(t) ≡ L > 0, then

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

Ldµ(t) = L lim
r→∞

1
µ([−r, r])

µ([−r, r]) <∞.

(2) For 1 < p < ∞, if νp(·) ∈ B(r, µ), then ν(·) ∈ B(r, µ). In fact, by Hölder
inequality,

1
µ([−r, r])

∫
[−r,r]

ν(t)dµ(t) ≤ 1
µ([−r, r])

[ ∫
[−r,r]

νp(t)dµ(t)
]1/p[ ∫

[−r,r]
dµ(t)

]1− 1
p

≤

[ ∫
[−r,r] ν

p(t)dµ(t)
]1/p

[µ([−r, r])]1/p

=
[ 1
µ([−r, r])

∫
[−r,r]

νp(t)dµ(t)
]1/p

.

Obviously, νp(·) ∈ B(r, µ) implies ν(·) ∈ B(r, µ).
(3) Considering µ(R) = +∞, if ν : R → R+ satisfies

∫
R ν(t)dµ(t) < ∞, then

ν(·) ∈ B(r, µ). If p > 1 and
∫

R ν
p(t)dµ(t) <∞, then

1
µ([−r, r])

∫
[−r,r]

ν(t)dµ(t) ≤

[ ∫
[−r,r] ν

p(t)dµ(t)
]1/p

[µ([−r, r])]1/p
≤
[ ∫

R ν
p(t)dµ(t)

]1/p
[µ([−r, r])]1/p

→ 0.

Thus, for 1 ≤ p <∞, if
∫

R ν
p(t)dµ(t) <∞, then ν(·) ∈ B(r, µ).

(4) For pseudo almost automorphy, i.e. the measure µ is the Lebesgue measure,
then L(·) ∈ B(r, µ) is reduced to

lim
r→∞

1
2r

∫ r

−r
L(t)dt <∞. (3.1)
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Besides L(t) ≡ L > 0, from the above arguments (3), for any L(·) ∈ Lp(R,R+), p ≥
1, the condition (3.1) is true. At this time, Theorem 3.1 is just as [16, Theorem
2.4].

(5) For weighted pseudo almost automorphy, i.e. the measure µ is absolutely
continuous with respect to the Lebesgue measure with a Radon Nikodym derivative
ρ, then L(·) ∈ B(r, µ) is reduced to

lim
r→∞

1∫ r
−r ρ(t)dt

∫ r

−r
L(t)ρ(t)dt <∞. (3.2)

Also L(t) ≡ L > 0, owing to
∫∞
−∞ ρ(t) = +∞ and the above arguments (3), for any

L(·) : R → R+ satisfying Lp(t)ρ(t) ∈ L1(−∞,+∞)(abbr. L ∈ Lp(R, ρ)),1 ≤ p <
∞, the condition (3.2) holds true. On the other hand, if L(·)ρ(·) ∈ Lp(−∞,+∞),
p > 1, then by Hölder inequality,

1∫ r
−r ρ(t)dt

∫ r

−r
L(t)ρ(t)dt ≤ 1∫ r

−r ρ(t)dt

[∫ r

−r
(L(t)ρ(t))pdt

]1/p
2r.

Hence, if L(·)ρ(·) ∈ Lp(−∞,+∞), p > 1 and

lim
r→∞

r∫ r
−r ρ(t)dt

<∞,

then the condition (3.2) may be true.

Next, we consider a more general case in the following theorem.

Theorem 3.3. Let µ ∈M and f = g + h ∈ PAA(R× X,X, µ). Assume that

(A4) There exists a function L(·) ∈ B(r, µ) such that for any bounded subset
Q ⊂ X and for each ε > 0, there exists a constant δ > 0 satisfying

‖f(t, x)− f(t, y)‖ ≤ L(t)ε

for all x, y ∈ Q with ‖x− y‖ ≤ δ and t ∈ R;
(A5) g(t, x) is uniformly continuous on any bounded subset Q ⊂ X uniformly in

t ∈ R.

Then f(·, φ(·)) ∈ PAA(R,X, µ) for ∀φ ∈ PAA(R,X, µ).

Proof. Let f = g + h with g ∈ AA(R × X,X), h ∈ ε(R × X,X, µ), and φ = u + v,
with u ∈ AA(R,X), and v ∈ ε(R,X, µ). Now we define

f(t, φ(t)) = g(t, u(t)) + f(t, φ(t))− g(t, u(t))

= g(t, u(t)) + f(t, φ(t))− f(t, u(t)) + h(t, u(t)).

Let us rewrite

G(t) = g(t, u(t)),Φ(t) = f(t, φ(t))− f(t, u(t)), H(t) = h(t, u(t)).

Thus, we have F (t) = G(t) + Φ(t) + H(t). In view of [15, Lemma 2.2], G(t) ∈
AA(R,X). Next we prove that Φ(t) ∈ ε(R,X, µ). Clearly , Φ(t) ∈ BC(R,X), and
we can assume that ‖Φ(t)‖ ≤ C. For Φ ∈ ε(R,X, µ), it is enough to show that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖Φ(t)‖dµ(t) = 0.
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By Lemma 2.11, u(R) ⊂ φ(R) is a bounded set. From assumption (A4) with
Q = φ(R), we conclude that for each ε > 0, there exists a constant δ > 0 such that
for all t ∈ R,

‖φ− u‖ ≤ δ ⇒ ‖f(t, φ(t))− f(t, u(t))‖ ≤ L(t)ε.

Denote by the following set Ar,ε(v) = {t ∈ [−r, r] : ‖v(t)‖ > ε}. Thus we obtain

Ar,L(t)ε(Φ) = Ar,L(t)ε(f(t, φ(t))− f(t, u(t)))

⊆ Ar,δ(φ(t)− u(t)) = Ar,δ(v).

Therefore
µ{Ar,L(t)ε(Φ)}
µ([−r, r])

≤ µ{Ar,δ(v)}
µ([−r, r])

.

Since φ(t) = u(t) + v(t) and v ∈ ε(R,X, µ), Lemma 2.10 (III) yields that for the
above-mentioned δ we have

lim
r→∞

µ{t ∈ [−r, r] : ‖φ(t)− u(t)‖ > δ}
µ([−r, r])

= 0,

and then we obtain

lim
r→∞

µ{Ar,L(t)ε(Φ)}
µ([−r, r])

= 0. (3.3)

Thus
1

µ([−r, r])

∫
[−r,r]

‖Φ(t)‖dµ(t)

=
1

µ([−r, r])

∫
Ar,L(t)ε

‖Φ(t)‖dµ(t) +
1

µ([−r, r])

∫
[−r,r]\Ar,L(t)ε

‖Φ(t)‖dµ(t)

≤ C
µ{Ar,L(t)ε(Φ)}
µ([−r, r])

+ ε
1

µ([−r, r])

∫
[−r,r]

L(t)dµ(t).

From relation (3.3) and the fact L(·) ∈ B(r, µ), we can see that

lim
r→∞

1
µ([−r, r])

∫
[−r,r]

‖Φ(t)‖dµ(t) = 0,

i.e. Φ(t) ∈ ε(R,X, µ).
Finally, it is only to show that H(t) = h(t, u(t)) ∈ ε(R,X, µ). We have the set

u([−r, r]) is compact since u is continuous on R as almost automorphic functions.
So g is uniformly continuous on R× u([−r, r]). Then it follows from (A4) that for
any ε > 0, there exists a constant δ > 0 such that for x1, x2 ∈ u([−r, r]) with
‖x1 − x2‖ < δ we have

‖h(t, x1)− h(t, x2)‖ = ‖[f(t, x1)− f(t, x2)] + [g(t, x2)− g(t, x1)]‖
≤ ‖f(t, x1)− f(t, x2)‖+ ‖g(t, x2)− g(t, x1)‖
≤ (L(t) + 1)ε, ∀t ∈ [−r, r].

The remainder of the proof is similar to that of Theorem 3.1, we can also show that
H(t) = h(t, u(t)) ∈ ε(R,X, µ). This completes the proof. �

Remark 3.4. (1) Condition (A4) covers the following Hölder type condition as an
special case:
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(A4’) There exists a function L(·) ∈ B(r, µ) such that for any bounded subset
Q ⊂ X satisfying

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖η, 0 < η < 1,

for all x, y ∈ Q and t ∈ R.
In fact, if condition (A4’) holds, then for any bounded subset Q ⊂ X and for
each ε > 0, there exists a constant δ = (ε)

1
η such that for all x, y ∈ Q with

‖x− y‖ ≤ δ = (ε)
1
η and t ∈ R satisfying

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖η ≤ L(t)[(ε)
1
η ]η < L(t)ε.

(2) Take L(t) ≡ L, then the condition (A4) is reduced to the following well-known
uniformly continuous condition
(A4”) f(t, x) is uniformly continuous on any bounded subset Q ⊂ X uniformly in

t ∈ R.

From the proofs of Theorems 3.1-3.3, we can conclude the following corollary.

Corollary 3.5. Let µ ∈M and h ∈ ε(R× X,X, µ). Assume that
(A6) There exists a function L(·) ∈ B(r, µ) such that for any bounded subset

Q ⊂ X and for each ε > 0, there exists a constant δ > 0 satisfying

‖h(t, x)− h(t, y)‖ ≤ L(t)ε

for all x, y ∈ Q with ‖x− y‖ ≤ δ and t ∈ R.
Then h(·, φ(·)) ∈ ε(R,X, µ) for all φ ∈ AA(R,X).

3.2. Existence of µ-pseudo almost automorphic solutions to (1.1).

Definition 3.6 ([23]). Let α > 0 and A be the generator of an α-resolvet family
{Sα(t)}t≥0. A function u ∈ C(R,X) is called a mild solution to (1.1) if the function
s 7→ Sα(t− s)f(s, u(γ(s))) is integrable on (−∞, t) for each t ∈ R and

u(t) =
∫ t

−∞
Sα(t− s)f(s, u(γ(s)))ds.

The following lemma can be similarly derived as [24, Lemma7].

Lemma 3.7. Suppose µ ∈M and the following condition is satisfied
(A7) γ : R→ R is a continuous and strictly increasing function, and there exists

a continuous function λ : R→ R+ such that

dµγ(t) ≤ λ(t)dµ(t), sup
t∈[−r∗,r∗]

λ(t) = Mr∗ , lim
r→∞

sup
(Mr∗µ([−r∗, r∗])

µ([−r, r])

)
<∞,

where µγ(A) = µ(γ−1(A)) for all A ∈ B(R), r∗ = |γ(−r)|+ |γ(r)|, and for
each u(·) ∈ AA(R,X), u(γ(·)) ∈ AA(R,X).

If u(·) ∈ PAA(R,X, µ), then u(γ(·)) ∈ PAA(R,X, µ).

Let us list the some assumptions to be used later.
(A8) Assume that the operator A generates an α-resolvent family {Sα(t)}t≥0

on a Banach space X, and there exist constants C > 0, ω > 0 such that
‖Sα(t)‖ ≤ Ce−ωt for all t ≥ 0;
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(A9) there exists a nonegative function l ∈ Lp(R) ∩B(r, µ)(1 ≤ p < ∞) such
that f = g + h ∈ PAA(R × X,X, µ) satisfies conditions (A2) and (A3) in
Theorem 3.1.

The following lemma can be derived from [5, Theorem 3.9].

Lemma 3.8. Let µ ∈ M. Assume that the operator A generates an α-resolvent
family {Sα(t)}t≥0 satisfying the condition (A8). If f ∈ PAA(R,X, µ), then

z(t) =
∫ t

−∞
Sα(t− s)f(s)ds ∈ PAA(R,X, µ), t ∈ R.

Theorem 3.9. Assume that conditions (A7)–(A9) are satisfied. Then (1.1) admits
a unique mild solution u ∈ PAA(R,X, µ).

Proof. Let the operator Υ be defined as

(Υu)(t) :=
∫ t

−∞
Sα(t− s)f(s, u(γ(s)))ds.

For u ∈ PAA(R,X, µ), by Lemma 3.7 and Theorem 3.1, it follows that the function
s → f(s, u(γ(s))) is in PAA(R,X, µ). Moreover, from Lemma 3.8 we infer that
Υu ∈ PAA(R,X, µ), that is, Υ maps PAA(R,X, µ) into itself.

Since l ∈ Lp(R), 1 < p <∞, let τ(t) =
∫ t
−∞ lp(s)ds. Now we define an equivalent

norm over PAA(R,X, µ) as

‖f‖τ = sup
t∈R
{e−θτ(t)‖f‖}, f ∈ PAA(R,X, µ),

where θ > 0, is a sufficiently large constant. Then, for each u, v ∈ PAA(R,X, µ),
we have

‖(Υu)(t)− (Υv)(t)‖ ≤
∫ t

−∞
‖Sα(t− s)[f(s, u(s))− f(s, v(s))]‖ds

≤ C
∫ t

−∞
e−ω(t−s)l(s)‖u(s)− v(s)‖ds

≤ C
∫ t

−∞
e−ω(t−s)l(s)eθτ(s)‖u− v‖τds

≤ C
[ ∫ t

−∞
eθpτ(s)lp(s)ds

]1/p[ ∫ t

−∞
e−ωq(t−s)ds

]1/q
‖u− v‖τ

≤ C(ωq)−1/q
[ ∫ t

−∞
eθpτ(s)dτ(s)

]1/p
‖u− v‖τ

≤ C(ωq)−1/q(pθ)−1/peθτ(t)‖u− v‖τ .
Consequently,

‖Υu−Υv‖τ ≤ C(ωq)−1/q(pθ)−1/p‖u− v‖τ ,
which implies that Υ is a contraction for sufficiently large θ.

On the other hand, for p = 1, we have

‖(Υu)(t)− (Υv)(t)‖ ≤
∫ t

−∞
‖Sα(t− s)[f(s, u(s))− f(s, v(s))]‖ds

≤ C
∫ t

−∞
l(s)‖u(s)− v(s)‖ds
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≤ C‖u− v‖∞
∫ t

−∞
l(s)ds,

and

‖(Υ2u)(t)− (Υ2u)(t)‖ ≤ C
∫ t

−∞
l(s)‖(Υu)(s)− (Υv)(s)‖ds

≤ C2‖u− v‖∞
∫ t

−∞
l(s)

∫ s

−∞
l(σ)dσds

≤ C2

2
‖u− v‖∞

(∫ t

−∞
l(s)ds

)2

.

Using induction on n ,in the same way, we obtain

‖(Υnu)(t)− (Υnv)(t)‖ ≤ Cn

(n− 1)!
‖u− v‖∞

[ ∫ t

−∞
l(s)
(∫ s

−∞
l(σ)dσ

)n−1

ds
]

≤ Cn

n!
‖u− v‖∞

(∫ t

−∞
l(s)ds

)n
.

Thus,

‖Υnu−Υnv‖∞ ≤
(C‖l‖L1(R))n

n!
‖u− v‖∞.

Since
(C‖l‖L1(R))

n

n! < 1 for n sufficiently large, Υ is still a contraction.
From the above arguments, we can show Υ is a contraction for p ≥ 1. We can

complete the whole proof via Banach contraction mapping principle. �

Finally, we consider some special results on pseudo almost typed automorphic
solutions to the equation (1.1).

Lemma 3.10 ([7, Lemma 3.1]). Assume that the following condition is satisfied
(A7’) γ : R→ R is continuously differentiable on R, and γ′(t) > 0 is nondecreas-

ing with

lim sup
r→∞

( |γ(−r)|+ |γ(r)|
rγ′(−r)

)
<∞,

and for each u(·) ∈ AA(R,X), u(γ(·)) ∈ AA(R,X).
If u(·) ∈ PAA(R,X), then u(γ(·)) ∈ PAA(R,X).

Lemma 3.11 ([7, Lemma 3.2]). Assume that the following condition holds
(A7”) γ : R→ R is continuously differentiable on R, and γ′(t) > 0 is nondecreas-

ing with

lim sup
r→∞

( m(r∗, ρ)
m(r, ρ)γ′(−r)

)
<∞, and 0 < sup

t∈R

ρ(t)
ρ(γ(t))

<∞,

and for each u(·) ∈ AA(R,X), u(γ(·)) ∈ AA(R,X), where γ∗ = |γ(−r)| +
|γ(r)|.

If u(·) ∈WPAA(R,X, ρ), then u(γ(·)) ∈WPAA(R,X, ρ).

The following result is based on Theorem 3.9 and Lemma 3.10.

Corollary 3.12. Let f = g+h ∈ PAA(R×X,X) with g ∈ AA(R×X,X) satisfying
(A3) in Theorem 3.1, h ∈ PAA0(R × X,X). Assume that (A7’)–(A8) and the
following conditions hold
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(A2’) There exists a function l ∈ Lp(R)(1 ≤ p <∞) such that

‖f(t, x)− f(t, y)‖ ≤ l(t)‖x− y‖

for all x, y ∈ X and t ∈ R.
Then (1.1) has a unique mild solution in PAA(R,X).

Theorem 3.9 and Lemma 3.11 imply the following result.

Corollary 3.13. Let ρ ∈ U, and f = g + h ∈ WPAA(R × X,X, ρ) with g ∈
AA(R × X,X) satisfying (A3) in Theorem 3.1, h ∈ PAA0(R × X,X, ρ). Assume
that (A7”)-(A8) and the following conditions hold
(A2”) There exists a function l ∈ Lp(R) ∩ Lp(R, ρ)(1 ≤ p <∞) such that

‖f(t, x)− f(t, y)‖ ≤ l(t)‖x− y‖

for all x, y ∈ X and t ∈ R.
Then (1.1) admits a unique mild solution in WPAA(R,X, ρ).
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[4] J. Blot, G. M. Mophou, G. M. N’Guérékata, D. Pennequin; Weighted pseudo almost auto-
morphic functions and applications to abstract differential equations. Nonlinear Anal., 71

(2009), 903–909.

[5] J. Blot, P. Cieutat, K. Ezzinbi; Measure theory and pseudo almost automorphic functions :
New developments and aplications. Nonlinear Anal., 75 (2012) 2426–2447.

[6] S. Bochner; Continuous mappings of almost automorphic and almost periodic functions.
Proc. Natl. Acad. Sci. USA, 52 (1964), 907–910.

[7] Y. K. Chang, Z. H. Zhao, J. J. Nieto; Pseudo almost automorphic and weighted pseudo almost

automorphic mild solutions to semi-linear differential equations in Hilbert spaces. Rev Mat
Complut., 24 (2011), 421–438.
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[21] G. M. N’Guérékata; Topics in Almost Automorphy. Springer, New York, 2005.
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