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Abstract. First, we discuss the existence, the uniqueness and the regularity

of the weak solution to the following parabolic equation involving the fractional
p-Laplacian,

ut + (−∆)s
pu + g(x, u) = f(x, u) in QT := Ω× (0, T ),

u = 0 in RN \ Ω× (0, T ),

u(x, 0) = u0(x) in RN .

Next, we deal with the asymptotic behavior of global weak solutions. Pre-
cisely, we prove under additional assumptions on f and g that global solutions

converge to the unique stationary solution as t→∞.

1. Introduction and Preliminaries

In this article we study the parabolic problem involving fractional p-Laplacian,

ut + (−∆)spu+ g(x, u) = f(x, u) in QT := Ω× (0, T ),

u = 0 in RN \ Ω× (0, T ),

u(x, 0) = u0(x) in RN
(1.1)

where Ω is a smooth bounded domain in RN (at least C2), s ∈ (0, 1), 1 < p < N/s,
u0 ∈ L∞(Ω) and f(x, z), g(x, z) are Carathéodory functions, locally Lipschitz with
respect to z uniformly in x and satisfying the following assumptions:

(A1) f(x, z), g(x, z) > 0 for t > 0 and f(x, 0) = 0, g(x, 0) = 0 for a.e. x ∈ Ω.
(A2) For a.e. x ∈ Ω and z ≥ 0, g(x, z) satisfy the growth condition:

g(x, z) ≤ C1 + C2z
r−1, 1 < r < p∗s :=

Np

N − sp
for some positive constants C1 and C2.

(A3) f(x, z)/zp−1 is non-increasing and g(x, z)/zp−1 is non-decreasing in z for
a.e. x ∈ Ω.
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(A4) lim supz→0+ f(x, z)/zp−1 > λ1,s,p, lim supz→∞ f(x, z)/zp−1 < λ1,s,p, where
λ1,s,p is the first eigenvalue of (−∆)sp, lim supz→0+ g(x, z)/zp−1 = 0 and
lim supz→∞ g(x, z)/zp−1 =∞, uniformly in x ∈ Ω.

For instance we can take f(x, z) = a(x)zq−1 and g(x, z) = b(x)zr−1 where 1 < q <
p, p < r < p∗s and a, b ∈ L∞(Ω) as these functions satisfy (A1)− (A4).

We recall that the fractional p-Laplacian operator (−∆)sp (up to a normalizing
constant) is defined as

(−∆)spu(x) := lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy, x ∈ RN .

The systematic study of the problems involving non-local operators have found
great interest in the recent years due to there occurrence in concrete real-world
applications, such as, the thin obstacle problem, optimization, finance, phase tran-
sitions. Elliptic theory of linear or quasilinear non-local operators has been actively
studied during last decades in the works of Caffarelli and collaborators [3, 4, 8],
Kassmann [16], Silvestre [21] and many others. For further references, we refer
to the surveys [24], [18] and in the nonlinear diffusion of degenerate type case (p-
fractional operators type) [19]. We also refer to [10, 11, 25, 26, 27] on related
existence results for nonlocal problems driven by the fractional Laplace operator.

Concerning the parabolic equation involving fractional Laplacian, the study of
anomalous diffusion equation has gained interest for its occurrence in a number of
phenomena in several areas of physics, finance, biology, ecology, geophysics, and
many others which can be characterized as having non-Brownian scaling.

Contrary to the stationary version, there are quite few results about the corre-
sponding evolution equations involving quasilinear and nonlocal operators. We can
quote first that local existence and uniqueness of mild solutions are investigated in
[17] by semi-group theory. The homogeneous Dirichlet problem for the fractional
p-Laplacian evolution equation is studied also in the recent work of Vázquez where
the author proved everywhere positivity of weak solutions. This striking prop-
erty contrasts with the finite propagation property occurring in the local setting
(p-Laplace operator). In [1], authors have studied (1.1) with the nonlinearity f
depending only on x and t and prove the existence and some properties of entropy
solutions. In particular, the questions related to the extinction in finite time and
the finite speed of propagation are analyzed.

In this article, we investigate different issues of the existence and the regularity
of energy weak solutions that in our knowledge are not discussed in former works.
We also deal with the long-time behavior of weak solutions for a class of sub-
homogeneous nonlinearities f and g following the approach in [5] for the local
homogeneous p-Laplacian operator and in [12] for the local non-homogeneous p(x)-
Laplacian operator. We point out that using the results in [2], authors in [13]
have studied similar questions for the semilinear version of (1.1) with singular
nonlinearity.

2. Preliminaries

We consider the function space

W s,p(RN ) :=
{
u|u : RN → RN is measurable , u ∈ Lp(RN )
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and
(u(x)− u(y))

|x− y|
N+sp
p

∈ Lp(RN × RN )
}
.

W s,p(RN ) is a Banach space endowed with the norm

‖u‖W s,p(RN ) := ‖u‖Lp(RN ) +
(∫

RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

Also define the closed linear subspace X0(Ω) of W s,p(RN ) as

X0(Ω) := {u ∈W s,p(RN )|u(x) = 0 a.e. x ∈ CΩ}

endowed with the norm

‖u‖X0(Ω) :=
(

1
2

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

where Q = RN × RN\CΩ × CΩ, CΩ = RN\Ω. Then X0(Ω) is a uniformly convex
Banach space. Also C∞0 (Ω) is dense in X0(Ω) and X0(Ω) is compactly embedded
in Lr(Ω) for 1 ≤ r < p∗s.

Remark 2.1. Let t+ = max(t, 0). If v ∈ X0(Ω), then

|v(x)− v(y)|p−2(v+(x)− v+(y))(v(x)− v(y)) ≥ |v+(x)− v+(y)|p.

Definition 2.2. Set d(x) := dist (x, ∂Ω). Define the normed space

Cd(Ω) := {u ∈ C0(Ω) : ∃c ≥ 0 such that |u(x)| ≤ cd(x),∀x ∈ Ω}

Definition 2.3. Define the open convex subset of Cd(Ω),

C+
ds(Ω) := {u ∈ Cd(Ω) : inf

x∈Ω

u(x)
ds(x)

> 0}.

Let φ1,s,p be the eigenfunction corresponding to the first eigenvalue λ1,s,p of the
operator (−∆)sp. Then φ1,s,p ∈ C+

ds(Ω).
We also recall the following inequalities due to Simon [22]: for all u, v ∈ RN ,∣∣|u|p−2u− |v|p−2v

∣∣ ≤ {c|u− v|(|u|+ |v|)p−2 if p ≥ 2,
c|u− v|p−1 if p ≤ 2,

(2.1)

〈|u|p−2u− |v|p−2v, u− v〉 ≥

{
c̃|u− v|p if p ≥ 2,

c̃ |u−v|2
(|u|+|v|)2−p if p ≤ 2,

(2.2)

where c, c̃ are positive constants and 〈·, ·〉 is the canonical scalar product of RN .

3. Main results

First we consider the problem

ut + (−∆)spu = h(x, t) in QT := Ω× (0, T ),

u(x, t) = 0 in RN \ Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(3.1)

where T > 0, h ∈ L∞(QT ). Considering the initial data u0 ∈ L∞(Ω), we study the
weak solution of (3.1) defined as follows:
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Definition 3.1. A weak solution of (3.1) is a function u ∈ L∞(0, T ;X0(Ω)) such
that ut ∈ L2(QT ) and for any φ ∈ C∞0 (QT ),∫

QT

utφdx dt+
1
2

∫ T

0

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

(φ(x)− φ(y)) dx dy dt

=
∫
QT

h(x, t)φdx dt

and u(x, 0) = u0(x) for a.e. x ∈ Ω.

Next, we consider the initial data u0 in C+
ds(Ω) and study the evolution equation

ut + (−∆)spu+ g(x, u) = f(x, u) in QT := Ω× (0, T ),

u(x, t) = 0 in RN \ Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

(3.2)

Definition 3.2. A solution of (3.2) is a function u ∈ L∞(0, T ;X0(Ω)) such that
ut ∈ L2(QT ) and for any φ ∈ C∞0 (QT ),∫

QT

utφdx dt+
1
2

∫ T

0

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

(φ(x)− φ(y)) dx dy dt

+
∫
QT

g(x, u)φdx dt

=
∫
QT

f(x, u)φdx dt

and u(x, 0) = u0(x) for a.e. x ∈ Ω.

Theorem 3.3. Let T > 0, h(x, t) ∈ L∞(QT ) and u0 ∈ L∞(Ω). Then there exists
a unique weak solution u to the problem (3.1). Moreover u ∈ C([0, T ], X0(Ω)) and
satisfies for any t ∈ [0, T ]:∫ t

0

∫
Ω

(∂u
∂t

)2

dx ds+
1
p
‖u(t)‖pX0(Ω)

=
∫ t

0

∫
Ω

h(x, s)
(∂u
∂t

)
dx ds+

1
p
‖u0‖pX0(Ω)

(3.3)

Concerning problem (3.2), we deduce the following similar result.

Theorem 3.4. Let f, g be Carathéodory functions, locally Lipschitz with respect to
second variable uniformly in x ∈ Ω and satisfying the assumptions (A1), (A2) and
(A4). Let u0 ∈ C+

ds(Ω). Then for any T > 0, there exists a unique weak solution u

to problem (3.2). Moreover u ∈ C([0, T ], X0(Ω)) and satisfies for any t ∈ [0, T ]:∫ t

0

∫
Ω

(∂u
∂t

)2

dx ds+
1
p
‖u(x, t)‖pX0(Ω)

=
∫

Ω

F (x, u(x, t)) dx−
∫

Ω

G(x, u(x, t)) dx+
1
p
‖u0(x)‖pX0(Ω)

(3.4)

where F (x, z) =
∫ z

0
f(x, s)ds and G(x, z) =

∫ z
0
g(x, s)ds.

Next we observe that the operator A := (−∆)sp, with Dirichlet boundary condi-
tions, is m-accretive in L∞(Ω). Precisely, we have the following lemma.
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Lemma 3.5. Consider D(A) = {u ∈ X0(Ω) ∩ L∞(Ω) : Au ∈ L∞(Ω)} as the
domain of the operator A. Then A is m-accretive in L∞(Ω).

Now by appealing the theory of maximal accretive operators in Banach spaces,
we obtain the following results for the solutions of (3.1) and (3.2), respectively.

Theorem 3.6. Let T > 0, h ∈ L∞(QT ) and let u0 be in D(A)
L∞

. Then
(i) the unique weak solution u to (3.1) obtained in Theorem 3.3 belongs to
C([0, T ]; C0(Ω)).

(ii) If v is another mild solution to (3.1) with the initial datum v0 ∈ D(A)
L∞

and the right-hand side k(x, t) ∈ L∞(QT ), then the following estimate
holds:

‖u(t)− v(t)‖L∞(Ω) ≤ ‖u0 − v0‖L∞(Ω) +
∫ t

0

‖h(s)− k(s)‖L∞(Ω) ds, (3.5)

for 0 ≤ t ≤ T .
(iii) If u0 ∈ D(A) and h ∈W 1,1(0, T ;L∞(Ω)) then u ∈W 1,∞(0, T ;L∞(Ω)) and

(−∆)spu ∈ L∞(QT ), and the following estimate holds:

‖∂u
∂t

(·, t)‖L∞(Ω) ≤ ‖(−∆)spu0 + h(·, 0)‖L∞(Ω) +
∫ T

0

‖∂h
∂t

(·, τ)‖L∞(Ω)dτ. (3.6)

Theorem 3.7. Assume that conditions and hypotheses on f, g in Theorem 3.4 are
satisfied and u0 ∈ D(A)

L∞

. Then, the unique weak solution to (3.2) belongs to
C([0, T ];C0(Ω)) and

(i) there exists ω > 0 such that if v is another weak solution to (3.2) with the

initial datum v0 ∈ D(A)
L∞

then the following estimate holds:

‖u(t)− v(t)‖L∞(Ω) ≤ eωt‖u0 − v0‖L∞(Ω), 0 ≤ t ≤ T.

(ii) If u0 ∈ D(A) then u ∈ W 1,∞(0, T ;L∞(Ω)) and (−∆)spu ∈ L∞(QT ), and
the following estimate holds:

‖∂u
∂t

(t)‖L∞(Ω) ≤ eωt‖(−∆)spu0 + f(x, u0)‖L∞(Ω).

Next, we investigate the asymptotic behavior of global solution of (3.2), in par-
ticular the convergence to a stationary solution. For this first we study the following
stationary problem corresponding to (3.2).

(−∆)spu+ g(x, u) = f(x, u) in Ω,
u > 0 in Ω,

u = 0 in RN \ Ω.
(3.7)

Definition 3.8. A function u ∈ X0(Ω) is said to be a weak solution of (3.7) if
u > 0 in Ω and∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))
|x− y|N+sp

dx dy +
∫

Ω

g(x, u)φ(x)dx

=
∫

Ω

f(x, u)φ(x)dx,

for all φ ∈ X0(Ω).
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Theorem 3.9. Let f, g be Carathéodary functions, locally Lipschitz with respect
to second variable uniformly in x ∈ Ω and satisfying the assumptions (A1)–(A4).
Then there exists a unique weak solution u∞ of (3.7). Moreover, u∞ ∈ C+

ds(Ω).

Theorem 3.10. Assume that f satisfies (A1)–(A4). Then the weak solution u to
(3.2) is defined in (0,∞)× Ω and

u(t)→ u∞ in L∞(Ω) as t→∞

where u∞ is the unique solution to the stationary problem (3.7).

4. Proofs of the main results

In this section we give the proofs of the results stated in Section 3. We begin
with the following sequence of results.

Lemma 4.1. Let f, g be Carathéodory functions, locally Lipschitz with respect to
second variable uniformly in x ∈ Ω and satisfying the assumptions (A1)–(A3). Then
there exists a non-negative and non trivial weak solution u ∈ X0(Ω) to the equation
in (3.7).

Proof. Consider the energy functional J corresponding to (3.7), given by

J(u) =
1
p

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ω

G(x, u) dx−
∫

Ω

F (x, u) dx.

Note that J is coercive in X0(Ω). Indeed, by the assumption (A1), (A2) and the
Sobolev embedding theorem we have

J(u) =
1
p

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ω

G(x, u) dx−
∫

Ω

F (x, u) dx

≥ 1
p
‖u‖pX0(Ω) − C

∗
1‖u‖X0(Ω) − C∗2‖u‖

q
X0(Ω)

which tends to ∞ for ‖u‖X0(Ω) large enough. Thus J is coercive. Furthermore
J ∈ C1(X0(Ω)) and weakly lower semi-continuous in X0(Ω) and therefore admits
a global minimizer which is a weak solution to (3.7). From (A4), we obtain easily
infX0(Ω) J < 0 and then u 6≡ 0. Also J(|u|) ≤ J(u). Indeed, as by triangle
inequality, for x, y ∈ RN , we have ‖u(x)| − |u(y)‖ ≤ |u(x)− u(y)|. Also from (A1),
F (x, |u(x)|) = F (x, u(x)) and G(x, |u(x)|) = G(x, u(x)) for all x ∈ Ω. Thus we
have J(|u|) ≤ J(u) for u ∈ X0(Ω), and hence the minimizer of J in X0(Ω) can be
assumed non-negative. This establishes the existence of a non-negative, non-trivial
weak solution u ∈ X0(Ω) of (3.7). �

Now we prove that u ∈ L∞(Ω) and is unique. For proving these properties, first
we recall the following Picone inequality (see [7]).

Lemma 4.2. For every a1, a2 ≥ 0 and b1, b2 > 0

|a1 − a2|p ≥ |b1 − b2|p−2(b1 − b2)
( ap1
bp−1
1

− ap2
bp−1
2

)
.

The equality holds if and only if (a1, a2) = k(b1, b2) for some constant k.

Proposition 4.3. Let u ∈ X0(Ω) be a weak solution of (3.7). Then u ∈ L∞(Ω).
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Proof. We adapt arguments from [9]. First we note that due to the homogeneity
of the problem (3.7), it suffices to prove that

‖u+‖L∞(Ω) ≤ 1 whenever ‖u+‖Lp(Ω) ≤ δ for some δ > 0. (4.1)

A similar assertion can be established for u− where u+(x) = max{u(x), 0} and
u−(x) = max{−u(x), 0}. Therefore u ∈ L∞(Ω). For k ≥ 1, set wk(x) = (u(x) −
(1− 2−k))+. Then first we make the following observations about wk(x).

(i) wk+1(x) ≤ wk(x) for all x ∈ Ω,
(ii) u(x) < (2k+1 + 1)wk(x) for x ∈ {wk+1(x) > 0}. For proving this, take

x ∈ {wk+1(x) > 0}. Then wk(x) = u(x)− (1− 2−k). This implies

(2k+1 + 1)wk(x) = u(x) + 2k+1u(x)− (2k+1 + 1)(1− 2−k).

Now as for x ∈ {wk+1(x) > 0}, u(x) > (1− 2−(k+1)) = 1− 2−k + 2−(k+1).
This implies

2k+1u(x) > 2k+1(1− 2−k) + 1

> 2k+1(1− 2−k) + (1− 2−k)

= (2k+1 + 1)(1− 2−k).

Therefore (2k+1 + 1)wk(x) = u(x) + 2k+1u(x)− (2k+1 + 1)(1− 2−k) > u(x)
for x ∈ {wk+1(x) > 0}.

(iii) {wk+1 > 0} ⊂ {wk > 2−(k+1)}.
Now set Uk := ‖wk‖pLp . Taking v = u− (1− 2−(k+1)) in Lemma 2.1 we obtain

|u(x)− u(y)|p−2(wk+1(x)− wk+1(y))(u(x)− u(y)) ≥ |wk+1(x)− wk+1(y)|p.

Therefore, using (i)-(ii) above, we obtain

‖wk+1‖pX0(Ω) =
∫
Q

|wk+1(x)− wk+1(y)|p

|x− y|N+sp
dx dy

≤
∫
Q

|u(x)− u(y)|p−2(wk+1(x)− wk+1(y))(u(x)− u(y))
|x− y|N+sp

dx dy

≤
∫

Ω

|f(x, u)|wk+1dx

≤
∫
{wk+1(x)>0}

(C1 + C2|u|p−1)wk+1dx

= C1

∫
{wk+1(x)>0}

wk+1dx+ C2

∫
{wk+1(x)>0}

|u|p−1wk+1dx

≤ C1|{x ∈ Ω : wk+1(x) > 0}|1−1/pU
1/p
k

+ C2

∫
{wk+1(x)>0}

(2k+1 + 1)p−1wpkdx

≤ C1|{x ∈ Ω : wk+1(x) > 0}|1−1/pU
1/p
k + C2(2k+1 + 1)p−1Uk.

Now as for (iii) we have

Uk =
∫

Ω

wpkdx ≥
∫
{wk+1>0}

wpk ≥ 2−(k+1)p|{x ∈ Ω : wk+1(x) > 0}|.
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Therefore,

‖wk+1‖pX0(Ω) ≤ (C12(k+1)(p−1) + C2(2k+1 + 1)p−1)Uk ≤ C3(2k+1 + 1)p−1Uk. (4.2)

Also from Hölder’s inequality we have

Uk+1 =
∫
{wk+1(x)>0}

wpk+1dx

≤
(∫
{wk+1(x)>0}

w
N

N−sp
k+1

)N−sp
N |{x ∈ Ω : wk+1(x) > 0}|sp/N

≤ C4‖wk+1‖pX0(Ω)(2
(k+1)pUk)sp/N .

(4.3)

Hence,
Uk+1 ≤ C5(2k+1 + 1)p−1Uk(2(k+1)pUk)sp/N

≤ C5(2k+1 + 1)p(1+ sp
N )U

1+ sp
N

k

≤ C5C
kU1+α

k

(4.4)

where C > 1 and α = sp
N . This will imply that

lim
k→∞

Uk = 0 (4.5)

provided that ‖u+‖pLp(Ω) = U0 ≤ C−
1
α2 =: δp. As wk(x) → (u(x) − 1)+ for a.e.

x ∈ RN , (4.1) follows from (4.5). �

Now we recall [15, Theorem 1.1] that provides the Cα(Ω) regularity of weak
solution of (3.7).

Theorem 4.4. There exist α = α(N, p, s) ∈ (0, s] and C = C(N, p, s,Ω, ‖u‖L∞(Ω)),
such that, for all weak solutions u ∈ X0(Ω) of (3.7), u ∈ Cα(Ω) and ‖u‖Cα(Ω) ≤ C.

Next, we have the following Hopf Lemma from [20, Theorems 1.4 and 1.5, p.
778].

Lemma 4.5. Let Ω satisfy the interior ball condition and u ∈ X0(Ω) ∩ C(Ω) be a
non-trivial, non-negative weak super-solution of

(−∆)spu = c(x)|u|p−1 in Ω

with c ∈ L1
loc(Ω) and non-positive. Then u > 0 in Ω and

lim inf
BR3x→x0

u(x)
dR(x)s

> 0 (4.6)

where BR is a ball such that x0 ∈ BR ⊂ Ω and dR(x) is distance from x to ∂BR.

Writing g(x, u) = c(x)up−1 and using (A1) and (A4), we obtain that any non-
negative and non trivial weak solution u to the equation in (3.7) is positive and
satisfies u ≥ kd(x) for some k > 0. Next, using [15, Theorem 4.4], we obtain that
any nonnegative and non trivial weak solution u to the equation in (3.7) belongs to
C+
ds(Ω). Then it follows that any couple of non trivial and nonnegative weak solu-

tions u, v to the equation in (3.7) satisfy u/v, v/u ∈ L∞(Ω). We use this property
to prove the uniqueness of the solution of (3.7).

Theorem 4.6. Let u, v ∈ X0(Ω) be two non trivial and nonnegative weak solutions
to the equation in (3.7). The u = v for a.e. in Ω.
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Proof. Set un = u+ 1
n and vn = v + 1

n and define

ṽn :=
up

vp−1
n

, ũn :=
vp

up−1
n

.

First we claim that ṽn, ũn ∈ X0(Ω). Note that since u, v > 0 in Ω, ṽn, ũn > 0
in Ω, ṽn, ũn = 0 in RN \ Ω for all n ∈ N. Also since u, v ∈ L∞(Ω), we have that
ṽn, ũn ∈ Lp(Ω) for all n ∈ N. Also as

|ṽn(x)− ṽn(y)|

=
∣∣ up(x)
vp−1
n (x)

− up(y)
vp−1
n (y)

∣∣
≤
∣∣ up(x)
vp−1
n (x)

− up(y)
vp−1
n (x)

∣∣+
∣∣ up(y)
vp−1
n (x)

− up(y)
vp−1
n (y)

∣∣
=
∣∣up(x)− up(y)

vp−1
n (x)

∣∣+ |up(y)|
∣∣vp−1
n (y)− vp−1

n (x)
vp−1
n (x)vp−1

n (y)

∣∣
≤ np−1|upn(x)− upn(y)|+ ‖u‖pL∞(Ω)

∣∣vp−1
n (y)− vp−1

n (x)
vp−1
n (x)vp−1

n (y)

∣∣
≤ 2np−1p‖un‖p−1

L∞(Ω)|u(x)− u(y)|

+ (p− 1)‖u‖pL∞(Ω)

∣∣vp−2
n (y) + vp−2

n (x)
vp−1
n (x)vp−1

n (y)

∣∣|vn(y)− vn(x)|

= 2np−1p‖u‖p−1
L∞(Ω)|u(x)− u(y)|

+ (p− 1)‖u‖pL∞(Ω)

∣∣ 1
vp−1
n (x)vn(y)

+
1

vp−1
n (y)vn(x)

∣∣|v(y)− v(x)|

≤ 2np−1p‖u‖p−1
L∞(Ω)|u(x)− u(y)|+ 2np(p− 1)‖u‖pL∞(Ω)|v(y)− v(x)|

≤ C(n, p, ‖u‖L∞(Ω)) (|u(x)− u(y)|+ |v(y)− v(x)|)

(4.7)

for all (x, y) ∈ R2N . Thus ṽn ∈ X0(Ω) for all n ∈ N. Similarly ũn ∈ X0(Ω) for all
n ∈ N. As u and v solve (3.7), we have

〈(−∆)spu, u− ũn〉 = (f(x, u)− g(x, u)) (u− ũn), (4.8)

〈(−∆)spv, v − ṽn〉 = (f(x, v)− g(x, v)) (u− ũn). (4.9)

Set

L(u, v)(x, y)

= |u(x)− u(y)|p − |v(x)− v(y)|p−2(v(x)− v(y))
( up(x)
vp−1(x)

− up(x)
vp−1(y)

)
.

Now using (4.8), (4.9) and Lemma 4.2 we have the estimate

0 ≤
∫
Q

L(u, vn)(x, y) + L(v, un)(x, y) dx dy

=
∫
Q

|u(x)− u(y)|p

|x− y|N+sp
− |vn(x)− vn(y)|p−2(vn(x)− vn(y))

|x− y|N+sp

×
( up(x)
vp−1
n (x)

− up(y)
vp−1
n (y)

)
dx dy
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+
∫
Q

|v(x)− v(y)|p

|x− y|N+sp
− |un(x)− un(y)|p−2(un(x)− un(y))

|x− y|N+sp

×
( vp(x)
up−1
n (x)

− vp(y)
up−1
n (y)

)
dx dy

=
∫
Q

|u(x)− u(y)|p

|x− y|N+sp
− |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp

×
( vp(x)
up−1
n (x)

− vp(y)
up−1
n (y)

)
dx dy

+
∫
Q

|v(x)− v(y)|p

|x− y|N+sp
− |v(x)− v(y)|p−2(v(x)− v(y))

|x− y|N+sp

×
( up(x)
vp−1
n (x)

− up(y)
vp−1
n (y)

)
dx dy

=
∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

( up(x)
up−1(x)

− up(y)
up−1(y)

)
dx dy

−
∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

( vp(x)
up−1
n (x)

− vp(y)
up−1
n (y)

)
dx dy

+
∫
Q

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

( vp(x)
vp−1(x)

− vp(y)
vp−1(y)

)
dx dy

−
∫
Q

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

( up(x)
vp−1
n (x)

− up(y)
vp−1
n (y)

)
dx dy

=
∫

Ω

(f(x, u)− g(x, u)) (u− ũn) dx+
∫

Ω

(f(x, v)− g(x, v)) (v − ṽn) dx. (4.10)

Also using the Monotone convergence theorem we estimate the right-hand side of
(4.10) for large n as follows.∫

Ω

(f(x, u)− g(x, u)) (u− ũn) dx+
∫

Ω

(f(x, v)− g(x, v)) (v − ṽn) dx

=
∫

Ω

(f(x, u)− g(x, u))u dx−
∫

Ω

(f(x, u)− g(x, u))
vp

(u+ 1
n )p−1

dx

+
∫

Ω

(f(x, v)− g(x, v)) v dx−
∫

Ω

(f(x, v)− g(x, v))
up

(v + 1
n )p−1

dx

+ on(1)

=
∫

Ω

(f(x, u)− g(x, u))u dx−
∫

Ω

(f(x, u)− g(x, u))
vp

up−1
dx

+
∫

Ω

(f(x, v)− g(x, v)) v dx−
∫

Ω

(f(x, v)− g(x, v))
up

vp−1
dx+ on(1)

=
∫

Ω

(f(x, u)− g(x, u)
up−1

− f(x, v)− g(x, v)
vp−1

)
(up − vp) dx+ on(1)

≤ on(1).

Thus from this inequality and (4.10), and passing to the limit as n → ∞ together
with u/v, v/u ∈ L∞(Ω), we infer that
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∫
Q

(L(u, v) + L(v, u))dx = 0.

Using Lemma 4.2 this implies ku(x) = v(x) for a.e. x ∈ Ω for some k > 0. Assume
that k 6= 1. Then, without loss of generality, we can take k < 1. Therefore, using
(A3),

(−∆)sp(ku) = kp−1(−∆)spu = kp−1(f(x, u)− g(x, u))

< f(x, ku)− g(x, ku) = (−∆)sp(v)

from which we obtain a contradiction. Hence k = 1 and u = v. �

Now we proceed to prove Theorem 3.3. First, we consider the following station-
ary problem.

u+ λ(−∆)spu = g̃ in Ω

u = 0 in RN \ Ω
(4.11)

where λ > 0 and g̃ ∈ L∞(Ω). We have the following existence result for the problem
(4.11).

Lemma 4.7. For any λ > 0, (4.11) admits a unique weak solution u in the sense
that u ∈ X0(Ω) satisfies∫

Ω

uϕdx+ λ

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

(ϕ(x)− ϕ(y)) dx dy =
∫

Ω

g̃ϕ dx,

for all ϕ ∈ X0(Ω). Moreover, u ∈ C0(Ω).

Proof. The proof follows using the similar arguments as above. Precisely, for the
existence of a weak solution we can argue as in the proof of Lemma 4.1. From
the weak comparison principle, we obtain ‖u‖L∞(Ω) ≤ ‖g̃‖L∞(Ω) and from Theo-
rem 4.4, u ∈ C0(Ω). The uniqueness of the weak solution is a consequence of the
monotonicity of the operator (−∆)sp. �

Proof of Theorem 3.3. Let N ∈ N and T > 0. We set ∆t = T
N . For 0 ≤ n ≤ N , we

define tn = n∆t. We perform the proof along four steps.
Step 1. Approximation of h. For n ∈ {1, . . . ,N}, we define for t ∈ [tn−1, tn) and
x ∈ Ω,

h∆t
(t, x) = hn(x) :=

1
∆t

∫ tn

tn−1

h(s, x)ds.

Then by Jensen’s Inequality for any 1 < q <∞,

‖h∆t
‖qLq(QT ) = ∆t

N∑
n=1

‖hn‖qLq = ∆t

N∑
n=1

‖ 1
∆t

∫ tn

tn−1

h(s, x)ds‖qLq

≤ C(Ω, T )‖h‖qL∞(QT ).

Thus h∆t ∈ Lq(QT ). Also note that h∆t → h in Lq(QT ).
Step 2. Approximation of (3.1). We define the iterative scheme: u0 = u0 and for
1 ≤ n ≤ N , un is solution of

un − un−1

∆t
+ (−∆)spu

n = hn in Ω,

un = 0 on RN\Ω.
(4.12)
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Note that the sequence (un)n∈{1,...,N} is well defined. Indeed, we apply Lemma
4.7 with g = ∆th

1 + u0 ∈ L∞(Ω) to prove the existence of u1 ∈ X0(Ω) ∩ L∞(Ω).
Inductively we obtain the existence of (un), for any n = 2, . . . ,N . Defining the
functions u∆t

and ũ∆t
, for n = 1, . . . ,N and t ∈ [tn−1, tn) as

u∆t
(t) = un and ũ∆t

(t) =
(t− tn−1)

∆t
(un − un−1) + un−1 (4.13)

we obtain
∂ũ∆t

∂t
+ (−∆)spu∆t

= h∆t
in QT . (4.14)

Step 3. A priori estimates for u∆t
and ũ∆t

. Multiplying the equation in (4.12) by
(un − un−1) and summing from n = 1 to N ′ ≤ N , we obtain

N ′∑
n=1

∆t

∫
Ω

(un − un−1

∆t

)2

dx

+
N ′∑
n=1

∫
Q

|un(x)− un(y)|p−2(un(x)− un(y))
|x− y|N+sp

(
(un − un−1)(x)

)
dx dy

=
N ′∑
n=1

∫
Ω

hn(un − un−1) dx.

(4.15)

Hence by Young’s inequality and using the convexity property

1
p

(‖un‖pX0
− ‖un−1‖pX0

) ≤ 1
2

∫
Q

|un(x)− un(y)|p−2(un(x)− un(y))
|x− y|N+sp

×
(
(un − un−1)(x)− (un − un−1)(y)

)
dx dy

(4.16)

we obtain

1
2

N ′∑
n=1

∆t

∫
Ω

(un − un−1

∆t

)2

dx

+
N ′∑
n=1

∫
Q

1
p

( |un(x)− un(y)|p

|x− y|N+sp
− |u

n−1(x)− un−1(y)|p

|x− y|N+sp

)
dx dy

≤ C(Ω, T )
2

‖h‖2L∞(QT ).

This implies that(∂ũ∆t

∂t

)
∆t

is bounded in L2(QT ) uniformly in ∆t, (4.17)

(u∆t
) and (ũ∆t

) are bounded in L∞(0, T,X0(Ω)) ∩ L∞(QT )
and uniformly in ∆t.

(4.18)

Furthermore, we have

‖u∆t − ũ∆t‖L∞(0,T :L2(Ω)) ≤ max
n=1,...,N

‖un − un−1‖L2(Ω) ≤ C∆1/2
t . (4.19)

Therefore for ∆t → 0, there exist u, v ∈ L∞(0, T,X0(Ω)) ∩ L∞(QT ) such that (up
to a subsequence)

ũ∆t

∗
⇀ u in L∞(0, T,X0(Ω)), u∆t

∗
⇀ v in L∞(0, T,X0(Ω)), (4.20)
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∂ũ∆t

∂t
⇀

∂u

∂t
in L2(QT ). (4.21)

It follows from (4.19) that u ≡ v.
Step 4. u satisfies (3.1). Plugging (4.17), (4.18) and since X0(Ω) ↪→ L2(Ω) com-
pactly, the Aubin-Simon’s result implies that {u∆t} is compact in C([0, T ];L2(Ω)).
Now using interpolation we obtain, up to a subsequence

ũ∆t → u ∈ C([0, T ], Lq(Ω)), for all q > 1. (4.22)

and hence, from (4.19), we have

u∆t → u ∈ L∞([0, T ], Lq(Ω)), for all q > 1. (4.23)

Multiplying (4.14) by (u∆t
− u) we obtain∫ T

0

∫
Ω

∂ũ∆t

∂t
(u∆t

−u) dx dt+
∫ T

0

〈(−∆)spu∆t
, u∆t

−u〉 dt =
∫ T

0

∫
Ω

h∆t
(u∆t

−u) dx dt.

Rearranging the terms in the above equation and using (4.19)-(4.20) we have∫ T

0

∫
Ω

(∂ũ∆t

∂t
− ∂u

∂t

)
(ũ∆t − u) dx dt

+
∫ T

0

〈(−∆)spu∆t − (−∆)spu, u∆t − u〉dt = o∆t(1).

Thus we obtain
1
2

∫
Ω

|ũ∆t
(T )− u(T )|2dx+

∫ T

0

〈(−∆)spu∆t
− (−∆)spu, u∆t

− u〉 = o∆t
(1).

Using (4.22), we obtain∫ T

0

〈(−∆)spu∆t
− (−∆)spu, u∆t

− u〉dt = o∆t
(1).

This implies∫ T

0

∫
Q

((
|u∆t(x)− u∆t(y)|p−2(u∆t(x)− u∆t(y))− |u(x)− u(y)|p−2(u(x)− u(y))

)
×
(
u∆t

(x)− u∆t
(y)− u(x) + u(y)

)) 1
|x− y|N+sp

dx dy dt = o∆t
(1).

Thus by (2.2), for p ≥ 2 we conclude that∫ T

0

∫
Q

|u∆t
(x)− u∆t

(y)− u(x) + u(y)|p

|x− y|N+sp
= o∆t

(1).

Also for 1 < p ≤ 2, (2.2) together with the Hölder inequality in R2 imply∫ T

0

∫
Q

|u∆t(x)− u∆t(y)|2

(|u∆t(x)− u∆t(y)|p + |u(x)− u(y)|p)
2−p
p |x− y|N+sp

= o∆t
(1).

Therefore using Hölder’s inequality we obtain

0 ≤
∫ T

0

∫
Q

|(u∆t
(x)− u∆t

(y)− u(x) + u(y))|p

|x− y|N+sp
dx dy dt

=
∫ T

0

∫
Q

(∣∣(u∆t(x)− u∆t(y)− u(x) + u(y)
)∣∣p



14 J. GIACOMONI, S. TIWARI EJDE-2018/44

×
(
|u∆t

(x)− u∆t
(y)|p + |u(x)− u(y)|p

) 2−p
2
)

× 1(
|u∆t(x)− u∆t(y)|p + |u(x)− u(y)|p

) 2−p
2 |x− y|(N+sp)( p2 + 2−p

2 )
dx dy dt

≤
(∫ T

0

∫
Q

|u∆t(x)− u∆t(y) + u(y)|2

(|u∆t
(x)− u∆t

(y)|p + |u(x)− u(y)|p)
(2−p)
p |x− y|N+sp

)p/2
×
(∫ T

0

∫
Q

(|u∆t
(x)− u∆t

(y)|p + |u(x)− u(y)|p)
|x− y|N+sp

) 2−p
2

≤
(∫ T

0

∫
Q

|u∆t
(x)− u∆t

(y) + u(y)|2

(|u∆t
(x)− u∆t

(y)|p + |u(x)− u(y)|p)
(2−p)
p |x− y|N+sp

)p/2
×
(
‖u∆t

‖pX0(Ω) + ‖u‖pX0(Ω)

) 2−p
2

= o∆t
(1).

Thus in both cases we have∫ T

0

∫
Q

|(u∆t
(x)− u∆t

(y)− u(x) + u(y))|p

|x− y|N+sp
dx dy dt→ 0.

This implies u∆t
converges to u in Lp(0, T,X0(Ω)). Therefore, for φ ∈ C∞0 (Q),∫ T

0

∫
Q

|u∆t(x)− u∆t(y)|p−2(u∆t(x)− u∆t(y))(φ(x)− φ(y)) dx dy dt
|x− y|N+sp

→
∫ T

0

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y)) dx dy dt
|x− y|N+sp

Hence, we conclude passing to the limit, in the distribution sense, in equation
(4.14) that u is a weak solution of (3.1). Also u is the unique weak solution of
(3.1). Indeed, assume that there exists v a weak solution of (3.1). Then, we have
for any arbitrary t0 ∈ (0, T ]∫ t0

0

∫
Ω

∂(u− v)
∂t

(u− v)(x, t) dx dt+
∫ t0

0

〈(−∆)spu− (−∆)spv, u− v〉dt = 0.

Since (−∆)sp is monotone, this together with u(0) = v(0) imply

1
2

∫
Ω

(u(t0)− v(t0))2dx =
∫ t0

0

∂

∂t

∫
Ω

1
2

(u− v)2dx dt

=
∫

(0,t0)×Ω

∂(u− v)
∂t

(u− v) dx dt ≤ 0

from which it follows that u ≡ v. Next we claim that u ∈ C([0, T ];X0(Ω)) and
satisfies (3.3). Using (4.22) and the compact embedding of X0(Ω) into Lp(Ω), it
is easy to check that u(·, t) ∈ X0(Ω) and the map [0, T ] 3 t → u(·, t) ∈ X0(Ω),
is weakly continuous. Therefore, ‖u(·, t0)‖X0(Ω) ≤ lim inft→t0 ‖u(·, t0)‖X0(Ω). Now
multiplying (4.12) by un − un−1, taking integration over RN both sides, summing
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from 1 ≤ n = N ′′ to N ′ ≤ N , and using (4.16) we obtain

∆t

n=N ′∑
n=N ′′

(un − un−1

∆t

)2

+
1
p

(
‖uN

′
‖X0(Ω) − ‖uN

′′−1‖X0(Ω)

)

≤
n=N ′∑
n=N ′′

∆t

∫
Ω

h∆t

(un − un−1

∆t

)
dx.

(4.24)

For any t ∈ [t0, T ], choose N ′′ and N ′ such that N ′′∆t → t and N ′∆t → t0. Then
(4.24) gives ∫ t

t0

∫
Ω

(∂u
∂t

)2

dx dt+
1
p
‖u(·, t)‖X0(Ω)

≤
∫ t

t0

∫
Ω

h
(∂u
∂t

)
dx dt+

1
p
‖u(·, t0)‖X0(Ω).

(4.25)

Now from the above inequality and (4.23) we infer that

lim sup
t→t+0

‖u(·, t)‖X0(Ω) ≤ ‖u(·, t0)‖X0(Ω),

and hence the map [0, T ] 3 t → u(·, t) ∈ X0(Ω) is right continuous. Now for
proving the left continuity, take 0 < k ≤ t − t0 and multiply (3.1) by τk(u)(s) =
u(x,s+k)−u(x,s)

k and integrate over (t0, t)× RN . Using (4.16), we obtain∫ t

t0

∫
Ω

τk(u)
∂u

∂t
dxdθ +

1
pk

∫ t

t0

‖u(θ + k)‖pX0(Ω) − ‖u(θ)‖pX0(Ω)dθ

≥
∫ t

t0

∫
Ω

τk(u)h dxdθ.
(4.26)

It follows that∫ t

t0

∫
Ω

τk(u)
∂u

∂t
dxdθ +

1
pk

(
∫ t+k

t

‖u(θ)‖pX0(Ω)dθ −
∫ t0+k

t0

‖u(θ)‖pX0(Ω)dθ)

≥
∫ t

t0

∫
Ω

τk(u)h dxdθ.
(4.27)

By the right continuity of t 7→ u(·, t), as k → 0+, we have

1
pk

∫ t+k

t

‖u(θ)‖pX0(Ω)dθ →
1
p
‖u(t)‖pX0(Ω),

1
pk

∫ t0+k

t0

‖u(θ)‖pX0(Ω)dθ →
1
p
‖u(t0)‖pX0(Ω).

Hence as k → 0+, (4.27) becomes∫ t

t0

∫
Ω

(∂u
∂t

)2

dxdθ+
1
p
‖u(·, t)‖pX0(Ω) ≥

∫ t

t0

∫
Ω

h
∂u

∂t
dx ds+

1
p
‖u(·, t0)‖pX0(Ω). (4.28)

From the above inequality, we deduce that we have the equality in (4.25) and hence
the claim. This completes the proof of the Theorem 3.3. �
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Proof of Theorem 3.9. First we show that there exists a sub-solution u and a super
solution ū of (3.7) such that u, ū ∈ C+

ds(Ω). Since f and g satisfy (A4) and using
the fact that φ1,s,p ∈ Cds(Ω), we can choose ε > 0 small enough such that

(−∆)sp(εφ1,s,p) = λ1,s,pε
p−1φp−1

1,s,p ≤ f(x, εφ1,s,p)− g(x, εφ1,s,p). (4.29)

and εφ1,s,p ≤ u0. Also let w be the solution of the following problem

(−∆)spw = βwp−1 + C in Ω
w > 0 in Ω

w = 0 in RN \ Ω,

where lim supθ→∞
f(x,θ)
θp−1 ≤ β < λ1,s,p and C > 0. Then arguing as in the proof of

Proposition 4.3, we obtain w ∈ L∞(Ω) and hence by [15, Theorem 1.1], w ∈ Cα(Ω)
with α ∈ (0, s]. Furthermore from [15, Theorem 4.4] we have for some constant
C0 > 0, |w(x)| ≤ C0d

s(x) a.e. x ∈ Ω. Then, w ∈ Cds(Ω) and from the Hopf lemma
(see Lemma 4.5), we obtain w ∈ C+

ds(Ω). Again using the fact that f and g satisfy
(A4), we have that for some constant C ′ > 0,

f(x, θ)− g(x, θ) ≤ βθ + C ′.

Then for M > 0 large enough, we obtain

(−∆)sp(Mw) = β(Mw)p−1 + CMp−1 ≥ f(x,Mw)− g(x,Mw) (4.30)

and u0 ≤ Mw. Then u := εφ1,s,p and ū := Mw are the required sub-solution and
the super-solution of (3.7), respectively, such that u, ū ∈ C+

ds(Ω). We define the
sequence (un) by the iterative scheme: u0 = u0 and

un + (−∆)spu
n +Kun = un−1 + f(x, un−1)− g(x, un−1) +Kun−1 in Ω,

un = 0 on RN \ Ω.

where K > 0 is chosen such that the map t 7→ Kt+f(x, t)−g(x, t) is nondecreasing
in [0, ‖ū‖X0 ], for a.e. x ∈ Ω. Then the existence of a weak solution u∞ ∈ [u, u]
to (3.7) is obtained by the standard arguments of the monotone iteration method.
Also we have u ≤ u∞ ≤ ū in Ω and u∞ ∈ C+

ds(Ω). The uniqueness of the solution
to (3.7) follows from Theorem 4.6. �

Proof of Theorem 3.4. Now we proceed as in the proof of Theorem 3.3. Set ∆t :=
T
N , N ∈ N and let u and ū be as defined in the proof of Theorem 3.9. We define
the sequence {un} ∈ X0(Ω) as the solutions to the iterative scheme: u0 = u0 and

un + ∆t((−∆)spu
n +Kun) = uk−1 + ∆t(f(x, un−1)− g(x, un−1) +Kun−1) in Ω,

The existence of un ∈ C+
ds(Ω), for any n ≥ 1 follows from Lemma 4.7 and the Hopf

Lemma. Note that from Theorem 3.9, we have u ≤ u0 ≤ ū, a.e. in Ω. We claim
that u ≤ uk ≤ ū. Indeed for k = 1, we have

u−u1+∆t((−∆)spu−(−∆)spu
1) ≤ u−u0+∆t(f(x,u)−f(x, u0)−(g(x, u)−g(x, u0))).

Therefore,
u− u1 + ∆t((−∆)spu− (−∆)spu

1 +K(u− u1)) ≤ 0.
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Thus by comparison principle given in [15, Theorem 2.10], we have u ≤ u1. Simi-
larly we prove u1 ≤ ū. The rest of the claim follows by induction. Now we define
u∆t and ũ∆t as in the proof of Theorem 3.3, and

h∆t
(t, x) := f(x, u∆t

(t−∆t, x))− g(x, u∆t
(t−∆t, x)).

Then clearly as u ≤ u∆t
≤ ū, h∆t

(t, x) ∈ L∞(Q).
Therefore following a similar arguments as in the proof of Theorem 3.3, for

∆t → 0, there exist u ∈ L∞(0, T,X0(Ω)) such that (up to a subsequence)

ũ∆t
, u∆t

∗
⇀ u in L∞(0, T,X0(Ω)) and L∞(QT ), (4.31)
∂ũ∆t

∂t
⇀

∂u

∂t
in L2(QT ). (4.32)

Again using a similar arguments as in the proof of Theorem 3.3, we have

ũ∆t
→ u ∈ C([0, T ], Lq(Ω)) and ũ∆t

→ u ∈ L∞([0, T ], Lq(Ω)), (4.33)

for all q > 1. Also using the Lipschitz continuity of f and g we have

‖h∆t(·, t)− (f − g)(·, u(·, t))‖L2(Ω)

= ‖(f − g)(·, u∆t
(·, t−∆t))− (f − g)(·, u(·, t))‖L2(Ω)

≤ C‖u∆t
(·, t−∆t)− u(·, t)‖L2(Ω)

(4.34)

Thus (4.33)-(4.34), we deduce that h∆t
(x, t)→ f(x, u(x)) in L∞(0, T ;L2(Ω)). The

rest of the proof follows using step 4 of the Theorem 3.3. �

Now we study the regularity of the solutions of (3.1) and (3.2) given in Theorem
3.6 and Theorem 3.7.

Proof of Lemma 3.5. Let h1, h2 ∈ L∞(Ω) and u, v ∈ X0(Ω), respectively, be the
solutions to

u+ (−∆)sp(u) = h1 in Ω,

v + (−∆)sp(v) = h2 in Ω

For w ∈ L∞(Ω), define w+(x) = max{w(x), 0}. Setting

Ω+ = {x ∈ Ω : (u− v − ‖h1 − h2‖L∞(Ω))+(x) > 0},

and noting that for x ∈ Ω+ and y ∈ RN \Ω+, u(x)− u(y) ≥ v(x)− v(y), we obtain

〈(−∆)spu− (−∆)spv, (u− v − ‖h1 − h2‖L∞(Ω))+〉

=
∫

Ω+

(∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy
)

(u− v − ‖h1 − h2‖L∞(Ω))(x) dx

−
∫

Ω+

(∫
RN

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

dy
)

(u− v − ‖h1 − h2‖L∞(Ω))(x) dx

=
∫

Ω+

(∫
Ω+

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy
)

× (u− v − ‖h1 − h2‖L∞(Ω))(x) dx

+
∫

Ω+

(∫
RN\Ω+

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy
)

× (u− v − ‖h1 − h2‖L∞(Ω))(x) dx
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−
∫

Ω+

(∫
Ω+

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

dy
)

(u− v − ‖h1 − h2‖L∞(Ω))(x) dx

−
∫

Ω+

(∫
RN\Ω+

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

dy
)

× (u− v − ‖h1 − h2‖L∞(Ω))(x) dx

≥
∫

Ω+

(∫
Ω+

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy
)

(u− v − ‖h1 − h2‖L∞(Ω))(x) dx

−
∫

Ω+

(∫
Ω+

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+sp

dy
)

(u− v − ‖h1 − h2‖L∞(Ω))(x) dx

=
∫

Ω+

∫
Ω+

((
|u(x)− u(y)|p−2(u(x)− u(y))− |v(x)− v(y)|p−2(v(x)− v(y))

)
×
(
(u− v)(x)− (u− v)(y)

)) 1
2|x− y|N+sp

dy dx ≥ 0.

This implies the m-accretivity of A in L∞(Ω). �

Now Theorem 3.6 and Theorem 3.7 follow using the approach as in [6, Theorem
4.2 and 4.4]. Next we prove the asymptotic behavior of the solution of (3.2) as
given in the Theorem 3.10.

Proof of Theorem 3.10. Let u and ū be the sub and super solutions respectively
to (3.7) as constructed in the proof of the Theorem 3.9 such that u ≤ u0 ≤ ū.
Let u1 and u2 be the unique and global solution to (3.2) with the initial data u
and ū respectively. Note that using the approach as in proof of [5, Theorem 0.15]

we have u, ū ∈ D(A)
L∞(Ω)

and u ≤ u1(t) ≤ u(t) ≤ u2(t) ≤ u and t 7→ u1(t)
(t 7→ u2(t)) is non-decreasing (non-increasing respectively) and converges a.e. to
u∞1 (u∞2 respectively), as t→∞. Now from the semi-group theory we have

u∞1 = lim
t′→∞

S(t′ + t)(u) = S(t)
(

lim
t′→∞

S(t′)u
)

= S(t)u∞1

u∞2 = lim
t′→∞

S(t′ + t)(ū) = S(t)
(

lim
t′→∞

S(t′)ū
)

= S(t)u∞2

where S(t) is the semi-group on L∞(Ω) generated by the given evolution equation.
This implies that u∞1 and u∞2 are the stationary solutions to (3.2). From the
uniqueness of the solution in Theorem 3.9 we obtain that u∞1 = u∞ = u∞2 . Thus
u(t)→ u∞ in L∞(RN ). �
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