# EXISTENCE AND UNIQUENESS OF SOLUTIONS TO SINGULAR QUASILINEAR SCHRÖDINGER EQUATIONS 

LI-LI WANG<br>Communicated by Vicentiu D. Radulescu


#### Abstract

In this article we study a quasilinear Schrödinger equations with singularity. We obtain a unique and positive solution by using the minimax method and some analysis techniques.


## 1. Introduction and statement of main results

This article concerns the singular quasilinear Schrödinger equation with the Dirichlet boundary value condition

$$
\begin{gather*}
-\Delta u-\Delta\left(u^{2}\right) u=g(x) u^{-r}-u^{p-1} \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega  \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded smooth domain with boundary $\partial \Omega, r \in(0,1)$ and $p \in\left[2,22^{*}\right]$ are constants. The coefficient $g \in L^{\frac{22^{*}}{22^{*}-1+r}}(\Omega)$ with $g(x)>0$ for almost every $x \in \Omega$ and $2^{*}=\frac{2 N}{N-2}$ denotes the critical Sobolev exponent for the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ for every $q \in\left[1,2^{*}\right]$.

Solutions of 1.1 are related to standing wave solutions for the quasilinear Schrödinger equations

$$
\begin{equation*}
i \partial_{t} \psi=-\Delta \psi+\psi+\eta\left(|\psi|^{2}\right) \psi-k \Delta \rho\left(|\psi|^{2}\right) \rho^{\prime}\left(|\psi|^{2}\right) \psi \tag{1.2}
\end{equation*}
$$

where $\psi=\psi(t, x), \psi: \mathbb{R} \times \Omega \rightarrow \mathbb{C}, k>0$ is a constant. The quasilinear equations of the form 1.2 play an important role in several areas of physics in correspondence to different type of functions $\rho$. For example, it models the superfluid film equation in plasma physics for $\rho(s)=s$ (see [14]), while for $\rho(s)=(1+s)^{1 / 2}$ it models the self-channeling of a high-power ultra short laser pulse in matter (see [2, 6, 23]). For further physical motivations and developing the physical aspects we refer to [13, 15, 16, 21 and the references therein.

Motivated by the above mentioned physical aspects, equation $\sqrt[1.2]{ }$ has received a lot of attention. Indeed, up to our knowledge, the first existence results for the subcritical quasilinear equations have been discussed in [21] using constraint minimization arguments. Subsequently, many authors in [4, 18, 19] were interested

[^0]in the existence results of standing wave solutions for 1.2 by using a change of variable and reducing the quasilinear equations into the semilinear ones in an appropriate Orlicz space. For critical case, we can refer to [26, 10, 9, 19]. It is worth noticing that up to now there are only one paper [8] investigating the singular case, where they established the singular quasilinear Schrödinger equation
$$
-\Delta u-\frac{1}{2} \Delta\left(u^{2}\right) u=\lambda u^{3}-u-u^{-\alpha}, \quad u>0, x \in \Omega,
$$
where $\Omega$ is a ball in $\mathbb{R}^{N}(N \geq 2)$ centered at the origin, $0<\alpha<1$. And they proved the existence of radially symmetric positive solutions by employing Nehari manifold and some techniques related to implicit function theorem when $\lambda$ belongs to a certain neighborhood of the first eigenvalue $\lambda_{1}$ of the eigenvalue problem
$$
-\Delta u-\frac{1}{2} \Delta\left(u^{2}\right) u=\lambda u^{3}
$$

The singular problems are much more complicated than the regular one and they require some hard analysis. For singular elliptic problems, there are many authors (see e.g. [11, 5, 3, 27, 7, 12, 22]) have studied. Especially, Ghergu and Rădulescu in [11] established several existence and nonexistence results for the boundary value problem

$$
\begin{gather*}
-\Delta u+K(x) g(u)=\lambda f(x, u)+\mu h(x) \quad \text { in } \Omega, \\
u>0 \quad \text { in } \Omega  \tag{1.3}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 2), \lambda$ and $\mu$ are positive parameters, $h$ is a positive function, $f$ has a sublinear growth and the function $g$ satisfies the condition

$$
\lim _{s \rightarrow \infty} g(s)=+\infty
$$

Obviously, $g(s)=s^{-r}, r \in(0,1)$ satisfies the above assumption. When $K(x) \equiv$ $-1, f(x, u)=u^{p}$ and $g(s)=s^{-r}$ in 1.3), where $r \in(0,1), p \geq 0$, Coclite and Palmieri in [3] proved that there is at least one solution for all $\lambda \geq 0$ if $0<p<1$, moreover, there exists a solution for small $\lambda>0$ and no solution for large $\lambda>0$ if $p \geq 1$. For Second-Order Differential Equations, such as Sturm-Liouville operator, Dirac Operators etc., there are many authors being interested, we can refer to [20, 17] and the references therein.

The main purpose of this article is to study the singular quasilinear Schrödinger equation (1.1) and introduce a uniqueness result of solutions for (1.1), which is the first work on this subject up to our knowledge.
Notation. $C$ is a positive constant whose value can be different. The domain of an integral is $\Omega$ unless otherwise indicated. $\int f(x) d x$ is abbreviated to $\int f(x) . L^{p}(\Omega)$, $1 \leq p \leq \infty$, denotes the Lebesgue space with the norms $\|u\|_{p}=\left(\int|u|^{p}\right)^{\frac{1}{p}}$, for $1 \leq p<\infty,\|u\|_{\infty}=\inf \{C>0:|u(x)| \leq C$ almost everywhere in $\Omega\} . X=H_{0}^{1}(\Omega)$ denotes the Hilbert space equipped with the norm $\|u\|=\left(\int|\nabla u|^{2}\right)^{1 / 2}$. The main result is described as follows.

Theorem 1.1. Suppose that $r \in(0,1), p \in\left[2,22^{*}\right]$ and $g \in L^{\frac{22^{*}}{22^{*}-1+r}}(\Omega)$ with $g(x)>0$ for almost every $x \in \Omega$. Then problem (1.1) has a unique positive solution in $X$. Moreover, this solution is the global minimizer solution.

The classic semilinear singular equation

$$
\begin{gathered}
-\Delta u=g(x) u^{-r}+\lambda u^{p-1}, \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega
\end{gathered}
$$

where $p=2^{*}$, has been studied for $\lambda>0$ in [27] and also in [7] for $\lambda=0$ under the condition $g(x) \in L^{\infty}(\Omega)$. We point out that the condition $g \in L^{\frac{22^{*}}{22^{*}-1+r}}(\Omega)$ is more general than the condition $g(x) \in L^{\infty}(\Omega)$. To the best of our knowledge, the existence and uniqueness of solutions for the quasilinear Schrödinger equation 1.1 has not been discussed up to now.

This article is organized as follows: Some preliminaries are given in the next section. In Section 3, we give the proof of Theorem 1.1

## 2. Preliminary Results

We observe that the energy functional corresponding to 1.1 given by

$$
J(u):=\frac{1}{2} \int\left(1+2 u^{2}\right)|\nabla u|^{2}-\frac{1}{1-r} \int g(x)|u|^{1-r}+\frac{1}{p} \int|u|^{p}
$$

is not well defined in $X$. To overcome this problem, we use the change of variable $v:=f^{-1}(u)$ introduced in 18, where $f$ is defined by

$$
f^{\prime}(t)=\frac{1}{\sqrt{1+2 f^{2}(t)}} \text { on }[0,+\infty), \quad \text { and } \quad f(t)=-f(-t) \text { on }(-\infty, 0] .
$$

We list some properties of $f$, whose proofs can be found in 4, 25].
Lemma 2.1. The function $f$ satisfies the following properties:
(1) $f$ is uniquely defined, $C^{\infty}$ and invertible;
(2) $\left|f^{\prime}(t)\right| \leq 1$ for all $t \in \mathbb{R}$;
(3) $|f(t)| \leq|t|$ for all $t \in \mathbb{R}$;
(4) $f(t) / t \rightarrow 1$ as $t \rightarrow 0$;
(5) $\left|f(t) f^{\prime}(t)\right|<1 / \sqrt{2}, \forall t \in \mathbb{R}$;
(6) $f(t) / 2 \leq t f^{\prime}(t) \leq f(t)$ for all $t \geq 0$;
(7) $|f(t)| \leq 2^{1 / 4}|t|^{1 / 2}$ for all $t \in \mathbb{R}$;
(8) the function $f^{-r}(t) f^{\prime}(t)$ is decreasing for all $t>0$;
(9) the function $f^{p-1}(t) f^{\prime}(t)$ is increasing for all $t>0$.

Proof. We only prove (8) and (9). By $f^{\prime \prime}(t)=-2 f(t)\left[f^{\prime}(t)\right]^{4}$, for all $t \in \mathbb{R}, p \geq 2$ and (5), with simple computation we obtain

$$
\frac{d\left[f^{-r}(t) f^{\prime}(t)\right]}{d t}=-r f^{-r-1}(t)\left[f^{\prime}(t)\right]^{2}-2 f^{1-r}(t)\left[f^{\prime}(t)\right]^{4}<0, \quad \forall t>0
$$

and

$$
\frac{d\left[f^{p-1}(t) f^{\prime}(t)\right]}{d t}=f^{p-2}(t)\left[f^{\prime}(t)\right]^{2}\left[p-1-2 f^{2}(t)\left[f^{\prime}(t)\right]^{2}\right]>0, \quad \forall t>0
$$

which imply that $f^{-r}(t) f^{\prime}(t)$ is decreasing and $f^{p-1}(t) f^{\prime}(t)$ is increasing for all $t>0$.

By exploiting the change of variable, we can rewrite the functional in the form

$$
I(v):=\frac{1}{2} \int|\nabla v|^{2}-\frac{1}{1-r} \int g(x)|f(v)|^{1-r}+\frac{1}{p} \int|f(v)|^{p}, \quad v \in X
$$

By Lemma 2.1-(7), the Hölder inequality and the Sobolev inequality we have

$$
\begin{equation*}
\int g(x)|f(v)|^{1-r} \leq C\|g\|_{\frac{22^{*}}{22^{*}-1+r}}\|v\|^{\frac{1-r}{2}} \tag{2.1}
\end{equation*}
$$

Then $I$ is well-defined but only continuous on $X$. Also equation (1.1) can be rewritten as

$$
\begin{equation*}
-\Delta v=g(x) f^{-r}(v) f^{\prime}(v)-f^{p-1}(v) f^{\prime}(v), v>0, x \in \Omega \tag{2.2}
\end{equation*}
$$

In general, a function $v \in X$ is called a weak solution of 2.2 with $v>0$ in $\Omega$ if it holds

$$
\begin{equation*}
\int \nabla v \nabla w-g(x) f^{-r}(v) f^{\prime}(v) w+f^{p-1}(v) f^{\prime}(v) w=0, \quad \forall w \in X \tag{2.3}
\end{equation*}
$$

We observe that if $v \in X$ is a weak solution of 2.2 , the function $u=f(v) \in X$ is a solution of (1.1) (cf: [4]).

## 3. Proof of Theorem 1.1

In this section, we shall show that there exists a unique positive solution $v_{0}$ of (2.2), which is the global minimizer of the functional $I$ in $X$, and then $u_{0}=f\left(v_{0}\right) \in$ $X$ is the unique positive solution of (1.1).
Lemma 3.1. The functional I attains the global minimizer in $X$; that is, there exists $v_{0} \in X \backslash\{0\}$ such that $I\left(v_{0}\right)=m:=\inf _{X} I<0$.

Proof. For $v \in X$, from (2.1) it follows that

$$
\begin{equation*}
I(v) \geq \frac{1}{2}\|v\|^{2}-\frac{C}{1-r}\|g\|_{\frac{22^{*}}{22^{*}-1+r}}\|v\|^{\frac{1-r}{2}} \tag{3.1}
\end{equation*}
$$

Since $r \in(0,1), I$ is coercive and bounded from below on $X$. Thus $m:=\inf _{X} I$ is well defined. For $t>0$ and given $v \in X \backslash\{0\}$ by Lemma 2.1.(7) one gets

$$
\begin{aligned}
I(t v) & =\frac{t^{2}}{2}\|v\|^{2}-\frac{1}{1-r} \int g(x)|f(t v)|^{1-r}+\frac{1}{p} \int|f(t v)|^{p} \\
& \leq \frac{t^{2}}{2}\|v\|^{2}-\frac{1}{1-r} \int g(x)|f(t v)|^{1-r}+\frac{C}{p} t^{\frac{p}{2}} \int|v|^{\frac{p}{2}}
\end{aligned}
$$

Note that the function $\left|\frac{f(t v)}{t v}\right|^{1-r}$ is non-increasing for $t>0$. By Lemma 2.1.(4) and Beppo-Levi Monotone Convergence Theorem, we can see

$$
\lim _{t \rightarrow 0^{+}} \frac{I(t v)}{t^{1-r}}=-\frac{1}{1-r} \int g(x)|v|^{1-r}<0
$$

So we have $I(t v)<0$ for all $v \not \equiv 0$ and $t>0$ small enough. Hence, we obtain $m<0$.
According to the definition of $m$, there exists a minimizing sequence $\left\{v_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} I\left(v_{n}\right)=m<0$. Since $I\left(v_{n}\right)=I\left(\left|v_{n}\right|\right)$, we may assume that $v_{n} \geq 0$. It follows from (3.1) that there exists a constant $C>0$ such that $\left\|v_{n}\right\| \leq C$. Passing if necessary to a subsequence, we can assume that there exists $v_{0} \in X$ such that

$$
\begin{gathered}
v_{n} \rightharpoonup v_{0} \quad \text { in } X \\
v_{n} \rightarrow v_{0} \quad \text { in } L^{p}(\Omega), p \in\left[1,2^{*}\right), \\
v_{n}(x) \rightarrow v_{0}(x) \quad \text { a.e. in } \Omega
\end{gathered}
$$

there exists a function $k \in L^{p}(\Omega), p \in\left[1,2^{*}\right)$, such that

$$
\begin{equation*}
\left|u_{n}(x)\right| \leq k(x) \quad \text { a.e. in } \Omega . \tag{3.2}
\end{equation*}
$$

By Vitali's theorem (see [24]), we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int g(x) f^{1-r}\left(v_{n}\right)=\int g(x) f^{1-r}\left(v_{0}\right) \tag{3.3}
\end{equation*}
$$

Indeed, we only need prove that $\left\{\int g(x) f^{1-r}\left(v_{n}\right), n \in \mathbb{N}\right\}$ is equi-absolutelycontinuous. For all $\varepsilon>0$, by the absolutely-continuity of $\int|g(x)|^{\frac{22^{*}}{22^{*}-1+r}}$, there exists $\delta>0$ such that $\int_{E}|g(x)|^{\frac{22^{*}}{22^{*}-1+r}}<\varepsilon^{\frac{22^{*}}{22^{*}-1+r}}$ for all $E \subset \Omega$ with meas $E<\delta$. Consequently, by (2.1) and the fact that $\left\|v_{n}\right\| \leq C$, we have

$$
\int_{E} g(x) f^{1-r}\left(v_{n}\right) \leq C\left\|v_{n}\right\|^{\frac{1-r}{2}}\left(\int_{E}|g(x)|^{\frac{22^{*}}{22^{*}-1+r}}\right)^{\frac{22^{*}-1+r}{22^{*}}}<C \varepsilon
$$

Thus, $(3.3)$ is valid. In the case that $p \in\left[2,22^{*}\right)$, by Lemma $2.1(7)$ and 3.2 we see

$$
\left|f\left(v_{n}\right)\right|^{p} \leq C\left|v_{n}\right|^{\frac{p}{2}} \leq C k^{\frac{p}{2}} \in L^{1}(\Omega)
$$

then the Lebesgue Dominated Convergence Theorem implies

$$
\int f^{p}\left(v_{n}\right)=\int f^{p}\left(v_{0}\right)+o(1)
$$

Combining the above equality, the weakly lower semi-continuity of the norm, and (3.3), we have

$$
m \leq I\left(v_{0}\right)=\frac{1}{2}\left\|v_{0}\right\|^{2}-\frac{1}{1-r} \int g(x) f^{1-r}\left(v_{0}\right)+\frac{1}{p} \int f^{p}\left(v_{0}\right) \leq \liminf _{n \rightarrow \infty} I\left(v_{n}\right)=m
$$

which yields that $I\left(v_{0}\right)=m<0$ and $v_{0} \not \equiv 0$. In the case that $p=22^{*}$, by Brézis-Lieb's Lemma (see [1) and Lemma 2.1.(7), one obtains

$$
\int f^{22^{*}}\left(v_{n}\right)=\int f^{22^{*}}\left(v_{0}\right)+\int f^{22^{*}}\left(v_{n}-v_{0}\right)+o(1)
$$

which together with the weakly lower semi-continuity of the norm and (3.3), we have

$$
\begin{aligned}
m & \leq I\left(v_{0}\right)=\frac{1}{2}\left\|v_{0}\right\|^{2}-\frac{1}{1-r} \int g(x) f^{1-r}\left(v_{0}\right)+\frac{1}{p} \int f^{p}\left(v_{0}\right) \\
& \leq \liminf _{n \rightarrow \infty} I\left(v_{n}\right)-\lim _{n \rightarrow \infty} \frac{1}{22^{*}} \int f^{22^{*}}\left(v_{n}-v_{0}\right) \leq m
\end{aligned}
$$

which also implies that $I\left(v_{0}\right)=m<0$ and $v_{0} \not \equiv 0$.
Proof of Theorem 1.1. Since $I\left(v_{0}\right)=m<0$, we obtain that $v_{0} \geq 0$ and $v_{0} \not \equiv 0$. Now, we divide the proof in three steps:

First, we claim that $v_{0}>0$ in $\Omega$. Fix $\phi \in X$ with $\phi \geq 0$, let $t>0$, one has

$$
\begin{aligned}
0 \leq & I\left(v_{0}+t \phi\right)-I\left(v_{0}\right) \\
= & \frac{1}{2}\left\|v_{0}+t \phi\right\|^{2}-\frac{1}{2}\left\|v_{0}\right\|^{2}-\frac{1}{1-r} \int g(x)\left[f^{1-r}\left(v_{0}+t \phi\right)-f^{1-r}\left(v_{0}\right)\right] \\
& +\frac{1}{p} \int f^{p}\left(v_{0}+t \phi\right)-f^{p}\left(v_{0}\right) .
\end{aligned}
$$

Dividing by $t>0$ and passing to the limit as $t \rightarrow 0^{+}$in the above inequality, we have

$$
\begin{align*}
& \frac{1}{1-r} \liminf _{t \rightarrow 0^{+}} \int g(x) \frac{f^{1-r}\left(v_{0}+t \phi\right)-f^{1-r}\left(v_{0}\right)}{t}  \tag{3.4}\\
& \leq \int \nabla v_{0} \nabla \phi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi
\end{align*}
$$

Note that

$$
\int g(x) \frac{f^{1-r}\left(v_{0}+t \phi\right)-f^{1-r}\left(v_{0}\right)}{t}=(1-r) \int g(x) f^{-r}\left(v_{0}+t \theta \phi\right) f^{\prime}\left(v_{0}+t \theta \phi\right) \phi
$$

where $\theta(x) \in(0,1)$. For any $x \in \Omega$, we denote

$$
h(t)=g(x) f^{-r}\left(v_{0}+t \theta \phi\right) f^{\prime}\left(v_{0}+t \theta \phi\right) \phi, \quad t>0
$$

It follows from $g(x)>0$ a.e. $x \in \Omega$ and Lemma 2.1(8) that $h(t)$ is non-increasing for $t>0$. Moreover,

$$
\lim _{t \rightarrow 0^{+}} h(t)=g(x) f^{-r}\left(v_{0}(x)\right) f^{\prime}\left(v_{0}(x)\right) \phi(x)
$$

for every $x \in \Omega$, which may be $+\infty$ when $v_{0}(x)=0$. Consequently, by the BeppoLevi Monotone Convergence Theorem, we obtain

$$
\liminf _{t \rightarrow 0^{+}} \frac{1}{1-r} \int g(x) \frac{f^{1-r}\left(v_{0}+t \phi\right)-f^{1-r}\left(v_{0}\right)}{t}=\int g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi
$$

which together with (3.4) implies that

$$
\begin{equation*}
\int \nabla v_{0} \nabla \phi-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi \geq 0, \quad \phi \in X, \phi \geq 0 \tag{3.5}
\end{equation*}
$$

Therefore,

$$
-\Delta v_{0}+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \geq 0
$$

in the weak sense. Hence the maximum principle implies that $v_{0}>0$ in $\Omega$.
Secondly, we show that $v_{0}$ is a solution of $\sqrt{2.2}$, that is, we prove $v_{0}$ satisfies 2.3. For given $\delta>0$, define $H:[-\delta, \delta] \rightarrow \mathbb{R}$ by $H(t)=I\left((1+t) v_{0}\right)$, then $H$ attains its minimum at $t=0$ by Lemma 3.1, namely

$$
\begin{equation*}
H^{\prime}(0)=\left\|v_{0}\right\|^{2}-\int g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) v_{0}-f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) v_{0}=0 \tag{3.6}
\end{equation*}
$$

Choose $\varphi \in X \backslash\{0\}, \varepsilon>0$. Define $\phi \in X$ by $\phi=\left(v_{0}+\varepsilon \varphi\right)^{+}$. Let

$$
\Omega_{1}=\left\{x \in \Omega: v_{0}(x)+\varepsilon \varphi(x)>0\right\}, \quad \Omega_{2}=\left\{x \in \Omega: v_{0}(x)+\varepsilon \varphi(x) \leq 0\right\} .
$$

Easily, we see $\left.\phi\right|_{\Omega_{1}}=v_{0}+\varepsilon \varphi$ and $\left.\phi\right|_{\Omega_{2}}=0$. Inserting $\phi$ into 3.5 and applying with (3.6), one obtains

$$
\begin{align*}
0 \leq & \int \nabla v_{0} \nabla \phi-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \phi \\
= & \int_{\Omega_{1}} \nabla v_{0} \nabla\left(v_{0}+\varepsilon \varphi\right)-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
& +f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
= & \int_{\Omega \backslash \Omega_{2}} \nabla v_{0} \nabla\left(v_{0}+\varepsilon \varphi\right)-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
& +f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
= & \varepsilon \int \nabla v_{0} \nabla \varphi-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi  \tag{3.7}\\
& -\int_{\Omega_{2}} \nabla v_{0} \nabla\left(v_{0}+\varepsilon \varphi\right)-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
& +f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}+\varepsilon \varphi\right) \\
\leq & \varepsilon \int \nabla v_{0} \nabla \varphi-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi \\
& -\varepsilon \int_{\Omega_{2}} \nabla v_{0} \nabla \varphi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi .
\end{align*}
$$

From meas $\Omega_{2} \rightarrow 0$ as $\varepsilon \rightarrow 0$, it follows that

$$
\int_{\Omega_{2}} \nabla u_{0} \nabla \varphi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Then dividing by $\varepsilon>0$ and letting $\varepsilon \rightarrow 0$ in 3.7, we conclude that

$$
\int \nabla v_{0} \nabla \varphi-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right) \varphi \geq 0
$$

By the arbitrariness of $\varphi$, the above inequality also holds for $-\varphi$, so we get that $v_{0}$ solves (2.3). Hence $v_{0} \in X$ is a positive solution of 2.2 with $I\left(v_{0}\right)=m<0$, that is, $v_{0}$ is the global minimizer solution.

Finally, we show that $v_{0} \in X$ is the unique solution of (2.2). Assume that $v \in X$ is also a solution of (2.2), it follows from (2.3) that

$$
\begin{equation*}
\int \nabla v_{0} \nabla\left(v_{0}-v\right)-g(x) f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}-v\right)+f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)\left(v_{0}-v\right)=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \nabla v \nabla\left(v_{0}-v\right)-g(x) f^{-r}(v) f^{\prime}(v)\left(v_{0}-v\right)+f^{p-1}(v) f^{\prime}(v)\left(v_{0}-v\right)=0 \tag{3.9}
\end{equation*}
$$

Subtracting (3.8) and (3.9), since $g(x)>0$ a.e. $x \in \Omega$, by Lemma 2.1(8), (9) we get

$$
\begin{aligned}
\left\|v_{0}-v\right\|^{2}= & \int g(x)\left[f^{-r}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)-f^{-r}(v) f^{\prime}(v)\right]\left(v_{0}-v\right) \\
& -\int\left[f^{p-1}\left(v_{0}\right) f^{\prime}\left(v_{0}\right)-f^{p-1}(v) f^{\prime}(v)\right]\left(v_{0}-v\right) \leq 0
\end{aligned}
$$

which implies that $\left\|v_{0}-v\right\|=0$, that is $v_{0}=v$. Therefore, $v_{0} \in X$ is the unique solution of 2.2), and then $u_{0}=f\left(v_{0}\right) \in X$ is the unique solution of 1.1. We complete the proof of Theorem 1.1 .

## References

[1] Haïm Brézis, Elliott Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490.
[2] X. L. Chen, R. N. Sudan; Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Letters 70:14 (1993), no. 70, 2082-2085.
[3] Mario Michelle Coclite, G. Palmieri; On a singular nonlinear Dirichlet problem, Commun. Partial Differential Equations 14 (1993), no. 10, 1315-1327.
[4] Mathieu Colin, Louis Jeanjean; Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. 56 (2004), no. 2, 213-226.
[5] M. G. Crandall, P. H. Rabinowitz, L. Tartar; On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differential Equations 2 (1977), no. 2, 193-222.
[6] Anne de Bouard, Nakao Hayashi, Jean Claude Saut; Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys. 189 (1997), no. 1, 73-105.
[7] Manuel A. del Pino; A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 341-352.
[8] João Marcos do Ó, Abbas Moameni; Solutions for singular quasilinear Schrödinger equations with one parameter, Commun. Pure Appl. Anal. 9 (2010), no. 4, 1011-1023.
[9] João M. B. do Ó, Olímpio H. Miyagaki, Sérgio H. M. Soares; Soliton solutions for quasilinear Schrödinger equations: The critical exponential case, Nonlinear Anal. 67 (2007), no. 12, 3357-3372.
[10] João M. B. do Ó, Olímpio H. Miyagaki, Sérgio H. M. Soares; Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations 248 (2010), no. 4, 722744.
[11] Marius Ghergu and Vicentiu Rădulescu; Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), no. 2, 520-536.
[12] Marius Ghergu and Vicentiu Rǎdulescu; Singular elliptic problems: Bifurcation and asymptotic analysis, Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford (2008), xvi+298 pp.
[13] Rainer W. Hasse; A general method for the solution of nonlinear soliton and kink Schrödinger equations, Zeitschrift Für Physik B Condensed Matter 37 (1980), no. 1, 83-87.
[14] Susumu Kurihara; Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), no. 50, 3262-3267.
[15] E. W. Laedke, K. H. Spatschek, L. Stenflo; Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys. 24 (1983), no. 12, 2764-2769.
[16] H. Lange, B. Toomire, P. F. Zweifel; Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys. 36 (1995), no. 3, 1274-1283.
[17] B. M. Levitan, I. S. Sargsjan; Sturm Liouville and Dirac Operators, Springer Netherlands, 1991.
[18] Jia Quan Liu, Ya Qi Wang, Zhi Qiang Wang; Soliton solutions for quasilinear Schrödinger equations, II, J. Differential Equations 187 (2003), no. 2, 473-493.
[19] Abbas Moameni; Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^{n}$, J. Differential Equations 229 (2006), no. 2, 570-587.
[20] Medet Nursultanov, Grigori Rozenblum; Eigenvalue asymptotics for the Sturm Liouville operator with potential having a strong local negative singularity, Opuscula Mathematica 37 (2017), no. 1, 109-139.
[21] Markus Poppenberg, Klaus Schmitt, Zhi Qiang Wang; On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 329-344.
[22] Vicentiu Rǎdulescu; Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, Handb. Differential Equations: Stationary Partial Differential Equations, (2007), 485-593.
[23] B Ritchie; Relativistic self-focusing and channel formation in laser-plasma interactions., Phys. Rev. 50 (1994), no. 2, 238-238(1).
[24] Walter Rudin; Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.London, 1966.
[25] Uberlandio Severo et al.; Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 275-315.
[26] Elves A. B. Silva, Gilberto F. Vieira; Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations 39 (2010), no. 39, 1-33.
[27] Yi Jing Sun, Shao Ping Wu; An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal. 260 (2011), no. 5, 1257-1284.

Li-Li Wang
School of Mathematics, Tonghua Normal University, 134002 Tonghua, Jilin, China
E-mail address: lili_wang@aliyun.com, 4120369@qq.com


[^0]:    2010 Mathematics Subject Classification. 35J20, 35A15, 35J75, 35J62.
    Key words and phrases. Quasilinear Schrödinger equation; singularity; uniqueness.
    (C) 2018 Texas State University.

    Submitted June 23, 2017. Published January 30, 2018.

