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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
SINGULAR QUASILINEAR SCHRÖDINGER EQUATIONS

LI-LI WANG

Communicated by Vicentiu D. Radulescu

Abstract. In this article we study a quasilinear Schrödinger equations with
singularity. We obtain a unique and positive solution by using the minimax

method and some analysis techniques.

1. Introduction and statement of main results

This article concerns the singular quasilinear Schrödinger equation with the
Dirichlet boundary value condition

−∆u−∆(u2)u = g(x)u−r − up−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain with boundary ∂Ω, r ∈ (0, 1)
and p ∈ [2, 22∗] are constants. The coefficient g ∈ L

22∗
22∗−1+r (Ω) with g(x) > 0 for

almost every x ∈ Ω and 2∗ = 2N
N−2 denotes the critical Sobolev exponent for the

embedding H1
0 (Ω) ↪→ Lq(Ω) for every q ∈ [1, 2∗].

Solutions of (1.1) are related to standing wave solutions for the quasilinear
Schrödinger equations

i∂tψ = −∆ψ + ψ + η(|ψ|2)ψ − k∆ρ(|ψ|2)ρ′(|ψ|2)ψ, (1.2)

where ψ = ψ(t, x), ψ : R×Ω→ C, k > 0 is a constant. The quasilinear equations of
the form (1.2) play an important role in several areas of physics in correspondence
to different type of functions ρ. For example, it models the superfluid film equation
in plasma physics for ρ(s) = s (see [14]), while for ρ(s) = (1 + s)1/2 it models the
self-channeling of a high-power ultra short laser pulse in matter (see [2, 6, 23]).
For further physical motivations and developing the physical aspects we refer to
[13, 15, 16, 21] and the references therein.

Motivated by the above mentioned physical aspects, equation (1.2) has received
a lot of attention. Indeed, up to our knowledge, the first existence results for
the subcritical quasilinear equations have been discussed in [21] using constraint
minimization arguments. Subsequently, many authors in [4, 18, 19] were interested
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in the existence results of standing wave solutions for (1.2) by using a change
of variable and reducing the quasilinear equations into the semilinear ones in an
appropriate Orlicz space. For critical case, we can refer to [26, 10, 9, 19]. It is worth
noticing that up to now there are only one paper [8] investigating the singular case,
where they established the singular quasilinear Schrödinger equation

−∆u− 1
2

∆(u2)u = λu3 − u− u−α, u > 0, x ∈ Ω,

where Ω is a ball in RN (N ≥ 2) centered at the origin, 0 < α < 1. And they
proved the existence of radially symmetric positive solutions by employing Nehari
manifold and some techniques related to implicit function theorem when λ belongs
to a certain neighborhood of the first eigenvalue λ1 of the eigenvalue problem

−∆u− 1
2

∆(u2)u = λu3.

The singular problems are much more complicated than the regular one and they
require some hard analysis. For singular elliptic problems, there are many authors
(see e.g. [11, 5, 3, 27, 7, 12, 22]) have studied. Especially, Ghergu and Rădulescu in
[11] established several existence and nonexistence results for the boundary value
problem

−∆u+K(x)g(u) = λf(x, u) + µh(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.3)

where Ω is a smooth bounded domain in RN (N ≥ 2), λ and µ are positive param-
eters, h is a positive function, f has a sublinear growth and the function g satisfies
the condition

lim
s→∞

g(s) = +∞.

Obviously, g(s) = s−r, r ∈ (0, 1) satisfies the above assumption. When K(x) ≡
−1, f(x, u) = up and g(s) = s−r in (1.3), where r ∈ (0, 1), p ≥ 0, Coclite and
Palmieri in [3] proved that there is at least one solution for all λ ≥ 0 if 0 < p < 1,
moreover, there exists a solution for small λ > 0 and no solution for large λ > 0 if
p ≥ 1. For Second-Order Differential Equations, such as Sturm-Liouville operator,
Dirac Operators etc., there are many authors being interested, we can refer to
[20, 17] and the references therein.

The main purpose of this article is to study the singular quasilinear Schrödinger
equation (1.1) and introduce a uniqueness result of solutions for (1.1), which is the
first work on this subject up to our knowledge.

Notation. C is a positive constant whose value can be different. The domain of an
integral is Ω unless otherwise indicated.

∫
f(x)dx is abbreviated to

∫
f(x). Lp(Ω),

1 ≤ p ≤ ∞, denotes the Lebesgue space with the norms ‖u‖p = (
∫
|u|p)

1
p , for

1 ≤ p <∞, ‖u‖∞ = inf{C > 0 : |u(x)| ≤ C almost everywhere in Ω}. X = H1
0 (Ω)

denotes the Hilbert space equipped with the norm ‖u‖ = (
∫
|∇u|2)1/2. The main

result is described as follows.

Theorem 1.1. Suppose that r ∈ (0, 1), p ∈ [2, 22∗] and g ∈ L
22∗

22∗−1+r (Ω) with
g(x) > 0 for almost every x ∈ Ω. Then problem (1.1) has a unique positive solution
in X. Moreover, this solution is the global minimizer solution.
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The classic semilinear singular equation

−∆u = g(x)u−r + λup−1, in Ω,
u = 0, on ∂Ω,

where p = 2∗, has been studied for λ > 0 in [27] and also in [7] for λ = 0 under
the condition g(x) ∈ L∞(Ω). We point out that the condition g ∈ L

22∗
22∗−1+r (Ω) is

more general than the condition g(x) ∈ L∞(Ω). To the best of our knowledge, the
existence and uniqueness of solutions for the quasilinear Schrödinger equation (1.1)
has not been discussed up to now.

This article is organized as follows: Some preliminaries are given in the next
section. In Section 3, we give the proof of Theorem 1.1.

2. Preliminary results

We observe that the energy functional corresponding to (1.1) given by

J(u) :=
1
2

∫
(1 + 2u2)|∇u|2 − 1

1− r

∫
g(x)|u|1−r +

1
p

∫
|u|p

is not well defined in X. To overcome this problem, we use the change of variable
v := f−1(u) introduced in [18], where f is defined by

f ′(t) =
1√

1 + 2f2(t)
on [0,+∞), and f(t) = −f(−t) on (−∞, 0].

We list some properties of f , whose proofs can be found in [4, 25].

Lemma 2.1. The function f satisfies the following properties:
(1) f is uniquely defined, C∞ and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)/t→ 1 as t→ 0;
(5) |f(t)f ′(t)| < 1/

√
2, ∀t ∈ R;

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0;
(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) the function f−r(t)f ′(t) is decreasing for all t > 0;
(9) the function fp−1(t)f ′(t) is increasing for all t > 0.

Proof. We only prove (8) and (9). By f ′′(t) = −2f(t)[f ′(t)]4, for all t ∈ R, p ≥ 2
and (5), with simple computation we obtain

d[f−r(t)f ′(t)]
dt

= −rf−r−1(t)[f ′(t)]2 − 2f1−r(t)[f ′(t)]4 < 0, ∀t > 0

and
d[fp−1(t)f ′(t)]

dt
= fp−2(t)[f ′(t)]2[p− 1− 2f2(t)[f ′(t)]2] > 0, ∀t > 0,

which imply that f−r(t)f ′(t) is decreasing and fp−1(t)f ′(t) is increasing for all
t > 0. �

By exploiting the change of variable, we can rewrite the functional in the form

I(v) :=
1
2

∫
|∇v|2 − 1

1− r

∫
g(x)|f(v)|1−r +

1
p

∫
|f(v)|p, v ∈ X.
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By Lemma 2.1-(7), the Hölder inequality and the Sobolev inequality we have∫
g(x)|f(v)|1−r ≤ C‖g‖ 22∗

22∗−1+r
‖v‖

1−r
2 . (2.1)

Then I is well-defined but only continuous on X. Also equation (1.1) can be
rewritten as

−∆v = g(x)f−r(v)f ′(v)− fp−1(v)f ′(v), v > 0, x ∈ Ω. (2.2)

In general, a function v ∈ X is called a weak solution of (2.2) with v > 0 in Ω if it
holds ∫

∇v∇w − g(x)f−r(v)f ′(v)w + fp−1(v)f ′(v)w = 0, ∀w ∈ X. (2.3)

We observe that if v ∈ X is a weak solution of (2.2), the function u = f(v) ∈ X is
a solution of (1.1) (cf:[4]).

3. Proof of Theorem 1.1

In this section, we shall show that there exists a unique positive solution v0 of
(2.2), which is the global minimizer of the functional I in X, and then u0 = f(v0) ∈
X is the unique positive solution of (1.1).

Lemma 3.1. The functional I attains the global minimizer in X; that is, there
exists v0 ∈ X \ {0} such that I(v0) = m := infX I < 0.

Proof. For v ∈ X, from (2.1) it follows that

I(v) ≥ 1
2
‖v‖2 − C

1− r
‖g‖ 22∗

22∗−1+r
‖v‖

1−r
2 . (3.1)

Since r ∈ (0, 1), I is coercive and bounded from below on X. Thus m := infX I is
well defined. For t > 0 and given v ∈ X \ {0} by Lemma 2.1-(7) one gets

I(tv) =
t2

2
‖v‖2 − 1

1− r

∫
g(x)|f(tv)|1−r +

1
p

∫
|f(tv)|p

≤ t2

2
‖v‖2 − 1

1− r

∫
g(x)|f(tv)|1−r +

C

p
t

p
2

∫
|v|

p
2 .

Note that the function | f(tv)
tv |

1−r is non-increasing for t > 0. By Lemma 2.1-(4)
and Beppo-Levi Monotone Convergence Theorem, we can see

lim
t→0+

I(tv)
t1−r

= − 1
1− r

∫
g(x)|v|1−r < 0.

So we have I(tv) < 0 for all v 6≡ 0 and t > 0 small enough. Hence, we obtain m < 0.
According to the definition of m, there exists a minimizing sequence {vn} ⊂ X

such that limn→∞ I(vn) = m < 0. Since I(vn) = I(|vn|), we may assume that
vn ≥ 0. It follows from (3.1) that there exists a constant C > 0 such that ‖vn‖ ≤ C.
Passing if necessary to a subsequence, we can assume that there exists v0 ∈ X such
that

vn ⇀ v0 in X,

vn → v0 in Lp(Ω), p ∈ [1, 2∗),

vn(x)→ v0(x) a.e. in Ω,
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there exists a function k ∈ Lp(Ω), p ∈ [1, 2∗), such that

|un(x)| ≤ k(x) a.e. in Ω. (3.2)

By Vitali’s theorem (see [24]), we claim that

lim
n→∞

∫
g(x)f1−r(vn) =

∫
g(x)f1−r(v0). (3.3)

Indeed, we only need prove that {
∫
g(x)f1−r(vn), n ∈ N} is equi-absolutely-

continuous. For all ε > 0, by the absolutely-continuity of
∫
|g(x)|

22∗
22∗−1+r , there

exists δ > 0 such that
∫
E
|g(x)|

22∗
22∗−1+r < ε

22∗
22∗−1+r for all E ⊂ Ω with measE < δ.

Consequently, by (2.1) and the fact that ‖vn‖ ≤ C, we have∫
E

g(x)f1−r(vn) ≤ C‖vn‖
1−r
2

(∫
E

|g(x)|
22∗

22∗−1+r

) 22∗−1+r
22∗

< Cε.

Thus, (3.3) is valid. In the case that p ∈ [2, 22∗), by Lemma 2.1-(7) and (3.2) we
see

|f(vn)|p ≤ C|vn|
p
2 ≤ Ck

p
2 ∈ L1(Ω),

then the Lebesgue Dominated Convergence Theorem implies∫
fp(vn) =

∫
fp(v0) + o(1).

Combining the above equality, the weakly lower semi-continuity of the norm, and
(3.3), we have

m ≤ I(v0) =
1
2
‖v0‖2 −

1
1− r

∫
g(x)f1−r(v0) +

1
p

∫
fp(v0) ≤ lim inf

n→∞
I(vn) = m,

which yields that I(v0) = m < 0 and v0 6≡ 0. In the case that p = 22∗, by
Brézis-Lieb’s Lemma (see [1]) and Lemma 2.1-(7), one obtains∫

f22∗(vn) =
∫
f22∗(v0) +

∫
f22∗(vn − v0) + o(1),

which together with the weakly lower semi-continuity of the norm and (3.3), we
have

m ≤ I(v0) =
1
2
‖v0‖2 −

1
1− r

∫
g(x)f1−r(v0) +

1
p

∫
fp(v0)

≤ lim inf
n→∞

I(vn)− lim
n→∞

1
22∗

∫
f22∗(vn − v0) ≤ m,

which also implies that I(v0) = m < 0 and v0 6≡ 0. �

Proof of Theorem 1.1. Since I(v0) = m < 0, we obtain that v0 ≥ 0 and v0 6≡ 0.
Now, we divide the proof in three steps:

First, we claim that v0 > 0 in Ω. Fix φ ∈ X with φ ≥ 0, let t > 0, one has

0 ≤ I(v0 + tφ)− I(v0)

=
1
2
‖v0 + tφ‖2 − 1

2
‖v0‖2 −

1
1− r

∫
g(x)[f1−r(v0 + tφ)− f1−r(v0)]

+
1
p

∫
fp(v0 + tφ)− fp(v0).
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Dividing by t > 0 and passing to the limit as t → 0+ in the above inequality, we
have

1
1− r

lim inf
t→0+

∫
g(x)

f1−r(v0 + tφ)− f1−r(v0)
t

≤
∫
∇v0∇φ+ fp−1(v0)f ′(v0)φ.

(3.4)

Note that∫
g(x)

f1−r(v0 + tφ)− f1−r(v0)
t

= (1− r)
∫
g(x)f−r(v0 + tθφ)f ′(v0 + tθφ)φ,

where θ(x) ∈ (0, 1). For any x ∈ Ω, we denote

h(t) = g(x)f−r(v0 + tθφ)f ′(v0 + tθφ)φ, t > 0.

It follows from g(x) > 0 a.e. x ∈ Ω and Lemma 2.1-(8) that h(t) is non-increasing
for t > 0. Moreover,

lim
t→0+

h(t) = g(x)f−r(v0(x))f ′(v0(x))φ(x)

for every x ∈ Ω, which may be +∞ when v0(x) = 0. Consequently, by the Beppo-
Levi Monotone Convergence Theorem, we obtain

lim inf
t→0+

1
1− r

∫
g(x)

f1−r(v0 + tφ)− f1−r(v0)
t

=
∫
g(x)f−r(v0)f ′(v0)φ,

which together with (3.4) implies that∫
∇v0∇φ− g(x)f−r(v0)f ′(v0)φ+ fp−1(v0)f ′(v0)φ ≥ 0, φ ∈ X, φ ≥ 0. (3.5)

Therefore,

−∆v0 + fp−1(v0)f ′(v0) ≥ 0

in the weak sense. Hence the maximum principle implies that v0 > 0 in Ω.
Secondly, we show that v0 is a solution of (2.2), that is, we prove v0 satisfies

(2.3). For given δ > 0, define H : [−δ, δ] → R by H(t) = I((1 + t)v0), then H
attains its minimum at t = 0 by Lemma 3.1, namely

H ′(0) = ‖v0‖2 −
∫
g(x)f−r(v0)f ′(v0)v0 − fp−1(v0)f ′(v0)v0 = 0. (3.6)

Choose ϕ ∈ X \ {0}, ε > 0. Define φ ∈ X by φ = (v0 + εϕ)+. Let

Ω1 = {x ∈ Ω : v0(x) + εϕ(x) > 0}, Ω2 = {x ∈ Ω : v0(x) + εϕ(x) ≤ 0}.
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Easily, we see φ|Ω1 = v0 + εϕ and φ|Ω2 = 0. Inserting φ into (3.5) and applying
with (3.6), one obtains

0 ≤
∫
∇v0∇φ− g(x)f−r(v0)f ′(v0)φ+ fp−1(v0)f ′(v0)φ

=
∫

Ω1

∇v0∇(v0 + εϕ)− g(x)f−r(v0)f ′(v0)(v0 + εϕ)

+ fp−1(v0)f ′(v0)(v0 + εϕ)

=
∫

Ω\Ω2

∇v0∇(v0 + εϕ)− g(x)f−r(v0)f ′(v0)(v0 + εϕ)

+ fp−1(v0)f ′(v0)(v0 + εϕ)

= ε

∫
∇v0∇ϕ− g(x)f−r(v0)f ′(v0)ϕ+ fp−1(v0)f ′(v0)ϕ

−
∫

Ω2

∇v0∇(v0 + εϕ)− g(x)f−r(v0)f ′(v0)(v0 + εϕ)

+ fp−1(v0)f ′(v0)(v0 + εϕ)

≤ ε
∫
∇v0∇ϕ− g(x)f−r(v0)f ′(v0)ϕ+ fp−1(v0)f ′(v0)ϕ

− ε
∫

Ω2

∇v0∇ϕ+ fp−1(v0)f ′(v0)ϕ.

(3.7)

From meas Ω2 → 0 as ε→ 0, it follows that∫
Ω2

∇u0∇ϕ+ fp−1(v0)f ′(v0)ϕ→ 0 as ε→ 0.

Then dividing by ε > 0 and letting ε→ 0 in (3.7), we conclude that∫
∇v0∇ϕ− g(x)f−r(v0)f ′(v0)ϕ+ fp−1(v0)f ′(v0)ϕ ≥ 0.

By the arbitrariness of ϕ, the above inequality also holds for −ϕ, so we get that v0

solves (2.3). Hence v0 ∈ X is a positive solution of (2.2) with I(v0) = m < 0, that
is, v0 is the global minimizer solution.

Finally, we show that v0 ∈ X is the unique solution of (2.2). Assume that v ∈ X
is also a solution of (2.2), it follows from (2.3) that∫
∇v0∇(v0 − v)− g(x)f−r(v0)f ′(v0)(v0 − v) + fp−1(v0)f ′(v0)(v0 − v) = 0 (3.8)

and∫
∇v∇(v0 − v)− g(x)f−r(v)f ′(v)(v0 − v) + fp−1(v)f ′(v)(v0 − v) = 0. (3.9)

Subtracting (3.8) and (3.9), since g(x) > 0 a.e. x ∈ Ω, by Lemma 2.1-(8), (9) we
get

‖v0 − v‖2 =
∫
g(x)[f−r(v0)f ′(v0)− f−r(v)f ′(v)](v0 − v)

−
∫

[fp−1(v0)f ′(v0)− fp−1(v)f ′(v)](v0 − v) ≤ 0,
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which implies that ‖v0 − v‖ = 0, that is v0 = v. Therefore, v0 ∈ X is the unique
solution of (2.2), and then u0 = f(v0) ∈ X is the unique solution of (1.1). We
complete the proof of Theorem 1.1. �
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[10] João M. B. do Ó, Oĺımpio H. Miyagaki, Sérgio H. M. Soares; Soliton solutions for quasilinear
Schrödinger equations with critical growth, J. Differential Equations 248 (2010), no. 4, 722–

744.
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