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DIRICHLET BOUNDARY VALUE PROBLEM FOR A SYSTEM
OF n SECOND ORDER ASYMPTOTICALLY ASYMMETRIC

DIFFERENTIAL EQUATIONS

ARMANDS GRITSANS, FELIX SADYRBAEV, INARA YERMACHENKO

Abstract. We consider systems of the form

x′′
1 + g1(x1) = h1(x1, x2, . . . , xn),

x′′
2 + g2(x2) = h2(x1, x2, . . . , xn),

. . .

x′′
n + gn(xn) = hn(x1, x2, . . . , xn)

(*)

along with the boundary conditions

x1(0) = x2(0) = · · · = xn(0) = 0 = x1(1) = x2(1) = · · · = xn(1) .

We assume that right sides are bounded continuous functions, and satisfy

hi(0, 0, . . . , 0) = 0. Also we assume that gi(xi) are asymptotically asymmetric

functions. By using vector field rotation theory, we provide the existence of
solutions.

1. Introduction

This article concerns the existence results for asymptotically positively homoge-
neous systems of the form

x′′ = f(x), (1.1)
satisfying the Dirichlet boundary conditions

x(0) = 0 = x(1). (1.2)

The nonlinearity is supposed to present a linear behaviour near zero, and to sat-
isfy asymmetric assumptions at infinity. In particular, the problem is assumed to
be autonomous and uncoupled in a neighbourhood of infinity. We prove the exis-
tence of at least one nontrivial solution to the problem (1.1), (1.2) when suitable
indexes associated with the linearized problem at zero and the asymptotic problem
at infinity are different.

This article has been motivated by the articles [11], [23], dealing with asymptoti-
cally linear systems, with the aim of extending the existence results obtained in the
above mentioned papers to an asymmetric context. The present article and the ar-
ticles [11], [23] follow an analogous approach based on vector fields rotation theory
(Brouwer degree theory). The difference between the present article and the articles
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c©2018 Texas State University.

Submitted April 5, 2017. Published January 24, 2018.

1



2 A. GRITSANS, F. SADYRBAEV, I. YERMACHENKO EJDE-2018/35

[11], [23] consists in the use of the notion of the Fuč́ık spectrum for the scalar sec-
ond order equation to study the positively homogeneous, autonomous, uncoupled
problem at infinity. The main result Theorem 7.1 of the present article generalizes
the main result Theorem 1.2 of the article [23] to an asymmetric n-dimensional
setting. In both articles nonlinearity is supposed to satisfy autonomous uncoupled
assumptions at infinity. If we use the notations of Section 4 of the present article,
then the asymptotic at infinity system in [23] has the form

z′′1 = −λ1z1,

z′′2 = −λ2z2

with λ1 = µ1 = k2 and λ2 = µ2 = `2, where k and ` are notations from [23]
and k, ` > 0. The pairs (λ1, µ1) = (k2, k2) and (λ2, µ2) = (`2, `2) under the
nonresonance condition k, ` 6∈ {πj : j ∈ N} in [23] are located on the intersection
of the set D with the bisectrix of the positive quadrant Q, where the sets D and
Q are considered in Section 4 of the present article. Hence, the index at infinity in
[23] belongs to the set {−1, 1}, while in the present article it can attain zero value
also.

The analysis of existence and multiplicity of solutions for linear boundary value
problems naturally leads to the study of the respective eigenvalue problems. The
behavior at the zero solution is extended to infinity by superposition principle.
In contrast, if the problem x′′ = −g(x), x(0) = 0 = x(1) is considered, where a
function g(x) is linear as k2x in some vicinity of zero (and g(0) = 0 in order the
trivial solution to exist) and, at the same time, it is linear as m2x for large in
modulus values of x (and k and m essentially differ), then a number of solutions
appear when passing from solutions of the Cauchy problem x′′ = −g(x), x(0) = 0,
x′(0) = α with small α to solutions with large α. This is essentially nonlinear
phenomenon and it was widely used in the studies of existence and multiplicity of
solutions for nonlinear problems.

The idea of investigation of a two-point boundary value problem by comparing
the behaviors of solutions near zero and at infinity was used previously in the paper
by A.I. Perov [19]. The estimates of the number of solutions from below were
obtained for the second order scalar nonlinear differential equations. A number of
papers based on the same idea have appeared afterwards.

In the seminal work [1] by H. Amann and E. Zehnder the problem of the existence
of solutions was studied for the equationAu = F (u), whereA is self-adjoint operator
and F is the nonlinearity interacting in some way of the spectrum of A. The
reduction to a variational problem was made and the critical points of a functional
were studied. It was noticed that “the basic idea is to compare the behavior near
zero to its asymptotic behavior at infinity”. Proofs used the generalized Morse index
theory as developed by C. Conley [5]. A similar technique was used in the work by
C. Conley and E. Zehnder [6] when studying the existence of T -periodic solutions for
time-dependent Hamiltonian systems. In [1] and [5] existence of nontrivial solutions
is ensured when the Morse-type indexes at zero and at infinity are different. In
the papers [7], [8], [15], [22] and references therein further generalizations of the
classical existence results concerning asymptotically linear Hamiltonian systems
were obtained by developing Morse and Maslov-type index theory.
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The problem of existence and multiplicity of solutions for asymptotically linear
systems in a non-Hamiltonian context has not yet been fully explored in the lit-
erature. In the non-Hamiltonian setting, let us mention, among others, the works
[4], [17] and [16]. Remark that the first two papers focus on asymptotically linear
problems whose linearizations at zero and at infinity present the form

u′′(t) +A(t)u(t) = 0,

where A(·) is a path of n× n symmetric matrices. The symmetric structure allows
the authors of [4] and [17] to associate the Maslov and Morse index with the lin-
earized problems. On the other hand, the work [16] develops a new index theory
which guarantees existence results for planar first order systems, whose lineariza-
tions at zero and at infinity do not need a symmetry assumptions. In the authors
papers [11] and [23] as well as in the present article neither Hamiltonian structure
nor symmetry assumptions are required, due to the use of the Brouwer degree.

After considering asymptotically linear cases it is natural to pass to positively
homogeneous equations and systems. The famous Fuč́ık equation is not linear but
possesses the important property of linear equations, that is, the positive homo-
geneity. The function h : R→ R is positively homogeneous if h(cx) = ch(x) for all
positive c and every x ∈ R. This is the case for the right side of the Fuč́ık equation
x′′ = −λx+ + µx−, where x+ and x− are respectively the positive and negative
parts of x and λ and µ are positive coefficients. There are numerous papers dealing
with Fuč́ık type scalar equations. The so called “jumping-nonlinearity” studies fall
into this class. There are fewer papers considering systems of Fuč́ık type and, more
generally, asymptotically asymmetric systems. Let us mention the papers [3], [18],
[26], [27] dealing with asymptotically positively homogeneous systems. The article
[3] focuses on multiplicity results for weakly coupled systems satisfying Dirichlet
boundary conditions, while [18], [26], [27] are concerned with existence of periodic
solutions. In the authors papers [10], [20] and [21] scalar asymptotically asymmetric
problems with Dirichlet and nonlocal boundary conditions were considered.

In this article, we consider the problem (1.1), (1.2), where f = −g+h : Rn → Rn,
g(x) =

(
g1(x1), . . . , gn(xn)

)T , h(x) =
(
h1(x), . . . , hn(x)

)T , 0 = (0, . . . , 0︸ ︷︷ ︸
n

)T ∈ Rn.

Suppose that the following conditions are fulfilled.

(A1) The functions gi : R → R, hi : Rn → R (i = 1, 2, . . . , n) are continuously
differentiable.

(A2) The functions hi (i = 1, 2, . . . , n) are bounded.
(A3) gi(0) = 0, hi(0, 0, . . . , 0) = 0 (i = 1, 2, . . . , n), hence the system (1.1) has

the trivial solution x = 0.
(A4) There exist the limits:

lim
xi→+∞

gi(xi)
xi

= λi > 0, lim
xi→−∞

gi(xi)
xi

= µi > 0 (i = 1, 2, . . . , n). (1.3)

In Section 2, we introduce the vector field φ : Rn → Rn,

φ(β) = x(1;β), ∀β ∈ Rn, (1.4)

where x(t;β) is the solution of the Cauchy problem (1.1),

x(0) = 0, x′(0) = β. (1.5)
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The vector field φ plays a crucial role in our considerations, since φ(β) = 0 if and
only if x(t;β) solves the problem (1.1), (1.2).

In Section 3, we consider the vector field φ0 : Rn → Rn, associated with the
asymptotic at zero problem (3.1), (3.2). The assumptions (A1)-(A4) combined
with the nonresonance at zero condition (A5) ensure that ind(0,φ) = ind(0,φ0).

In Section 4, we explore the vector field φ∞ : R→ R associated with the scalar
Fuč́ık problem (4.1).

In Section 5, we introduce the vector field φ∞ : Rn → Rn associated with the
asymptotic at infinity problem (5.1), (5.2). In contrast to the analysis at zero when
the index ind(0,φ0) ∈ {−1, 1}, due to asymmetric character of limiting Fuč́ık type
system (5.1) the index ind(0,φ∞) attains values in a broader set {−1, 0, 1}.

In Section 6, we study the vector field φ at infinity. The assumptions (A1)-(A4)
coupled with the nonresonance at infinity condition (A6) provide that ind(∞,φ) =
ind(0,φ∞).

In Section 7, we prove the main result of the paper. The assumptions (A1)-(A4)
combined with asymptotic nonresonance conditions (A5), (A6) ensure the existence
of a nontrivial solution to problem (1.1), (1.2), whenever ind(0,φ) 6= ind(∞,φ).
No Hamiltonian structure of the system is required and no symmetry assumptions
are needed to prove the main result beyond the conditions (A1) to (A6).

The examples at the end of the article illustrate the main result.

2. Vector field φ associated with the Dirichlet boundary value
problem (1.1), (1.2)

Proposition 2.1. Suppose that conditions (A1), (A2), (A4) are fulfilled. Then the
vector field f is linearly bounded, that is, there exist a, b > 0 such that

∥∥f(x)
∥∥ ≤

a+ b ‖x‖ for all x ∈ Rn.

Proof. It follows from the conditions (A1), (A2) and (A4) that for every i =
1, 2, . . . , n there exist Mi, qi, Ni > 0 such that∣∣gi(xi)∣∣ < Mi + qi|xi|, ∀xi ∈ R, (2.1)∣∣hi(x)

∣∣ ≤ Ni, ∀x ∈ Rn. (2.2)

It follows from (2.1) and (2.2) that for any x ∈ Rn we have
∥∥f(x)

∥∥ ≤ a + b ‖x‖,
where a =

∑n
i=1(Mi + Ni) > 0, b =

√
nmax1≤i≤n |qi| > 0; ‖ · ‖ is the Euclidean

norm in Rn. �

We rewrite (1.1) in the equivalent form w′ = F(w), where F(w) =
(
v, f(x)

)T ,
q = (x,v)T ∈ RN , v = x′, N = 2n.

Proposition 2.2. Suppose that conditions (A1)–(A4) are fulfilled. Then the vector
field F has the following properties.

(1) F ∈ C1(RN ,RN ).
(2) F(o) = o ∈ RN , where o = (0,0)T .
(3) The vector field F is linearly bounded, that is, there exist A,B > 0 such

that ∥∥F(w)
∥∥
N
≤ A+B ‖w‖N , ∀z ∈ RN . (2.3)

Proof. Properties 1. and 2. are immediate consequences of assumptions (A1) and
(A3).
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3. A direct application of Proposition 2.1 guarantees the validity of (2.3) with
A = a > 0, B =

√
1 + b2 > 0; ‖ · ‖N is the Euclidean norm in RN . �

Suppose that conditions (A1)–(A4) hold. Denote by w(t;γ) the solution of the
Cauchy problem

w′ = F(w), w(0) = γ.

Denote by Φt(γ) := w(t;γ) the flow of the vector field F. Since the vector field
F ir linearly bounded, then [2], [25] its flow Φt(γ) is complete and belongs to
C1(RN ,RN ). Therefore, the vector field φ, defined by (1.4), belongs to C1(Rn,Rn).

A point β ∈ Rn is called a singular point of the vector field φ if φ(β) = 0.
The singular points of the vector field φ are in one-to-one correspondence with the
solutions to the Dirichlet boundary value problem (1.1), (1.2). Any singular point
β 6= 0 of the vector field φ generates a nontrivial solution to the problem (1.1),
(1.2).

Consider a bounded open set Ω ⊂ Rn. Denote by F(Ω) the set of all continuous
vector fields φ : Ω → Rn which are nonsingular on the boundary ∂Ω, that is,
φ(β) 6= 0 for all β ∈ ∂Ω. If φ ∈ F(Ω), then [13], [24] there is an integer γ(φ,Ω)
associated with the vector field φ and called the rotation of φ on ∂Ω or the Brouwer
degree of φ on Ω with respect to 0. For definitions of isolated singular points of
vector fields and their indexes one may consult the last two references.

3. Vector field φ near zero

Now, we recall briefly the study of the vector field φ near zero developed in [11],
where analogous assumptions at zero have been considered. Suppose that conditions
(A1) and (A3) hold. Then there exists the derivative f ′(0) (the Jacobian matrix)
of the nonlinearity f at zero x = 0. Consider the linearized system at zero

v′′ = f ′(0) v (3.1)

together with the Dirichlet boundary conditions

v(0) = 0 = v(1). (3.2)

If v(t;β) is the solution to the Cauchy problem: (3.1), v(0) = 0, v′(0) = β, then
we can define the linear vector field φ0 : Rn → Rn,

φ0(β) = v(1;β), ∀β ∈ Rn.
Let us consider the following condition.

(A5) The linearized system at zero (3.1) is nonresonant with respect to the
boundary conditions (3.2), that is, the boundary value problem (3.1), (3.2)
has only the trivial solution.

Remark 3.1. It was shown in [11] that the condition (A5) is equivalent to each of
the following conditions: 1) β = 0 is the unique singular point of the vector field φ0,
2) no eigenvalue of the matrix f ′(0) belongs to the spectrum σD =

{
−(j π)2 : j ∈ N

}
of the scalar Dirichlet boundary value problem x′′ = λx, x(0) = 0 = x(1).

The next two statements are essentially [11, Proposition 3] and [11, Theorem 4].

Proposition 3.2. Suppose that condition (A5) holds. If the matrix f ′(0) has not
negative eigenvalues with odd algebraic multiplicities, then ind(0,φ0) = 1. If the
matrix f ′(0) has k (1 ≤ k ≤ n) different negative eigenvalues ξj (1 ≤ j ≤ k) with

odd algebraic multiplicities, then ind(0,φ0) = sgn
(∏k

j=1 sin
√
|ξj |
)

.
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Theorem 3.3. Suppose that conditions (A1)–(A5) hold. Then β = 0 is an isolated
singular point of the vector field φ and ind(0,φ) = ind(0,φ0).

4. Scalar vector field φ∞

In what follows, we need some properties of the Fuč́ık spectrum [9]. Consider
the scalar Fuč́ık problem

z′′ = −λz+ + µz−, z(0) = 0 = z(1), (4.1)

where λ, µ > 0, z+ = max{z, 0}, z− = max{−z, 0}. The spectrum of the problem
(4.1) is the subset

Σ =
{

(λ, µ) : problem (4.1) has a nontrivial solution
}

of the positive quadrant Q =
{

(λ, µ) : λ > 0, µ > 0
}

of the plane.
Next, we split the set Q into some specific subsets with respect to the Fuč́ık

spectrum Σ, namely we consider the subsets of the set Q \ Σ:

D(k) =
{

(λ, µ) :
πm√
λ

+
π(m+ 1)
√
µ

> 1,
π(m+ 1)√

λ
+
πm
√
µ
> 1,

πm√
λ

+
πm
√
µ
< 1
}

(k = 2m; m = 0, 1, 2, . . .), (4.2)

D(k) =
{

(λ, µ) :
π(m− 1)√

λ
+
πm
√
µ
< 1,

πm√
λ

+
π(m− 1)
√
µ

< 1,
πm√
λ

+
πm
√
µ
> 1
}

(k = 2m− 1; m = 1, 2, 3, . . .), (4.3)

E+(2m) =
{

(λ, µ) :
πm√
λ

+
π(m+ 1)
√
µ

< 1,
π(m+ 1)√

λ
+
πm
√
µ
> 1
}

(4.4)

(m = 0, 1, 2, . . .), (4.5)

E−(2m) =
{

(λ, µ) :
πm√
λ

+
π(m+ 1)
√
µ

> 1,
π(m+ 1)√

λ
+
πm
√
µ
< 1
}

(m = 0, 1, 2, . . .), (4.6)

D = ∪∞k=0D(k), E = Q \ (Σ ∪D) = ∪∞m=0

(
E+(2m) ∪ E−(2m)

)
.

Denote by z(t;β) the solution of the scalar Cauchy problem

z′′ = −λz+ + µz−, z(0) = 0, z′(0) = β

and define the vector field φ∞ : R→ R,

φ∞(β) = z(1;β), ∀β ∈ R.

Proposition 4.1. Consider α > 0.

(1) If (λ, µ) ∈ D(k), then φ∞(−α)φ∞(α) < 0, more precisely
(a) if k = 2m (m = 0, 1, . . .), then φ∞(−α) < 0, φ∞(α) > 0;
(b) if k = 2m− 1 (m = 1, 2, . . .), then φ∞(−α) > 0, φ∞(α) < 0.

(2) If (λ, µ) ∈ E, then φ∞(−α)φ∞(α) > 0, more precisely
(a) if (λ, µ) ∈ E+(2m) (m = 0, 1, 2, . . .), then φ∞(−α) > 0, φ∞(α) > 0;
(b) if (λ, µ) ∈ E−(2m) (m = 0, 1, 2, . . .), then φ∞(−α) < 0, φ∞(α) < 0.
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Figure 1. Subsets D(k) (k = 0, 1, 2, 3, 4, 5) and E±(2m) (m =
0, 1, 2) of the positive quadrant Q.

Proof. If (λ, µ) ∈ D(k) and k = 2m (m = 0, 1, 2, . . .), then

φ∞(β) =


β√
λ

sin
[√

λ
(

1− πm√
λ
− πm√

µ

)]
> 0, if β > 0,

0, if β = 0,

β√
µ sin

[√
µ
(

1− πm√
λ
− πm√

µ

)]
< 0, if β < 0;

(4.7)

if (λ, µ) ∈ D(k) and k = 2m− 1 (m = 1, 2, 3, . . .), then

φ∞(β) =


− β√

µ sin
[√

µ
(

1− πm√
λ
− π(m−1)√

µ

)]
< 0, if β > 0,

0, if β = 0,

− β√
λ

sin
[√

λ
(

1− π(m−1)√
λ
− πm√

µ

)]
> 0, if β < 0;

(4.8)

if (λ, µ) ∈ E+(2m) (m = 0, 1, 2, . . .), then

φ∞(β) =


β√
λ

sin
[√

λ
(

1− πm√
λ
− πm√

µ

)]
> 0, if β > 0,

0, if β = 0,

β√
λ

sin
[√

λ
(

1− π(m+1)√
λ
− π(m+1)√

µ

)]
> 0, if β < 0;

(4.9)

if (λ, µ) ∈ E−(2m) (m = 0, 1, 2, . . .), then

φ∞(β) =


β√
µ sin

[√
µ
(

1− π(m+1)√
λ
− π(m+1)√

µ

)]
< 0, if β > 0,

0, if β = 0,

β√
µ sin

[√
µ
(

1− πm√
λ
− πm√

µ

)]
< 0, if β < 0.

(4.10)
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1. (a) Suppose that (λ, µ) ∈ D(k) and k = 2m (m = 0, 1, . . .). It follows from
(4.2) that 0 <

√
λ
(
1 − πm√

λ
− πm√

µ

)
< π. Hence, sin

[√
λ
(
1 − πm√

λ
− πm√

µ

)]
> 0. If

β > 0, then φ∞(β) = β√
λ

sin
[√
λ
(
1 − πm√

λ
− πm√

µ

)]
> 0. Similarly, if β < 0, then

φ∞(β) < 0. Thus, φ∞(−α)φ∞(α) < 0.
The other cases can be considered similarly. �

Corollary 4.2. The vector field φ∞ is continuous.

The proof follows from (4.7)-(4.10).

5. Vector field φ∞

Consider the uncoupled system of n Fuč́ık equations

z′′1 = −λ1z
+
1 + µ1z

−
1 ,

. . .

z′′n = −λnz+
n + µnz

−
n

(5.1)

with respect to the Dirichlet boundary conditions

z(0) = 0 = z(1), (5.2)

where λi, µi > 0 (i = 1, 2, . . . , n) and z = (z1, . . . , zn)T .
Denote by zi(t;βi) the solution to the scalar Cauchy problem

z′′i = −λiz+
i + µiz

−
i , zi(0) = 0, z′i(0) = βi. (5.3)

Then z(t;β) =
(
z1(t;β1), z2(t;β2), . . . , zn(t;βn)

)T solves the system (5.1) with re-
spect to the initial conditions

z(0) = 0, z′(0) = β := (β1, . . . , βn). (5.4)

Define the vector fields φ∞,i : R→ R (i = 1, 2, . . . , n),

φ∞,i(βi) = zi(1;βi), ∀βi ∈ R.

Note that βi = 0 is a singular point of the vector field φ∞,i. Define the vector field
φ∞ : Rn → Rn,

φ∞(β) = z(1;β), ∀β ∈ Rn.

Note that β = 0 is a singular point of the vector field φ∞.
Let us consider the following condition.

(A6) System (5.1) is nonresonant with respect to the boundary conditions (5.2),
that is, the boundary value problem (5.1), (5.2) has only the trivial solution.

Proposition 5.1. The following three statements are equivalent:

(1) Condition (A6) holds.
(2) (λi, µi) 6∈ Σ for every i = 1, 2, . . . , n.
(3) β = 0 is the unique singular point of the vector field φ∞.

Proof. Taking into account that the system (5.1) is uncoupled, the proof follows
from the properties of solutions of the Fuč́ık problem (4.1). �
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Consider the one-dimensional subspaces of Rn:

L1 =
{

(β1, 0, . . . , 0) ∈ Rn : β1 ∈ R
}
, . . . , Ln =

{
(0, 0, . . . , βn) ∈ Rn : βn ∈ R

}
.

Then Rn = ⊕ni=1Li, that is, the space Rn is the direct sum of its subspaces Li (i =
1, 2, . . . , n). Thus, every β = (β1, . . . , βn) ∈ Rn can be expressed in the unique way
as β = β1 + · · ·+ βn, where β1 = (β1, 0, . . . , 0) ∈ L1, . . . ,βn = (0, 0, . . . , βn) ∈ Ln.

Consider the one-dimensional vector fields φ∞,i : Li → Li (i = 1, 2, . . . , n):

φ∞,1(β1) =
(
z1(1;β1), 0, . . . , 0

)
, . . . ,φ∞,n(βn) =

(
0, 0, . . . , zn(1;βn)

)
.

Since φ∞ =
∑n
i=1 φ∞,i, according to the notation in [13], φ∞ = ⊕ni=1φ∞,i.

For α > 0 and for every i = 1, 2, . . . , n consider the set

Ωα,i =
{
β ∈ Rn : β1 = · · · = βi−1 = 0, −α < βi < α,

βi+1 = · · · = βn = 0
}
⊂ Li.

The n-dimensional cube Ωα =
{
β ∈ Rn : −α < βi < α; i = 1, 2, . . . , n

}
is equal to

the cartesian product Ωα,1 × · · · × Ωα,n.
Suppose that condition (A6) holds. It follows from Proposition 5.1, coupled

with condition (A6), that β = 0 is the unique singular point of the vector field φ∞.
Therefore

ind(0,φ∞) = γ(φ∞,Ωα), α > 0. (5.5)
By [13, Theorem 7.4, p. 20],

γ(φ∞,Ωα) = γ
(
⊕ni=1 φ∞,i,Ωα

)
=

n∏
i=1

γ
(
φ∞,i,Ωα,i

)
. (5.6)

For every i = 1, 2, . . . , n we identify the space Li with R, the set Ωα,i with the open
interval Iα = (−α, α) ⊂ R and the vector field φ∞,i with the vector field φ∞,i.
Then, it follows from (5.5) and (5.6) that

ind(0,φ∞) =
n∏
i=1

γ
(
φ∞,i, Iα

)
. (5.7)

In the previous section we had split the set Q \ Σ into the subsets D(k) (k =
0, 1, 2, . . .) and E.

Proposition 5.2. Suppose that condition (A6) holds.
(1) If (λi, µi) ∈ E for some i ∈ {1, 2, . . . , n}, then ind(0,φ∞) = 0.
(2) If (λi, µi) ∈ D(ki) for every i ∈ {1, 2, . . . , n}, then

ind(0,φ∞) = (−1)k1+k2+···+kn . (5.8)

Proof. 1. Suppose that (λi, µi) ∈ E =
⋃∞
m=0

(
E+(2m) ∪ E−(2m)

)
for some i ∈

{1, 2, . . . , n}. Then, by Proposition 4.1, φ∞,i(−α) > 0 and φ∞,i(α) > 0, if (λi, µi) ∈
E+

2m, and, φ∞,i(−α) < 0 and φ∞,i(α) < 0, if (λi, µi) ∈ E−2m, that is, the vector field
φ∞,i at both endpoints of the interval Iα = (−α, α) points in the same direction.
Therefore, [13, p. 6], the rotation of the one-dimensional vector field φ∞,i : Iα :→ R
on ∂Iα = {±α} is equal to the zero, that is, γ

(
φ∞,i, Iα

)
= 0. It follows from (5.7)

that ind(0,φ∞) = 0.
2. Let (λi, µi) ∈ D(ki) for every i ∈ {1, 2, . . . , n}.
(a) If ki = 2mi (mi = 0, 1, 2, . . .), then, by Proposition 4.1, φ∞,i(−α) < 0

and φ∞,i(α) > 0, that is, the vector field φ∞,i at both endpoints of the interval
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Iα = (−α, α) points to the exterior of the interval Iα. Therefore, [13, p. 6],
γ
(
φ∞,i, Iα

)
= 1 = (−1)2mi = (−1)ki .

(b) If ki = 2mi − 1 (mi = 1, 2, . . .), then, by Proposition 4.1, φ∞,i(−α) > 0
and φ∞,i(α) < 0, that is, the vector field φ∞,i at both endpoints of the interval
Iα = (−α, α) points to the interior of the interval Ωi. Therefore, [13, p. 6],
γ
(
φ∞,i, Iα

)
= −1 = (−1)2mi−1 = (−1)ki .

Formula (5.8) follows from (a), (b) and (5.7). �

Proposition 5.3. φ∞(β) = ‖β‖φ∞
(

β
‖β‖

)
for all β ∈ Rn \ {0}.

Proof. The proof follows from the positive homogeneity of the system (5.1); see
also (4.7)-(4.10). �

Proposition 5.4. Suppose that the condition (A6) holds. Then, there exists c > 0
such that

∥∥φ∞(β)
∥∥ ≥ c ‖β‖ for all β ∈ Rn.

Proof. From Proposition 5.1, since condition (A6) holds, we have that (λi, µi) 6∈
Σ (i = 1, 2, . . . , n), therefore, (λi, µi) ∈ (D ∪ E) (i = 1, 2, . . . , n). For every
i = 1, 2, . . . , n the vector field φ∞,i, taking into account (4.7) to (4.10), can be
represented in the form φ∞,i(βi) = βi pi(λi, µi), where pi(λi, µi) 6= 0. Hence,∥∥φ∞(β)

∥∥ ≥ c ‖β‖ for all β ∈ Rn, where c = min1≤i≤n
∣∣pi(λi, µi)∣∣ > 0. �

6. Vector field φ at infinity

Consider the function y(t;β) = 1
‖β‖ x(t;β)− z

(
t; β
‖β‖
)
, 0 ≤ t ≤ 1, β ∈ Rn \ {0},

where x(t;β) is the solution to the Cauchy problem (*), (1.5) and z
(
t; β
‖β‖
)

is the

solution to the Cauchy problem (5.1), z(0) = 0, z′(0) = β
‖β‖ .

Proposition 6.1. Suppose that conditions (A1)–(A4), (A6) hold. Then

lim
‖β‖→∞

∥∥y(1;β)
∥∥ = 0. (6.1)

Proof. Step 1. The purpose of this step is to introduce the change of variables
u := x

β , rewriting system (*) in terms of u. For every i = 1, 2, . . . , n let us introduce
the functions ϕi : R→ R such that

gi(xi) = λix
+
i − µix

−
i + ϕi(xi), (6.2)

where x+
i = max{xi, 0}, x−i = max{−xi, 0}. For every i = 1, 2, . . . , n it follows

from the conditions (A1), (A3) and (A4) that ϕi ∈ C(R,R), ϕi(0) = 0 and

lim
|xi|→+∞

ϕi(xi)
xi

= 0. (6.3)

Taking into account (6.2) and the positive homogeneity of the operations + and −,
we can conclude that the functions u1 = 1

‖β‖x1, . . . , un = 1
‖β‖xn solve the system

u′′1 + λ1u
+
1 − µ1u

−
1 = ω1(u;β),

. . .

u′′n + λnu
+
n − µnu−n = ωn(u;β)

(6.4)

and satisfy the initial conditions

u1(0) = · · · = un(0) = 0, . . . u′1(0) =
β1

‖β‖
, . . . , u′n(0) =

βn
‖β‖

, (6.5)
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where u = (u1, . . . , un)T and ωi(u;β) = 1
‖β‖

[
− ϕi

(
‖β‖ui

)
+ hi

(
‖β‖u

)]
, i ∈

{1, 2, . . . , n}.
Step 2. In this step we will prove that

∥∥ω(u(t);β)
∥∥→ 0, uniformly in t ∈ [0, 1],

as ‖β‖ → ∞. Let ε > 0 be arbitrary. By (2.2) and (6.3), for every i = 1, 2, . . . , n
there exists Mi(ε) > 0 such that∣∣ωi(u;β)

∣∣ ≤ 1
‖β‖

[
Ni +Mi(ε) + ε

∣∣xi(t)∣∣], 0 ≤ t ≤ 1. (6.6)

Consider the Cauchy problem w′(t) = F
(
z(t)

)
, w(0) = w0 = (0,β)T and the

equivalent integral equation w(t) = w0 +
∫ t
0

F
(
w(s)

)
ds. Taking into account (2.3),

we obtain∥∥w(t)
∥∥
N
≤ ‖w0‖N +

∥∥∥∥∫ t

0

F
(
w(s)

)
ds

∥∥∥∥
N

≤ ‖β‖+
∫ t

0

∥∥∥F(w(s)
)∥∥∥
N
ds

≤ ‖β‖+
∫ t

0

[
A+B

∥∥w(s)
∥∥
N

]
ds = ‖β‖+At+B

∫ t

0

∥∥w(s)
∥∥
N
ds,

for 0 ≤ t ≤ 1. By the Grönwall’s inequality, we have∣∣xi(t)∣∣ ≤ ∥∥x(t)
∥∥ ≤ ∥∥w(t)

∥∥
N
≤ AeB + eB‖β‖, 0 ≤ t ≤ 1, i = 1, 2, . . . , n. (6.7)

It follows from (6.6) and (6.7) that∣∣ωi(u;β)
∣∣ ≤ Ni +Mi(ε) + εA eB

‖β‖
+ ε eB , 0 ≤ t ≤ 1, i = 1, 2, . . . , n.

Then ∥∥ω(u;β)
∥∥ ≤ ε n eB +

1
‖β‖

n∑
i=1

(
Ni +Mi(ε) + εA eB

)
, 0 ≤ t ≤ 1,

where ω(u;β) =
(
ω1(u;β), . . . , ωn(u;β)

)T . Since ε > 0 can be arbitrary,

lim
‖β‖→∞

∥∥ω(u;β)
∥∥ = 0, 0 ≤ t ≤ 1. (6.8)

Step 3. In this step we will prove (6.1). Let us rewrite the system (5.1) in the
form

z′′ = P (z),

where P (z) =
(
P1(z1), . . . , Pn(zn)

)
, Pi(zi) = −λiz+

i + µiz
−
i (1 ≤ i ≤ n). Then∥∥P (z)− P (ẑ)

∥∥ ≤ L ‖z− ẑ ‖, ∀z, ẑ ∈ Rn, (6.9)

where L =
√
n

2 max1≤i≤n{λi, µi} > 0. We can rewrite the system (6.3) in the form

u′′ = P (u) + ω(u;β).

The function y(t;β) = u
(
t; β
‖β‖

)
− z

(
t; β
‖β‖

)
, where u

(
t; β
‖β‖

)
= 1
‖β‖ x(t;β), has

the following properties:

y′′ = P (u)− P (z) + ω(u;β), y(0) = 0, y′(0) = 0,

where, for brevity, we write y(t) = y(t;β), u(t) = u
(
t; β
‖β‖

)
, z(t) = z

(
t; β
‖β‖

)
.
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Let ε > 0 be arbitrary. It follows from (6.8) that there exists ρ = ρ(ε) > 0 such
that for all β ∈ Rn, ‖β‖ > ρ, we have∥∥ω(u(t);β

)∥∥ < ε

2 cosh(
√
L)

= ε1, t ∈ [0, 1]. (6.10)

It follows from y′(t) =
∫ t
0
y′′(s)ds coupled with (6.9) and (6.10) that∥∥y′(t)∥∥ ≤ ∫ t

0

∥∥P (u(s)
)
− P

(
z(s)

)∥∥ds+
∫ t

0

∥∥ω(u(s);β
)∥∥ds

≤
∫ t

0

L
∥∥u(s)− z(s)

∥∥ds+
∫ t

0

ε1ds = L

∫ t

0

∥∥y(s)
∥∥ds+ ε1 t

≤ Lθ(t) + ε1, t ∈ [0, 1],

(6.11)

where θ(t) :=
∫ t
0

∥∥y(s)
∥∥ds. By y(t) =

∫ t
0
y′(s)ds and (6.11),

θ′(t) =
∥∥y(t)

∥∥ ≤ ∫ t

0

∥∥y′(s)∥∥ds ≤ Lψ(t) + ε1, t ∈ [0, 1], (6.12)

where ψ(t) :=
∫ t
0
θ(s)ds. Hence,

ψ′′(t) ≤ Lψ(t) + ε1, t ∈ [0, 1], ψ(0) = 0, ψ′(0) = 0. (6.13)

The Cauchy problem

q′′(t) = Lq(t) + ε1, q(0) = 0, q′(0) = 0 (6.14)

has the solution q∗(t) = ε1
2L e

−
√
L t
(
e
√
L t − 1

)2

. Let χ(t) := q∗(t)−ψ(t). It follows
from (6.13), (6.14) that

χ′′(t) ≥ Lχ(t), t ∈ [0, 1], χ(0) = 0, χ′(0) = 0.

Consider the function η(t) := χ′′(t) − Lχ(t) ≥ 0, t ∈ [0, 1]. Since χ(t) solves the
Cauchy problem

χ′′(t) = Lχ(t) + η(t), χ(0) = 0, χ′(0) = 0

in the interval [0, 1], then, by the variation of constants formula, we have

χ(t) =
∫ t

0

q(t, s)η(s) ds, t ∈ [0, 1], (6.15)

where

q(t, s) =
sinh

(√
L t−

√
Ls
)

√
L

is the Cauchy function [12, p. 199] for the linear homogeneous equation q′′(t) =
Lq(t). Since q(t, s) ≥ 0 in the triangle 0 ≤ s ≤ t ≤ 1 and η(s) ≥ 0 in the interval
0 ≤ s ≤ t, t ∈ [0, 1], then it follows from (6.15) that χ(t) ≥ 0, t ∈ [0, 1]. Therefore,

ψ(t) ≤ q∗(t), t ∈ [0, 1]. (6.16)

By (6.12) and (6.16),∥∥y(1;β)
∥∥ =

∥∥y(1)
∥∥ ≤ ε1 + Lq∗(1) = ε1 cosh(

√
L) =

ε

2
< ε.

Thus, (6.1) fulfills. �

Theorem 6.2. Suppose that conditions (A1)–(A4), (A6) hold. Then ∞ is an
isolated singular point of the vector field φ and ind(∞,φ) = ind(0,φ∞).
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Proof. By Proposition 5.3, for all β 6= 0 we have∥∥φ(β)− φ∞(β)
∥∥ =

∥∥φ(β)− ‖β‖φ∞
( β
‖β‖

)∥∥
=
∥∥x(1;β)− ‖β‖ z

(
1;

β

‖β‖
)∥∥

= ‖β‖
∥∥ 1
‖β‖

x(1;β)− z
(
1;

β

‖β‖
)∥∥

= ‖β‖
∥∥y(1;β)

∥∥.
(6.17)

Let us take the constant c > 0 from Proposition 5.4. Using Proposition 6.1, there
exists R > 0 such that ∥∥y(1;β)

∥∥ ≤ c

2
(6.18)

when ‖β‖ ≥ R. Taking into account assumption (A6) and Proposition 5.4 coupled
with (6.17) and (6.18), for all ‖β‖ ≥ R we have∥∥φ(β)− φ∞(β)

∥∥ = ‖β‖
∥∥y(1;β)

∥∥ ≤ ‖β‖ c
2

≤
(1
c

∥∥φ∞(β)
∥∥) c

2
=

1
2

∥∥φ∞(β)
∥∥

<
∥∥φ∞(β)

∥∥.
Consider the set BR(0) =

{
β ∈ Rn : ‖β‖ < R

}
. The Rouché theorem [24] ensures

that γ
(
φ, BR(0)

)
= γ

(
φ∞, BR(0)

)
= γ(φ∞,Ωα), which completes the proof. �

7. Main Theorem

Theorem 7.1. Suppose that conditions (A1)–(A6) hold. Then the points β = 0 and
β =∞ are isolated singular points of the vector field φ. If ind(0,φ) 6= ind(∞,φ),
then the boundary value problem (1.1), (1.2) has a nontrivial solution.

Proof. The proof is the same as the proof of the main result in [11]. We sketch it
briefly. By Theorems 3.3 and 6.2, the points β = 0 and ∞ are isolated singular
points of the vector field φ. Hence, we can find positive r,R (r < R) such that the
sets

Br(0) \ {0} =
{
β ∈ Rn : 0 < ‖β‖ ≤ r

}
, BR(∞) =

{
β ∈ Rn : ‖β‖ ≥ R

}
contain no singular points of the vector field φ. Since the rotations on the spheres
Sr(0) = ∂Br(0) and SR(0) = ∂BR(0) are different:

γ
(
φ, Br(0)

)
= ind(0,φ) 6= ind(∞,φ) = γ

(
φ, BR(0)

)
,

then, by [24, Theorem 2], we can conclude that the n-dimensional annulus

Ann(r,R) =
{
β ∈ Rn : r < ‖β‖ < R

}
contains a singular point β0 6= 0 of the vector field φ, which generates a nontrivial
solution to the Dirichlet boundary value problem (1.1), (1.2). �

Corollary 7.2. Suppose that (A1)–(A6) hold. If for some i ∈ {1, 2, . . . , n} the pair
(λi, µi) belongs to the set E, then the boundary value problem (1.1), (1.2) has a
nontrivial solution.

Proof. It follows from Propositions 3.2, 5.2 and Theorems 3.3, 6.2 that ind(0,φ) ∈
{−1, 1}, while ind(∞,φ) = 0. Theorem 7.1 completes the proof. �
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8. Examples

Example 8.1. Consider the system

x′′1 + 200x1
1
π

(
arctanx1 +

π

2

)
− 50x1

1
π

(
arctanx1 −

π

2

)
= 20 sin(x1 + x2),

x′′2 + 100x2
1
π

(
arctanx2 +

π

2

)
− 200x2

1
π

(
arctanx2 −

π

2

)
= −30 sin(x1 − x2)

(8.1)

together with the boundary conditions

x1(0) = x2(0) = 0 = x1(1) = x2(1). (8.2)

Note that (λ1, µ1) = (200, 50) ∈ E−(2), (λ2, µ2) = (100, 200) ∈ D(3). Thus,
conditions (A1)–(A4), (A6) hold. The Jacobi matrix

f ′(0) =
(
−105 20
−30 −120

)
has eigenvalues ξ1,2 = 5

2

(
−45± i

√
87
)
6∈ σD. Using Remark 3.1, we can affirm

that the condition (A5) fulfills also. By Corollary 7.2, the boundary value problem
(8.1), (8.2) has a nontrivial solution. In Figure 2 a numerical nontrivial solution of
the boundary value problem (8.1), (8.2) is depicted.

Figure 2. A solution x = (x1, x2)T of the boundary value prob-
lem (8.1), (8.2): x1 (solid), x2 (dashed), with initial data β =
(3.349695, 3.204575)T .

Example 8.2. Let us explore [23, Example 1] considering the system

x′′1 + 50x1 = 16 sin(x2 + 3x2
1),

x′′2 + 22x2 = −12 arctanx1

(8.3)
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together with the boundary conditions (8.2). Note that (λ1, µ1) = (50, 50) ∈ D(2),
(λ2, µ2) = (22, 22) ∈ D(1). Thus, conditions (A1)–(A4) and (A6) hold. By Propo-
sition 5.2 and Theorem 6.2, ind(∞, f) = (−1)2+1 = −1. The Jacobi matrix

f ′(0) =
(
−50 16
−12 −22

)
has eigenvalues ξ1 = −38 6∈ σD and ξ2 = −34 6∈ σD. Thus, condition (A5) holds
also. By Proposition 3.2 and Theorem 3.3,

ind(0, f) = sgn
(

sin
√
|ξ1| sin

√
|ξ2|

)
= 1.

By Theorem 7.1, we come to the same conclusion as in [23] that the boundary value
problem (8.3), (8.2) has a nontrivial solution.

Conclusions. We give precise description of the solvability for the case of multiple
equations that are asymptotically asymmetric and which are coupled through the
right sides (functions hi). The analysis is made by studying the system at zero and
at infinity. Any possible cases of interrelation of the spectrum of the matrix f ′(0)
with the limits limxi→−∞

gi(xi)
xi

, limxi→∞
gi(xi)
xi

(i = 1, 2, . . . , n) are covered by the
Main Theorem.
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