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LOGARITHMIC REGULARIZATION OF NON-AUTONOMOUS
NON-LINEAR ILL-POSED PROBLEMS IN HILBERT SPACES

MATTHEW FURY

Communicated by Jerome A Goldstein

Abstract. The regularization of non-autonomous non-linear ill-posed prob-

lems is established using a logarithmic approximation originally proposed by

Boussetila and Rebbani, and later modified by Tuan and Trong. We first prove
continuous dependence on modeling where the solution of the original ill-posed

problem is estimated by the solution of an approximate well-posed problem.

Finally, we illustrate the convergence via numerical experiments in L2 spaces.

1. Introduction

In this paper, we study a class of non-linear non-autonomous ill-posed problems.
In recent literature, the regularization of ill-posed problems is a topic of substantial
investigation with applications to various natural phenomena, especially inverse
processes such as backward diffusion (cf. [16]). Ill-posed problems such as the
backward heat equation

ut = −uxx, x ∈ R, t > 0,

u(x, 0) = ϕ(x)
(1.1)

may lack existence and/or uniqueness of solutions corresponding to certain initial
data, or may possess solutions that do not depend continuously on the initial data.

The regularization of ill-posed problems involves defining an “ε-close” well-posed
problem whose solutions approximate solutions of the original ill-posed problem.
Let us set A = −∆ and consider functions t 7→ u(t) having range in L2(R). Then
(1.1) becomes the abstract Cauchy problem

du

dt
= Au, t > 0,

u(0) = ϕ.
(1.2)
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Lattes and Lions [10] define the perturbation fβ(A) = A− βA2, β > 0 yielding an
approximate well-posed problem

dv

dt
= fβ(A)v, t > 0,

v(0) = ϕ.
(1.3)

Moreover, if ϕ is replaced with ϕδ satisfying ‖ϕ−ϕδ‖2 ≤ δ, one may find β = β(δ)
such that β → 0 as δ → 0, and ‖vδβ(t)− u(t)‖2 → 0 as δ → 0 for each t ≥ 0 (Here
vδβ(t) is the solution of (1.3) corresponding to initial data ϕδ).

Many other authors including Miller [13], Showalter [15], and Mel’nikova [12] pio-
neered similar methods of regularization; for example, Showalter applies a bounded
approximation fβ(A) = A(I+βA)−1 in [15]. More recently, extensions to variations
of (1.2) have been established by Ames and Hughes [1], Long and Dinh [11], Trong
and Tuan [17, 18], Huang and Zheng [8, 9], Boussetila and Rebbani [2], and Fury
[4, 5]. For instance, Trong and Tuan [18] consider the non-linear problem

du

dt
= Au+ h(t, u(t)), 0 < t < T,

u(0) = ϕ
(1.4)

with a Lipschitz condition on h. Applying Boussetila and Rebbani’s logarithmic
approximation

fβ(A) = − 1
pT

ln(β + e−pTA), β > 0, p ≥ 1, (1.5)

which is of milder error order than fβ(A) = A − βA2 or fβ(A) = A(I + βA)−1,
Trong and Tuan establish regularization for (1.4) where h satisfies a global Lipschitz
condition. In a more recent paper [19], taking p = T = 1, Tuan and Trong modify
(1.5) to

fβ(A) = − ln(βA+ e−A), 0 < β < 1 (1.6)

in order to treat the case where h is locally Lipschitz.
In this paper, we apply a version of (1.6) to problems that are both non-linear

and non-autonomous. We consider the problem with non-constant operators,

du

dt
= A(t,D)u(t) + h(t, u(t)) 0 ≤ s < t < T

u(s) = ϕ
(1.7)

in a Hilbert space H where D is a positive, self-adjoint operator in H, A(t,D) =∑k
j=1 aj(t)D

j with aj ∈ C([0, T ] : R+) ∩ C1([0, T ]) for each 1 ≤ j ≤ k, and
h : [s, T ] × H → H satisfies (H1)–(H2) below (Section 2). Problem (1.7) is ill-
posed since {A(t,D)}t∈[0,T ] is not a stable family of generators; in fact since each
aj(t) > 0, none of the operators A(t,D) generates a C0 semigroup on H (cf. [14,
Section 5.2], [7, Theorem 2.1.2]). Also, note that taking D = −∆, k = 1 and
ak(t) = a1(t) ≡ 1, i.e. A(t,D) = −∆, problem (1.7) reduces to the non-linear
backward heat equation (1.4) which is certainly ill-posed.

Based on (1.7), consider the approximate well-posed problem

dv

dt
= fβ(t,D)v(t) + h(t, v(t)) 0 ≤ s < t < T

v(s) = ϕ
(1.8)
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where following Tuan and Trong [19], we define fβ(t,D) by (2.1)–(2.2) below. We
show that if u(t) is a solution of (1.7) adhering to certain stabilizing conditions,
then

‖u(t)− vβ(t)‖ ≤ C ′β
T−t
T−s [1− lnβ]

s−t
T−s for 0 ≤ s ≤ t ≤ T (1.9)

where vβ(t) is the unique solution of (1.8) and C ′ is a nonnegative constant indepen-
dent of both β and t. Note that by letting t = T in (1.9), we have ‖u(T )−vβ(T )‖ ≤
C ′(1−lnβ)−1 → 0 as β → 0. Thus, the estimate (1.9) is a considerable improvement
over other Hölder-continuous dependence results such as ‖u(τ)− vβ(τ)‖ ≤ Cβ1− τ

T ,
0 ≤ τ < T which is inapplicable when τ = T (cf. [1, 5, 6, 11, 17, 18]).

In Section 4, we prove regularization for (1.7) which follows quickly from (1.9). In
the last section of the paper, Section 5, we apply the theory to higher order partial
differential equations with variable coefficients in L2 spaces. We also provide some
numerical experiments in order to demonstrate the convergence of the solutions
vδβ(t) to u(t) within concrete examples.

2. Approximate well-posed problem

Consider the generally ill-posed problem (1.7) where D is a positive, self-adjoint
operator in a Hilbert space H and A(t,D) =

∑k
j=1 aj(t)D

j satisfies aj ∈ C([0, T ] :
R+)∩C1([0, T ]) for each 1 ≤ j ≤ k. Also let us assume the following conditions on
h : [s, T ]×H → H:

(H1) h is uniformly Lipschitz in H, i.e. ‖h(t, ϕ1) − h(t, ϕ2)‖ ≤ L‖ϕ1 − ϕ2‖ for
some constant L > 0 independent of t ∈ [s, T ] and every ϕ1, ϕ2 ∈ H,

(H2) for each ϕ ∈ H, h(t, ϕ) is continuous from [s, T ] into H.
Set τ = T − s. For (t, λ) ∈ [0, T ]× [0,∞), define the function

fβ(t, λ) = max{0,−1
τ

ln(βτA(t, λ) + e−τA(t,λ))}, 0 < β < 1. (2.1)

Then for each 0 ≤ t ≤ T , fβ(t,D) is defined by means of the functional calculus for
self-adjoint operators in the Hilbert space H. Particularly, since fβ(t, λ) is a Borel
function defined for λ ∈ [0,∞), the operator fβ(t,D) is then defined by

Dom(fβ(t,D)) = {ϕ ∈ H :
∫
σ(D)

|fβ(t, λ)|2d(E(λ)ϕ,ϕ) <∞},

fβ(t,D)ϕ =
∫
σ(D)

fβ(t, λ)dE(λ)ϕ for ϕ ∈ Dom(fβ(t,D)),
(2.2)

where {E(·)} denotes the resolution of the identity associated with the operator D
and σ(D) is its spectrum (cf. [3, Theorem XII.2.3, Theorem XII.2.6]). Note that
since D is positive, self-adjoint, we have σ(D) ⊆ [0,∞).

Let us find the maximum and minimum values of fβ(t, λ) on [0, T ]×[0,∞). Note,
the function F (x) = − 1

τ ln(βτx + e−τx), x ≥ 0 has F ′(x) = e−τx−β
βτx+e−τx . Hence,

F (x) attains an absolute maximum at xM = − 1
τ lnβ so that F (x) ≤ F (xM ) =

− 1
τ ln [β(1− lnβ)] for x ≥ 0. Furthermore, since F (xM ) > 0 and limx→∞ F (x) =
−∞, we obtain a unique xβ > xM such that F (x) ≥ 0 on [0, xβ ] and F (x) < 0 on
(xβ ,∞). By (2.1), it follows that

0 ≤ fβ(t, λ) ≤ −1
τ

ln [β(1− lnβ)] for (t, λ) ∈ [0, T ]× [0,∞) (2.3)
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and so for each t ∈ [0, T ], fβ(t,D) is a bounded operator on H satisfying

‖fβ(t,D)‖ ≤ −1
τ

ln [β(1− lnβ)] for all 0 ≤ t ≤ T. (2.4)

Proposition 2.1. Let H be a Hilbert space and for 0 < β < 1, let the operators
fβ(t,D), 0 ≤ t ≤ T be defined by (2.1)–(2.2). Assume the function h : [s, T ]×H →
H satisfies conditions (H1) and (H2). Then (1.8) is well-posed, with unique classical
solution vβ(t) for every ϕ ∈ H where vβ(t) satisfies the integral equation

vβ(t) = e
R t
s
fβ(q,D)dqϕ+

∫ t

s

e
R t
r
fβ(q,D)dqh(r, vβ(r))dr. (2.5)

Proof. See [5, Proposition 2.1]. In particular, e
R t
s
fβ(q,D)dq is an evolution system

on H which by (2.4), satisfies

‖e
R t
s
fβ(q,D)dq‖ ≤ [β(1− lnβ)]

s−t
T−s for all 0 ≤ s ≤ t ≤ T. (2.6)

Well-posedness follows immediately from (2.6). �

The following lemma will aid in establishing continuous dependence on modeling
and is motivated by the approximation condition, Condition A, of Ames and Hughes
(cf. [1, Definition 1], and also [18, Definition p. 4]).

Lemma 2.2. Let H be a Hilbert space and for 0 < β < 1, let the operators
fβ(t,D), 0 ≤ t ≤ T be defined by (2.1)–(2.2). Define B(λ) =

∑k
j=1Bjλ

j where
Bj = maxt∈[0,T ] aj(t) for each 1 ≤ j ≤ k. Then for each t ∈ [0, T ],

Dom(B(D)eτB(D)) ⊆ Dom(A(t,D)) ∩Dom(fβ(t,D)),

‖(−A(t,D) + fβ(t,D))ϕ‖ ≤
√

2β‖B(D)eτB(D)ϕ‖

for all ϕ ∈ Dom(B(D)eτB(D)).

Proof. Let t ∈ [0, T ]. For λ ≥ 0, we have 0 ≤ A(t, λ) ≤ B(λ) ≤ B(λ)eτB(λ) which by
(2.2) shows that Dom(A(t,D)) ⊇ Dom(B(D)eτB(D)). Certainly, Dom(fβ(t,D)) =
H ⊇ Dom(B(D)eτB(D)) as well since fβ(t,D) is a bounded operator. Now let
ϕ ∈ Dom(B(D)eτB(D)) and let xβ be as in the paragraph preceding inequality
(2.3). Set eβ = {λ ≥ 0 : B(λ) ≤ xβ} and let e′β be the complement of eβ in [0,∞).
We have ∫

eβ

| −A(t, λ) + fβ(t, λ)|2d(E(λ)ϕ,ϕ)

=
∫
eβ

|A(t, λ) +
1
τ

ln(βτA(t, λ) + e−τA(t,λ))|2d(E(λ)ϕ,ϕ)

=
∫
eβ

|1
τ

ln(eτA(t,λ)) +
1
τ

ln(βτA(t, λ) + e−τA(t,λ))|2d(E(λ)ϕ,ϕ)

=
∫
eβ

|1
τ

ln(βτA(t, λ)eτA(t,λ) + 1)|2d(E(λ)ϕ,ϕ).

Applying the fact that ln(x+ 1) ≤ x for x ≥ 0, we get∫
eβ

| −A(t, λ) + fβ(t, λ)|2d(E(λ)ϕ,ϕ) ≤
∫
eβ

|βA(t, λ)eτA(t,λ)|2d(E(λ)ϕ,ϕ)
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≤
∫ ∞

0

|βB(λ)eτB(λ)|2d(E(λ)ϕ,ϕ)

= β2‖B(D)eτB(D)ϕ‖2.

Also, since xβ > − 1
τ lnβ, we have∫

e′β

| −A(t, λ) + fβ(t, λ)|2d(E(λ)ϕ,ϕ) =
∫
e′β

|A(t, λ)|2d(E(λ)ϕ,ϕ)

≤
∫
e′β

|e−τB(λ)eτB(λ)B(λ)|2d(E(λ)ϕ,ϕ)

<

∫
e′β

|βB(λ)eτB(λ)|2d(E(λ)ϕ,ϕ)

≤
∫ ∞

0

|βB(λ)eτB(λ)|2d(E(λ)ϕ,ϕ)

= β2‖B(D)eτB(D)ϕ‖2.

Combining yields ‖(−A(t,D) + fβ(t,D))ϕ‖2 ≤ 2β2‖B(D)eτB(D)ϕ‖2, which proves
the desired result. �

Following Lemma 2.2, let us define for (t, λ) ∈ [0, T ]× [0,∞),

gβ(t, λ) = −A(t, λ) + fβ(t, λ). (2.7)

Note, ln(βτA(t, λ) + e−τA(t,λ)) ≥ ln(e−τA(t,λ)) = −τA(t, λ) which, after dividing
through by −τ , yields fβ(t, λ) ≤ A(t, λ) and hence

gβ(t, λ) ≤ 0 for (t, λ) ∈ [0, T ]× [0,∞). (2.8)

For each natural number n, set

en = {λ ≥ 0 : B(λ) ≤ n}. (2.9)

Then by (2.3) and (2.7), we have |gβ(t, λ)| ≤ n − 1
τ ln[β(1 − lnβ)] for all (t, λ) ∈

[0, T ] × en. Thus, if we set En = E(en), then each of A(t,D)En, fβ(t,D)En, and
gβ(t,D)En is a bounded operator on H for all t ∈ [0, T ]. Following [5, Lemma 2.3,
Corollary 2.4], we obtain evolution systems Un(t, s), Vβ,n(t, s), and Wβ,n(t, s) sat-
isfying the following for all ϕn ∈ EnH and all 0 ≤ s ≤ t ≤ T :

(S1) Un(t, s)ϕn = e
R t
s
A(q,D)dqϕn, Vβ,n(t, s)ϕn = e

R t
s
fβ(q,D)dqϕn, and

Wn(t, s)ϕn = e
R t
s
gβ(q,D)dqϕn

(S2) Un(t, s)Wβ,n(t, s)ϕn = Vβ,n(t, s)ϕn = Wβ,n(t, s)Un(t, s)ϕn.

3. Continuous dependence on modeling

In this section, we use the results from Section 2 to prove continuous dependence
on modeling for the ill-posed problem (1.7) (Theorem 3.2 below).

Lemma 3.1. Let u(t) and vβ(t) be classical solutions of (1.7) and (1.8) respectively
where the operators fβ(t,D), 0 ≤ t ≤ T are defined by (2.1)–(2.2) and h : [s, T ] ×
H → H satisfies the hypotheses of Proposition 2.1. Also, set ϕn = Enϕ and
hn(t, ϕ) = Enh(t, ϕ) for all (t, ϕ) ∈ [s, T ]×H. Then

Enu(t) = Un(t, s)ϕn +
∫ t

s

Un(t, r)hn(r, u(r))dr,
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Envβ(t) = Vβ,n(t, s)ϕn +
∫ t

s

Vβ,n(t, r)hn(r, vβ(r))dr

for all t ∈ [s, T ].

Proof. The first identity follows from uniqueness of solutions since both sides of the
equation are classical solutions of the linear inhomogeneous problem

dw

dt
= A(t,D)Enw(t) + hn(t, u(t)) 0 ≤ s ≤ t < T

w(s) = ϕn.
(3.1)

The second identity holds by a similar argument with A(t,D)En replaced by
fβ(t,D)En in (3.1). �

As in Lemma 2.2, set B(λ) =
∑k
j=1Bjλ

j where Bj = maxt∈[0,T ] aj(t) for each
1 ≤ j ≤ k. We have

Theorem 3.2. Let u(t) and vβ(t) be classical solutions of (1.7) and (1.8) re-
spectively where the operators fβ(t,D), 0 ≤ t ≤ T are defined by (2.1)–(2.2) and
h : [s, T ] × H → H satisfies the hypotheses of Proposition 2.1. Then if there
exist constants M ′,M ′′ ≥ 0 such that ‖B(D)e(T−s)B(D)e

R t
s
A(q,D)dqϕ‖ ≤ M ′ and

‖B(D)e(T−s)B(D)e
R t
s
A(q,D)dqh(t, u(t))‖ ≤ M ′′ for all t ∈ [s, T ], then there exist

constants C and L independent of β such that

‖u(t)− vβ(t)‖ ≤ β
T−t
T−s (1− lnβ)

s−t
T−sCeL(T−s) for 0 ≤ s ≤ t ≤ T. (3.2)

Proof. Set ϕn = Enϕ and hn(t, ϕ) = Enh(t, ϕ) for all (t, ϕ) ∈ [s, T ] × H. From
Lemma 3.1, for 0 ≤ s ≤ t ≤ T ,

‖Enu(t)− Envβ(t)‖
≤ ‖Un(t, s)ϕn − Vβ,n(t, s)ϕn‖

+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, vβ(r))‖dr

≤ ‖Un(t, s)ϕn − Vβ,n(t, s)ϕn‖ (3.3)

+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, u(r))‖dr (3.4)

+
∫ t

s

‖Vβ,n(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, vβ(r))‖dr. (3.5)

For the first expression, by (S2) and [14, Theorem 5.1.2], we have

(3.3) = ‖(I −Wβ,n(t, s))Un(t, s)ϕn‖
= ‖(Wβ,n(t, t)−Wβ,n(t, s))Un(t, s)ϕn‖

=
∥∥ ∫ t

s

∂

∂p
Wβ,n(t, p)Un(t, s)ϕndp

∥∥
=
∥∥ ∫ t

s

(−Wβ,n(t, p)gβ(p,D)En)Un(t, s)ϕndp
∥∥

≤
∫ t

s

‖Wβ,n(t, p)gβ(p,D)Un(t, s)ϕn‖dp.
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Next from (2.9) and (2.2), note that Un(t, s)ϕn ∈ Dom(B(D)e(T−s)B(D)). There-
fore, by (S1), (2.8), and Lemma 2.2, we have

(3.3) ≤
∫ t

s

‖gβ(p,D)Un(t, s)ϕn‖dp.

≤
√

2β(t− s)‖B(D)e(T−s)B(D)Un(t, s)ϕn‖.

Similarly, for the second expression,

(3.4) =
∫ t

s

‖(I −Wβ,n(t, r))Un(t, r)hn(r, u(r))‖dr

≤
∫ t

s

√
2β(t− r)‖B(D)e(T−s)B(D)Un(t, r)hn(r, u(r))‖dr.

Combining the above we have

‖Un(t, s)ϕn − Vβ,n(t, s)ϕn‖

+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, u(r))‖dr ≤ βC
(3.6)

where C is a constant independent of β and also independent of n and t by our
stabilizing constants M ′ and M ′′. Finally, by (S1), (2.6), and (H1), the third
expression satisfies

(3.5) =
∫ t

s

‖Vβ,n(t, r)(hn(r, u(r))− hn(r, vβ(r)))‖dr

≤
∫ t

s

[β(1− lnβ)]
r−t
T−s ‖hn(r, u(r))− hn(r, vβ(r))‖dr

≤ L
∫ t

s

[β(1− lnβ)]
r−t
T−s ‖u(r)− vβ(r)‖dr.

(3.7)

Combining (3.6) and (3.7), we have shown that

‖Enu(t)− Envβ(t)‖ ≤ βC + L

∫ t

s

[β(1− lnβ)]
r−t
T−s ‖u(r)− vβ(r)‖dr,

and since all constants on the right are independent of n, we may let n → ∞ to
obtain

‖u(t)− vβ(t)‖ ≤ βC + L

∫ t

s

[β(1− lnβ)]
r−t
T−s ‖u(r)− vβ(r)‖dr. (3.8)

Note that 0 < β < 1 implies

0 < [β(1− lnβ)]
t−s
T−s < 1 for all t ∈ [s, T ]. (3.9)

Hence multiplying (3.8) through by [β(1− lnβ)]
t−s
T−s and applying (3.9), we obtain

[β(1− lnβ)]
t−s
T−s ‖u(t)− vβ(t)‖ ≤ βC + L

∫ t

s

[β(1− lnβ)]
r−s
T−s ‖u(r)− vβ(r)‖dr.

Gronwall’s inequality (cf. [14, Theorem 6.1.2]) then yields the estimate

[β(1− lnβ)]
t−s
T−s ‖u(t)− vβ(t)‖ ≤ βCeL(T−s)

which is equivalent to (3.2). �
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4. Regularization for problem (1.7)

Below, Theorem 4.1 establishes the main result of the paper, that is regulariza-
tion for (1.7). Its proof uses our estimate from Theorem 3.2.

Theorem 4.1. Let u(t) be a classical solution of (1.7) and assume the hypotheses
of Theorem 3.2. Then given δ > 0, there exists β = β(δ) > 0 such that

(i) β → 0 as δ → 0,
(ii) ‖u(t)− vδβ(t)‖ → 0 as δ → 0 for s ≤ t ≤ T whenever ‖ϕ− ϕδ‖ ≤ δ

where vδβ(t) is the solution of (1.8) with initial data ϕδ.

Proof. Let δ > 0 be given and let ‖ϕ − ϕδ‖ ≤ δ. Also, let vβ(t) be the solution of
(1.8) as in Theorem 3.2. For s ≤ t ≤ T , by Theorem 3.2, then

‖u(t)− vδβ(t)‖ ≤ ‖u(t)− vβ(t)‖+ ‖vβ(t)− vδβ(t)‖

≤ β
T−t
T−s (1− lnβ)

s−t
T−sCeL(T−s) + ‖vβ(t)− vδβ(t)‖.

(4.1)

Consider the second quantity in (4.1). By (2.6) and (H1), we have

‖vβ(t)− vδβ(t)‖

≤ ‖e
R t
s
fβ(q,D)dq(ϕ− ϕδ)‖+

∫ t

s

‖e
R t
r
fβ(q,D)dq(h(r, vβ(r))− h(r, vδβ(r)))‖dr

≤ δ [β(1− lnβ)]
s−t
T−s + L

∫ t

s

[β(1− lnβ)]
r−t
T−s ‖vβ(r)− vδβ(r)‖dr.

Hence,

[β(1− lnβ)]
t−s
T−s ‖vβ(t)− vδβ(t)‖ ≤ δ + L

∫ t

s

[β(1− lnβ)]
r−s
T−s ‖vβ(r)− vδβ(r)‖dr

which by Gronwall’s Inequality gives us

[β(1− lnβ)]
t−s
T−s ‖vβ(t)− vδβ(t)‖ ≤ δeL(T−s).

Therefore, ‖vβ(t)− vδβ(t)‖ ≤ δ [β(1− lnβ)]
s−t
T−s eL(T−s) and choosing β = δ yields

‖vβ(t)− vδβ(t)‖ ≤ β
T−t
T−s (1− lnβ)

s−t
T−s eL(T−s). (4.2)

Thus β → 0 as δ → 0, and combining (4.1) with (4.2), we obtain

‖u(t)− vδβ(t)‖ ≤ β
T−t
T−s (1− lnβ)

s−t
T−s (C + 1)eL(T−s) → 0 as δ → 0.

�

5. Examples

The theory of this paper may be applied to a wide class of ill-posed partial
differential equations in L2 spaces including the backward heat equation with a
time-dependent diffusion coefficient. Let us examine a concrete example of higher
order with H = L2(0, π) where for ϕ ∈ L2(0, π), ‖ϕ‖2 =

(∫ π
0
|ϕ(x)|2dx

)1/2
. Also

define Dϕ = −ϕ′′ for all twice-differentiable ϕ ∈ L2(0, π) whose first and second
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derivatives in the sense of distributions are also members of L2(0, π). Consider the
fourth-order non-linear partial differential equation

ut + uxx − etuxxxx = ψ(u)− ee
t

sinx− e2e
t

sin2 x,

(x, t) ∈ (0, π)× (0, 1)

u(0, t) = u(π, t) = 0, t ∈ [0, 1]

u(x, 0) = e sinx, x ∈ [0, π]

(5.1)

where ψ(u) is a compactly supported continuous function which coincides with u2

on a sufficiently large interval centered at the origin. For example, following [18,
Section 4], let us fix M large and positive, and define

ψ(u) =


u2 |u| ≤M
Mu+ 2M2 −2M ≤ u < −M
−Mu+ 2M2 M < u ≤ 2M
0 |u| > 2M

(see Figure 1).
!

M−M 2M−2M
u

ψ

Figure 1. ψ(u)

Note, (5.1) is an example of (1.7) where A(t,D) = D+ etD2, a1(t) ≡ 1, ak(t) =
a2(t) = et, h(x, t, u(x, t)) = ψ(u(x, t))− eet sinx− e2et sin2 x, and ϕ(x) = e sinx. It
is straight-forward to check that the function h satisfies conditions (H1) and (H2),
and that the exact solution of (5.1) is u(x, t) = ee

t

sinx.
For the corresponding well-posed problem, following work in [11] and [18], let

us assume an approximate solution of the form vN (x, t) =
∑N
n=1 vn(t) sin(nx). Set

ϕδ(x) = (e+ δ
√

2
π ) sinx so that ‖ϕ−ϕδ‖2 = δ. Then solving (1.8) is equivalent to

solving the system of N differential equations

v′m(t) + ln(β(m2 + etm4) + e−(m2+etm4))vm(t)

=
2
π

∫ π

0

h(x, t, v(x, t)) sin(mx) dx, t ∈ (0, 1), 1 ≤ m ≤ N,

v1(0) = e+ δ

√
2
π
, v2(0) = v3(0) = · · · = vN (0) = 0

(5.2)
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where h(x, t, v(x, t)) = ψ(v(x, t))− eet sinx− e2et sin2 x.
We apply a finite difference method in order to estimate the solution vN (x, t) of

(5.2). Let

∆t =
1

100
, ti = i∆t, 0 ≤ i ≤ 100.

For each i = 0, 1, 2, . . . , we solve the N difference equations
vm(ti+1)− vm(ti)

∆t
+ ln

(
β(m2 + etim4) + e−(m2+etim4)

)(vm(ti+1) + vm(ti)
2

)
=

2
π

∫ π

0

([
N∑
n=1

vn(ti) sin(nx)]2 − ee
ti sinx− e2e

ti sin2 x) sin(mx) dx, 1 ≤ m ≤ N

for the unknown vm(ti+1). Tables 1 and 2 illustrate our calculations with N = 5,
i = 0, 1, 2, 3, 4, and the indicated values for δ. Note as in the proof of Theorem 4.1,
β is chosen to be the same value as δ in each table. As expected, we find a smaller
L2-difference between u(x, t) and vN (x, t) for each t as δ is taken closer to zero.

Table 1. β = δ = 10−3

t u(x, t) vN (x, t) ‖u− vN‖2
0 e sin x 2.719079713 sin x 0.001

0.01 2.74574 sin x 2.74619 sin x− 0.0000074548 sin(3x) 0.00056407

−0.00000105443 sin(5x)

0.02 2.77375 sin x 2.77382 sin x− 0.0000121535 sin(3x) 0.0000890675

−0.00000161556 sin(5x)

0.03 2.80234 sin x 2.80199 sin x− 0.0000135129 sin(3x) 0.000438992

−0.00000163352 sin(5x)

0.04 2.83151 sin x 2.8307 sin x− 0.0000109582 sin(3x) 0.00101528

−0.00000107001 sin(5x)

0.05 2.86129 sin x 2.85997 sin x− 0.00000372291 sin(3x) 0.00165438

+0.000000129345 sin(5x)

Table 2. β = δ = 10−6

t u(x, t) vN (x, t) ‖u− vN‖2
0 e sin x 2.718282626344 sin x 0.000001

0.01 2.74574 sin x 2.74574 sin x− 0.00000000772376 sin(3x) 0.00000000977658

−0.00000000109207 sin(5x)

0.02 2.77375 sin x 2.77375 sin x− 0.0000000209072 sin(3x) 0.0000000264447

−0.00000000284423 sin(5x)

0.03 2.80234 sin x 2.80234 sin x+ 0.00000000765303 sin(3x) 0.00000000977704

+0.00000000151195 sin(5x)

0.04 2.83151 sin x 2.83151 sin x+ 0.0000000017265 sin(3x) 0.00000000229526

+0.000000000610782 sin(5x)

0.05 2.86129 sin x 2.86128 sin x+ 0.0000000201077 sin(3x) 0.0000125332

+0.00000000322633 sin(5x)

For a future research, it is worthwhile to examine similar partial differential
equations of higher order where the function h satisfies a local Lipschitz condition
rather than global. The numerical experiments presented in this paper may also
be strengthened by directly solving the system of differential equations (5.2).
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