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PULLBACK ATTRACTORS FOR A CLASS OF
NON-NEWTONIAN MICROPOLAR FLUIDS

GERALDO M. DE ARAUJO, MARCOS A. F. ARAUJO,

FLANK D. M. BEZERRA, MIRELSON M. FREITAS

Abstract. In this article we study the long time behavior of the two-dimensional

flow for non-Newtonian micropolar fluids in bounded smooth domains, in the

sense of pullback attractors. We prove the existence and upper semicontinuity
of the pullback attractors with respect to the viscosity coefficient of the model.

1. Introduction

This article concerns the long time behavior of the two-dimensional flow of a non-
Newtonian micropolar fluid in the sense of pullback attractors. We are interested
in a class of models of non-Newtonian micropolar fluids, where the relation between
the viscous stress tensor and the symmetric component of the gradient (derivative
with respect to position) of the flow velocity is nonlinear and it is defined by a class
of non-negative and continuously differentiable functions, we consider the following
mathematical model of a non-Newtonian micropolar fluid

∂tu−∇ · τ(e(u)) + (u · ∇)u+∇p = 2νr rotw + f(x, t), x ∈ Ω, t > τ,

∇ · u = 0, x ∈ Ω, t > τ,

∂tw − ν1∆w + (u · ∇)w + 4νrw = 2νr rotu+ g(x, t), x ∈ Ω, t > τ,

(1.1)

with corresponding initial-boundary condition
u(x, τ) = uτ (x), w(x, τ) = wτ (x), x ∈ Ω,

u(x, t) = 0, w(x, t) = 0, x ∈ ∂Ω, t > τ,
(1.2)

where Ω is a bounded smooth domain of R2, the positive constants ν1, νr represent
viscosity coefficients, u = (u1, u2) is the velocity field, p is the pressure, and w is
the scalar microrotation field, commonly interpreted as the angular velocity field of
rotation of particles, the fields f = (f1, f2) and g are external forces and moments,
respectively.

The map τ : R2
sym → R2

sym denotes the extra stress tensor given by

τ(e(u)) = 2
(
ν + νr +M(|e(u)|2)

)
e(u), (1.3)

where R22

sym represents the set of all symmetric 2× 2 matrices, ν > 0 represents the
usual Newtonian viscosity, M : (0,+∞)→ (0,+∞) is a continuously differentiable
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function which denotes the generalized viscosity function, and e : R2 → R22

sym

denotes the symmetric part of the velocity gradient, as well as in [1, 9, 15]; that is,

e(u) =
1
2
(
∇u+ (∇u)T

)
,

whose components are defined by

eij(u) =
1
2
(
∂xjui + ∂xiuj

)
, i, j = 1, 2.

Our motivation for considering the equations of micropolar fluid in (1.1) is the
works [1, 11, 13, 18, 23]. Many works have been studied the model of micropolar
fluids in many theoretical issues; namely, about existence, uniqueness, regularity
and stability of solutions, see e.g. [1, 4, 7, 8, 9, 10, 17] and references therein; and
on asymptotic behavior of solutions, in the sense of attractors, see e.g. [2, 3, 7, 9,
10, 12, 14, 19, 20, 21, 22] and references therein. Since the operator stress tensor
in this paper is given by (1.3) we assume that there exist positive constants c1, c2
and c3 such that for any t > 0,

c1(1 +
√
t)2 6M(t) 6 c2(1 +

√
t)2, (1.4)

0 6M ′(t)
√
t 6 c3(1 +

√
t) (1.5)

in order to recover embedding theorems for Sobolev spaces, as well as in [9], and
consequently to prove the existence and upper semicontinuity of the pullback at-
tractors.

To better present our results we introduce some terminologies. The space Vp is
the closure of

V = {(ϕ1, ϕ2) ∈ (C∞0 (Ω))2 : ∇ · (ϕ1, ϕ2) = 0}

in the space (W 1,p(Ω))2 with norm ‖∇u‖p =
(∫

Ω
|∇u|pdx

) 1
p , 1 6 p <∞. For p = 2

we denote V = V2 and the inner product and norm in V is denoted, respectively,
by ((u, v)) =

∑2
i,j=1

∫
Ω
∂xjui∂xjvidx and ‖u‖ = ((u, u))1/2.

The space H is the closure of V in the space (L2(Ω))2 with inner product and
norm defined, respectively by (u, v) =

∑2
i=1

∫
Ω
uividx and |u| = (u, u)1/2. Note

that V and H are Hilbert spaces, and we have the following embedding V ↪→ H ↪→
V ′ where the first embedding is compact.

We introduce the bilinear form a : V × V → R defined by

a(u, v) =
2∑

i,j=1

∫
Ω

∂xjui∂xjvidx.

We also introduce the maps B : V × V → V ′ defined by

B(u, v) = (u · ∇)v,

B1 : V ×H1
0 (Ω)→ H−1(Ω) defined by

B1(u, ω) = (u · ∇)ω,

and K : V4 → V ′4 defined by

Ku = −∇ · [2M(|e(u)|2)e(u)].
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Definition 1.1. Let f ∈ L2(τ, T ;H), g ∈ L2(τ, T ;L2(Ω)), uτ ∈ H and wτ ∈ L2(Ω).
A weak solution of problem (1.1)-(1.2) is a pair of functions (u,w) such that for
each T > τ ,

u ∈ L∞(τ, T ;H) ∩ L4(τ, T ;V4),

w ∈ L∞(τ, T ;L2(Ω)) ∩ L2(τ, T ;H1
0 (Ω)),

with u′ ∈ L4/3(τ, T ;V ′4) and w′ ∈ L2(τ, T ;H−1(Ω)) such that u(x, τ) = uτ (x),
w(x, τ) = wτ (x) and satisfying the following identities for all ϕ ∈ V4 and φ ∈ H1

0 (Ω),

d

dt
(u(t), ϕ) + (ν + νr)a(u(t), ϕ) + (Ku, ϕ) + (B(u(t), u(t)), ϕ)

= 2νr(rotw(t), ϕ) + (f(t), ϕ)
(1.6)

and
d

dt
(w(t), φ) + ν1(∇w(t),∇φ) + (B1(u(t), w(t)), φ) + 4νr(w(t), φ)

= 2νr(rotu(t), φ) + (g(t), φ)
(1.7)

in the sense of scalar distributions on (τ,∞).

System (1.1) was investigated in [1] on a bounded smooth domain of Rd, the
authors proved the existence of weak solution for d 6 3 and uniqueness for d =
2 under these same conditions in M ; namely, the authors proved the existence
and uniqueness of solution of problem (1.1)-(1.2) in the sense of Definition 1.1.
Moreover, for each t > τ the map (uτ , wτ ) 7→ (u(t), w(t)) is continuous as a map
defined in H × L2(Ω).

Now we recall the definition of nonlinear evolution process (or non-autonomous
dynamical systems) and pullback attractors, for more details we refer the reader to
[5, 6, 16] and references therein.

Definition 1.2. An evolution process in a Banach space X is a family of continuous
maps {S(t, τ) : t ≥ τ ∈ R} from X into itself with the following properties:

(i) S(t, t)x = x, for all t ∈ R and x ∈ X;
(ii) S(t, τ) = S(t, s)S(s, τ), for all t > s > τ ;
(iii) (t, τ) 7→ S(t, τ)x is continuous for t ≥ τ , x ∈ X.

Let D be a nonempty class of parameterised sets D̂ = {D(t) : t ∈ R} ⊂ P(X),
where P(X) denotes the family of all nonempty subsets of X.

Definition 1.3. An evolution process {S(t, τ) : t ≥ τ ∈ R} in a Banach space X
is said to be pullback D-asymptotically compact if for any t ∈ R, any D̂ ∈ D, and
any sequences τn → −∞ and xn ∈ D(τn) the set {S(t, τn)xn}n∈N is precompact in
X.

Definition 1.4. Let {S(t, τ) : t ≥ τ ∈ R} be an evolution process in a Banach
space X. The family B̂ is pullback D-absorbing for the process {S(t, τ) : t ≥ τ ∈ R}
if for any t ∈ R and any D̂ ∈ D, there exists a τ0(B̂, t) 6 t such that

S(t, τ)D(τ) ⊂ B(t) for any τ ≤ τ0(B̂, t).

Observe that in the above definition the set B̂ does not necessarily belong to the
class D. In the sequel we introduce the concept of pullback D-attractor.
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Definition 1.5. Let {S(t, τ) : t ≥ τ ∈ R} be an evolution process in a Banach
space X. A family Â = {A(t) : t ∈ R} ⊂ P(X) of subsets of X is said to be the
pullback D-attractor for the evolution process {S(t, τ) : t ≥ τ ∈ R} if the following
conditions are satisfied

(i) A(t) is compact for all t ∈ R;
(ii) Â invariant, i.e., S(t, τ)A(τ) = A(t) for all t ≥ τ ;

(iii) Â pullback D-attracting, i.e.,

lim
τ→−∞

dist(S(t, τ)D(τ), A(t)) = 0, for all D̂ ∈ D and t ∈ R.

(iv) Â is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of
closed sets which is pullback D-attracting, then A(t) ⊂ C(t) for all t ∈ R.

Theorem 1.6. Let {S(t, τ) : t ≥ τ ∈ R} be an evolution process in a Banach space
X. Suppose that the process {S(t, τ) : t ≥ τ ∈ R} is pullback D-asymptotically
compact and that B̂ ∈ D is a family pullback D-absorbing. Then {S(t, τ) : t ≥ τ ∈
R} has a unique pullback D-attractor Â given by

A(t) = Λ(B̂, t) = ∩s≤t∪τ≤sS(t, τ)B(τ).

Let us investigate the existence of pullback attractor for the problem (1.1)-(1.2).
For this, let us consider the class of all families tempered in H = H × L2(Ω),
equipped with the usual norm, as the attraction universe D, i.e.,

D =
{
D̂ : D̂ = {D(t) : t ∈ R}, lim

τ→−∞
eετ‖D(τ)‖ = 0, ∀ε > 0

}
,

where ‖D(τ)‖ := sup(u,v)∈D(τ) ‖(u, v)‖H for τ ∈ R. The main result of the paper
is as follows.

Theorem 1.7. Let H = H × L2(Ω) equipped with the usual norm. Assume that∫ t

−∞
eα2s(|f(s)|2 + |g(s)|2)ds <∞, for all t ∈ R,

where α2 > 0 is constant. Then

(i) The evolution process generated by problem (1.1)-(1.2) possesses a unique
pullback D-attractor Â = {A(t) : t ∈ R} in H;

(ii) For each νr ∈ [0, 1], the family of pullback D-attractor Âνr = {Aνr (t) :
t ∈ R} in H is upper semicontinuity at νr = 0 in the sense of Hausdorff
semidistance in H, that is, for each t ∈ R,

lim
νr→0

dist(Aνr (t), A0(t)) := lim
νr→0

sup
x∈Aνr (t)

inf
y∈A0(t)

‖x− y‖H = 0.

This article is organized as follows. In Section 2 we prove the existence of pull-
back attractor for the evolution process generated by the problem (1.1)-(1.2) in
H. In section 3 we prove that the family of pullback attractors indexed by νr con-
verge upper semicontinuously to the pullback attractor associated with (3.3)-(3.4)
as νr → 0.
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2. Existence of pullback attractor

In this section we prove the Theorem 1.7(i) via Theorem 1.6.

Lemma 2.1. For each t ∈ R and D̂ ∈ D, there exists τ0(D̂, t) < t such that the
solution (u,w) of the problem (1.1)-(1.2) satisfy the following estimate

|u(t, τ, uτ )|2 + |w(t, τ, wτ )|2 ≤ 1 + α3

∫ t

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds

:= R1(t) <∞.
(2.1)

uniformly in (uτ , wτ ) ∈ D(τ) and τ ≤ τ0(D̂, t), where α2 and α3 are positive
constants.

Proof. From (1.6) and (1.7) with ϕ = u and ψ = w we see that

1
2
d

dt
|u|2 + (ν + νr)‖u‖2 + 2

2∑
i,j=1

∫
Ω

M(|e(u)|2)|eij(u)|2 dx = 2νr(rotw, u) + (f, u),

(2.2)
and

1
2
d

dt
|w|2 + ν1‖w‖2 + 4νr|w|2 = 2νr(rotu,w) + (g, w). (2.3)

By Schwarz’s inequality, we also deduce that

2νr(rotw, u) = 2νr(w, rotu) 6 2νr|w|2 +
νr
2
‖u‖2.

and using Korn’s inequality (see e.g. [17]) and (1.4) we have∫
Ω

M(|e(u)|2)|eij(u)|2 dx ≥ c1
∫

Ω

|e(u)|4 dx ≥ c1K4
4‖u‖4(W 1,4(Ω))2 , (2.4)

and by Poincaré inequality

(f, u) 6 |f ||u| 6 1√
λ1

‖u‖|f | 6 ν

2
‖u‖2 +

1
2νλ1

|f |2, (2.5)

where λ1 > 0 is the first eigenvalue of the Stokes operator A. Thus, from (2.2),
(2.4) and (2.5) we obtain that

d

dt
|u|2 + (ν + νr)‖u‖2 + 4c1K4

4‖u‖4(W 1,4(Ω))2 6 4νr|w|2 +
1
νλ1
|f |2. (2.6)

On other hand, we have

2νr(rotu,w) 6 2νr‖u‖|w| 6 2νr|w|2 +
νr
2
‖u‖2.

and again by Poincaré inequality

(g, w) 6 |g||w| 6 1√
λ
|g|‖w‖ 6 ν1

2
‖w‖2 +

1
2ν1λ

|g|2,

where λ > 0 denotes the first eigenvalues of the negative Laplacian operator −∆ in
L2(Ω) with domain D(−∆) = H2(Ω) ∩H1

0 (Ω).
Using above estimates in (2.3) we also deduce that

d

dt
|w|2 + ν1‖w‖2 + 4νr|w|2 6 νr‖u‖2 +

1
ν1λ
|g|2. (2.7)
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From (2.6) and (2.7) we obtain that

d

dt
(|u|2 + |w|2) +ν‖u‖2 +ν1‖w‖2 + 4c1K4

4‖u‖4(W 1,4(Ω))2 6
1
νλ1
|f |2 +

1
ν1λ
|g|2. (2.8)

Setting

α1 = min{ν, ν1}, α2 = α1 min(λ1, λ), α3 = max
( 1
νλ1

,
1
ν1λ

)
. (2.9)

Then from (2.8) we have

d

dt
(|u|2 + |w|2) + α1(‖u‖2 + ‖w‖2) + 4c1K4

4‖u‖4(W 1,4(Ω))2 6 α3(|f |2 + |g|2), (2.10)

and by Poincaré inequality

d

dt
(|u|2 + |w|2) + α2(|u|2 + |w|2) 6 α3(|f |2 + |g|2). (2.11)

Now multiplying (2.11) by eα2t, we get

d

dt

{
eα2t(|u|2 + |w|2)

}
≤ α3e

α2t(|f(t)|2 + |g(t)|2) (2.12)

Integrating (2.12) from τ to t, we obtain

|u(t, τ, uτ )|2 + |w(t, τ, wτ )|2

≤ e−α2(t−τ)(|uτ |2 + |wτ |2) + α3

∫ t

τ

e−α2(t−s)(|f(s)|2 + |g(s)|2) ds

≤ e−α2(t−τ)(|uτ |2 + |wτ |2) + α3

∫ t

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds.

Since (uτ , wτ ) ∈ D(τ) and D̂ ∈ D it follows that there exists a τ0(D̂, t) ≤ t such
that

|u(t, τ, uτ )|2 + |w(t, τ, wτ )|2 ≤ 1 + α3

∫ t

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds,

for all τ ≤ τ0(D̂, t). The proof is complete. �

Lemma 2.2. For each t ∈ R and D̂ ∈ D, there exists τ0(D̂, t) ≤ t given by Lemma
2.1 such that the solution (u,w) of the problem (1.1)-(1.2) satisfy the estimate∫ t+1

t

(
‖u(s)‖2 + ‖w(s)‖2 + ‖u(s)‖4(W 1,4(Ω))2

)
ds ≤ R2(t) <∞ (2.13)

uniformly in (uτ , wτ ) ∈ D(τ) and τ ≤ τ0(D̂, t), where R2(t) is given by (2.14).

Proof. Integrating (2.10) from τ to t, we see that

α1

∫ t+1

t

(‖u(s)‖2 + ‖w(s)‖2) ds+ 4c1K4
4

∫ t+1

t

‖u(s)‖4(W 1,4(Ω))2 ds

6 (|u(t)|2 + |w(t)|2) + α3

∫ t+1

t

(|f(s)|2 + |g(s)|2) ds

≤ (|u(t)|2 + |w(t)|2) + α3

∫ t+1

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds.
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Taking µ = min(α1, 4c1K4
4 ), applying the Lemma 2.1, we get that for any τ ≤

τ0(D̂, t), ∫ t+1

t

(
‖u(s)‖2 + ‖w(s)‖2 + ‖u(s)‖4(W 1,4(Ω))2

)
ds ≤ R2(t),

where

R2(t) :=
1
µ

{
1 + 2α3

∫ t+1

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds

}
. (2.14)

The proof is complete. �

Lemma 2.3. For any t ∈ R and D̂ ∈ D, there exists τ0(D̂, t) ≤ t given by Lemma
2.1 such that the solution (u,w) of the problem (1.1)-(1.2) satisfy the estimate

‖u(t, τ, uτ )‖2 + ‖w(t, τ, wτ )‖2 ≤ R3(t) <∞.

uniformly in (uτ , wτ ) ∈ D(τ) and τ ≤ τ0(D̂, t).

Proof. Using ∂tu as a test function in (1.6) we get

|∂tu|2 +
ν + νr

2
d

dt
‖u‖2 +

2∑
i,j=1

∫
Ω

τij(e(u))eij(∂tu)dx

= −
2∑

i,j=1

∫
Ω

ui(∂xiuj)∂tuj dx+ 2νr(rotw, ∂tu) + (f, ∂tu).

(2.15)

where τij is a tensor given by τij(e) = 2M(|e|2)eij .
Using the definition of the potential

Φ(e) =
∫ |e|2

0

M(t) dt, (2.16)

tt follows that
d

dt

∫
Ω

Φ(e(u)) dx =
∫

Ω

τij(e(u))eij(∂tu) dx. (2.17)

Using Young’s inequality we have

2νr(rotw, ∂tu) 6 4ν2
r‖w‖2 +

1
4
|∂tu|2,

and

(f, ∂tu) 6 |f |2 +
1
4
|∂tu|2. (2.18)

By (2.15), (2.17) and (2.18) we get

1
2
|∂tu|2 +

d

dt

(ν + νr
2
‖u‖2 +

∫
Ω

Φ(e(u)) dx
)

6
2∑

i,j=1

∫
Ω

|ui||∂xiuj ||∂tuj | dx+ 4ν2
r‖w‖2 + |f |2.

(2.19)

Note that
2∑

i,j=1

∫
Ω

|ui||∂xiuj ||∂tuj | dx 6 ‖u‖2(L∞(Ω))2‖u‖
2 +

1
4
|∂tu|2.



8 G. M. ARAUJO, M. A. F. ARAUJO, F. D. M. BEZERRA, M. M. FREITAS EJDE-2018/23

By embedding W 1,q(Ω) ↪→ L∞(Ω) for q > 2, there exists c > 0 such that
2∑

i,j=1

∫
Ω

|ui||∂xiuj ||∂tuj | dx 6 c‖u‖2(W 1,4(Ω))2‖u‖
2 +

1
4
|∂tu|2, (2.20)

and from (2.19) and (2.20) it follows that
1
4
|∂tu|2 +

d

dt

(ν + νr
2
‖u‖2 +

∫
Ω

Φ(e(u)) dx
)

6 c‖u‖2(W 1,4(Ω))2‖u‖
2 + 4ν2

r‖w‖2 + |f |2.
(2.21)

By Korn’s inequality, (1.4) and (2.16) we have∫
Ω

Φ(e(u)) dx ≥ c1
∫

Ω

|e(u)|2 dx ≥ c1K2
2‖u‖2. (2.22)

Thus,

‖u‖2 6 k0

(ν + νr
2
‖u‖2 +

∫
Ω

Φ(e(u)) dx
)
, (2.23)

where k0 = 1
c1K2

2
. Employing (2.23) in (2.21) we obtain

d

dt

(ν + νr
2
‖u‖2 +

∫
Ω

Φ(e(u))dx
)

6 ck0‖u‖2(W 1,4(Ω))2

(ν + νr
2
‖u‖2 +

∫
Ω

Φ(e(u)) dx
)

+ 4ν2
r‖w‖2 + |f |2.

(2.24)

If we denote

y(t) =
ν + νr

2
‖u‖2 +

∫
Ω

Φ(e(u)) dx, g(t) = ck0‖u‖2(W 1,4(Ω))2 ,

h(t) = 4ν2
r‖w‖2 + |f |2,

then
dy(t)
dt
6 g(t)y(t) + h(t). (2.25)

Using (1.4) we obtain

Φ(e(u)) 6 c2
∫ |e(u)|2

0

(1 +
√
t)2 dt

6 2c2
∫ |e(u)|

0

(1 + t)3 dt

=
c2
2

[(1 + |e(u)|)4 − 1]

6
c2
2

(1 + |e(u)|)4.

Integrating the above estimate over Ω, we have∫
Ω

Φ(e(u)) dx 6
c2
2

∫
Ω

(1 + |e(u)|)4 dx

6
c2k1

2

∫
Ω

(1 + |e(u)|4) dx

6
c2k1

2
|Ω|+ c2k1

2
‖u‖4(W 1,4(Ω))2 ,

(2.26)

where |Ω| is the Lebesgue measure of the set Ω.
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By Lemma 2.2 and (2.26) we have∫ t+1

t

y(s) ds 6
1
2

[(ν + νr + c2k1)R2(t) + c2k1|Ω|] ≡ ξ3(t) <∞,

for all τ ≤ τ0(D̂, t),∫ t+1

t

g(s) ds 6 ck0

(∫ t+1

t

‖u‖4(W 1,4(Ω))2 ds

)1/2

6 ck0

√
R2(t) ≡ ξ1(t) <∞,

for all τ ≤ τ0(D̂, t), and∫ t+1

t

h(s) ds 6 4ν2
rR2(t) +

∫ t+1

t

|f(s)|2 ds

≤ 4ν2
rR2(t) +

∫ t+1

−∞
e−α2(t−s)|f(s)|2 ds ≡ ξ2(t) <∞,

for all τ ≤ τ0(D̂, t).
From uniform Gronwall Lemma and the above considerations we conclude that

ν + νr
2
‖u(t+ 1)‖2 +

∫
Ω

Φ(e(u(t+ 1))) dx

6 (ξ3(t) + ξ2(t)) eξ1(t) <∞, for all τ ≤ τ0(D̂, t).
(2.27)

Since, by (2.22) we have

‖u‖2 6 k0

∫
Ω

Φ(e(u)) dx,

by (2.27) we conclude that

‖u(t+ 1, τ, uτ )‖2 6 k0 (ξ3(t) + ξ2(t)) eξ1(t) ≡ R̃(t) <∞, (2.28)

for all τ ≤ τ0(D̂, t).
Now, let us use ∂tw as a test function in (1.7), we obtain

|∂tw|2 +
ν1

2
d

dt
‖w‖2 + 2νr

d

dt
|w|2

= −
2∑

i,j=1

∫
Ω

ui∂xiw∂tw dx+ 2νr(rotu, ∂tw) + (g, ∂tw).
(2.29)

By Young’s inequality we have

2νr(rotu, ∂tw) 6 4ν2
r‖u‖2 +

1
4
|∂tw|2, (2.30)

(g, ∂tw) 6 |g|2 +
1
4
|∂tw|2,

2∑
i,j=1

∫
Ω

|ui||∂xiw||∂tw| dx 6 ‖u‖2(L∞(Ω))2‖w‖
2 +

1
4
|∂tw|2

6 c‖u‖2(W 1,4(Ω))2‖w‖
2 +

1
4
|∂tw|2.

(2.31)

Employing (2.30) and (2.31) in (2.29) we have
1
4
|∂tw|2 +

d

dt

(ν1

2
‖w‖2 + 2νr|w|2

)
6 c‖u‖2(W 1,4(Ω))2‖w‖

2 + 4ν2
r‖u‖2 + |g|2
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6 c‖u‖2(W 1,4(Ω))2‖w‖
2 +

4cνr
ν1
‖u‖2(W 1,4(Ω))2 |w|

2 + 4ν2
r‖u‖2 + |g|2

=
2c
ν1
‖u‖2(W 1,4(Ω))2

(ν1

2
‖w‖2 + 2νr|w|2

)
+ 4ν2

r‖u‖2 + |g|2.

Hence
d

dt
Ψ(t) 6 Ψ(t)G(t) +N (t),

where

Ψ(t) =
ν1

2
‖w‖2 + 2νr|w|2, G(t) =

2c
ν1
‖u‖2(W 1,4(Ω))2 , N (t) = 4ν2

r‖u‖2 + |g|2.

By Lemmas 2.1 and 2.2 we have∫ t+1

t

Ψ(s) ds 6
ν1R2(t)

2
+ 2νrR1(t) ≡ ζ3(t) <∞, for all τ ≤ τ0(D̂, t),∫ t+1

t

G(s) ds 6
2c
ν1

(∫ t+1

t

‖u(s)‖4(W 1,4(Ω))2

)1/2

6
2c
ν1

√
R2(t) ≡ ζ1(t) <∞,

for all τ ≤ τ0(D̂, t),∫ t+1

t

N (s) ds 6 4ν2
rR2(t) +

∫ t+1

t

|g(s)|2 ds

6 4ν2
rR2(t) +

∫ t+1

−∞
e−α2(t−s)|g(s)|2 ds ≡ ζ2(t) <∞,

for all τ ≤ τ0(D̂, t).

Thus by uniform Gronwall Lemma we deduce that

‖w(t+ 1, τ, wτ )‖2 6 2
ν1

(ζ3(t) + ζ2(t)) eζ1(t) ≡ R̂(t) <∞ (2.32)

for all τ ≤ τ0(D̂, t); by (2.28) and (2.32) we conclude the proof. �

Let us finally verify that the evolution process is pullback D-asymptotically com-
pact in H to conclude the proof of the Theorem 1.7(i).

Theorem 1.7(i). Let {S(t, τ) : t ≥ τ ∈ R} be the evolution process generated by
the problem (1.1)-(1.2) in H, and let B̂ = {B(t) : t ∈ R} and K̂ = {K(t) : t ∈ R}
be families of sets given by

B(t) = {(u, v) ∈ H : |u|2 + |v|2 ≤ R1(t)},
K(t) = {(u, v) ∈ H : |u|2 + |v|2 ≤ R3(t)}

where R1(t) is given by Lemma 2.1 and R3(t) is given by Lemma 2.3. By Lemma
2.1 B̂ ∈ D is pullback D-absorbing for {S(t, τ) : t ≥ τ ∈ R} in H and Lemma
2.3 it follows that K̂ is pullback D-absorbing for {S(t, τ) : t ≥ τ ∈ R} in V =
V × H1

0 (Ω), equipped with the usual norm, and {S(t, τ) : t ≥ τ ∈ R} is pullback
D-asymptotically compact in H, thus the proof is complete by Theorem 1.6. �

Remark 2.4. In face of previous results and following the same arguments of [22] it
is possible establish that there exists a unique family of Borel invariant probability
measures on the pullback attractor.
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3. Upper semicontinuity of pullback attractors

In this section, we investigate the upper semicontinuity of pullback attractors
as νr → 0. To indicate the dependence of solutions on νr, we write the solution
of problem (1.1)-(1.2) as (uνr , wνr ) and the corresponding evolution process as
{Sνr (t, τ) : t ≥ τ ∈ R}. Thus (uνr , wνr ) satisfies

∂tuνr −∇ · τ(e(uνr )) + (uνr · ∇)uνr +∇p = 2νr rotwνr + f(x, t),
x ∈ Ω, t > τ,

∇ · uνr = 0, x ∈ Ω, t > τ,

∂twνr − ν1∆wνr + (uνr · ∇)wνr + 4νrwνr = 2νr rotuνr + g(x, t),
x ∈ Ω, t > τ,

(3.1)

with the corresponding initial-boundary condition

uνr (x, τ) = uτ (x), wνr (x, τ) = wτ (x), x ∈ Ω,

uνr (x, t) = 0, wνr (x, t) = 0, x ∈ ∂Ω, t > τ.
(3.2)

For νr = 0 the problem (1.1)-(1.2) reduces to

∂tu−∇ · {2(ν +M(|e(u)|2))}+ (u · ∇)u+∇p = f(x, t), x ∈ Ω, t > τ,

∇ · u = 0, x ∈ Ω, t > τ,

∂tw − ν1∆w + (u · ∇)w = g(x, t), x ∈ Ω, t > τ,

(3.3)

with corresponding initial-boundary condition

u(x, τ) = uτ (x), w(x, τ) = wτ (x), x ∈ Ω,

u(x, t) = 0, w(x, t) = 0, x ∈ ∂Ω,
; t > τ.

(3.4)

Throughout this section, we assume νr ∈ [0, 1]. It follows from previous sections
that for each νr > 0 the process {Sνr (t, τ) : t ≥ τ ∈ R} has a pullback D-attractor
Âνr = {Aνr (t) : t ∈ R} in H. It is clear that problem (3.3)-(3.4) generates a process
{S0(t, τ) : t ≥ τ ∈ R} and possesses a unique pullback D-attractor Â0 = {A0(t) :
t ∈ R} in H.

In the this part we assume that there exist a constant C > 0 time independent,
such that ∫ t

−∞
e−α2(t−s)(|f(s)|2 + |g(s)|2) ds < C, ∀t ∈ R. (3.5)

Proof of Theorem 1.7(ii). By [6, Proposition 1.20] it is suffices to prove that:
(i) There exist δ > 0 and t0 ∈ R such that

∪νr∈(0,δ) ∪s≤t0 Aνr (s)

is bounded.
(ii) For any t ∈ R, T ≥ 0 and all bounded set B ⊂ H,

lim
νr→0

sup
τ∈[T−t,t],z∈B

‖Sνr (t, τ)z − S0(t, τ)z‖H = 0. (3.6)

To prove (i), consider the t-dependent term involved in R1(t) given by (2.1). Using
(3.5) we obtain that

R1(t) ≤ 1 + α3C := R.
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Thus, the family B̂0 = {B0(t) : t ∈ R} of sets given by B0(t) = B(0, R) is pullback
D-absorbing for {S(t, τ) : t ≥ τ ∈ R} in H. In particular, we have that B̂0 ∈ D.
By the invariance of Âνr = {Aνr (t) : t ∈ R}, for any t ∈ R and νr ∈ [0, 1] we have
Aνr (t) ⊂ B(0, R), we conclude (i).

To prove (ii), for any z ∈ B and t ≥ τ , we write Uνr = uνr−u and Wνr = wνr−w,
then

∂tUνr − (ν + νr)∆Uνr − νr∆u+Kuνr −Ku+ (uνr · ∇)uνr − (u · ∇)u
= 2νr rotwνr ,

∂tWνr − ν1∆Wνr = 2νr rotuνr − 4νrwνr + (u · ∇)w − (uνr · ∇)wνr ,
∇ · Uνr = 0.

Hence, we obtain

1
2
d

dt
|Uνr |2 + (ν + νr)‖Uνr‖2 + (Kuνr −Ku, Uνr )

= 2νr(rotwνr , Uνr )− νr(∇u,∇Uνr )− (B(Uνr , u), Uνr ),
1
2
d

dt
|Wνr |2 + ν1‖Wνr‖2

= 2νr(rotuνr ,Wνr )− 4νr(wνr ,Wνr ) + (B1(Uνr ,Wνr ), w).

(3.7)

We estimate the terms on the right-hand side. Note that

2νr(rotwνr , Uνr ) = 2νr(wνr , rotUνr ) 6 2νr|wνr |2 +
νr
2
‖Uνr‖2,

|νr(∇u,∇Uνr )| 6
νr
2
‖u‖2 +

νr
2
‖Uνr‖2,

|(B(Uνr , u), Uνr )| 6
c

ν
‖u‖2|Uνr |2 +

ν

4
‖Uνr‖2,

2νr(rotuνr ,Wνr ) = 2νr(uνr , rotWνr ) 6
8ν2
r

ν1
|uνr |2 +

ν1

8
‖Wνr‖2,

|4νr(wνr ,Wνr )| 6 4νr|wνr |
1
λ
‖Wνr‖ 6

16ν2
r

λν1
|wνr |2 +

ν1

4
‖Wνr‖2.

Finally, by Hölder’s inequality and by following inequality

‖ξ‖4 6 c|ξ|1/2‖ξ‖1/2, ∀ξ ∈ H1
0 (Ω) (3.8)

see e.g. [9], we obtain

(B1(Uνr ,Wνr ), w) 6 ‖Uνr‖4‖Wνr‖‖w‖4
6 c|Uνr |1/2‖Uνr‖1/2‖Wνr‖|w|1/2‖w‖1/2

6
ν1

8
‖Wνr‖2 + c4|Uνr ||w|‖Uνr‖‖w‖

≤ ν1

8
‖Wνr‖2 +

ν

4
‖Uνr‖2 + c|Uνr |2|w|2‖w‖2.

Using the above estimates in (3.7) we conclude that

d

dt
(|Uνr |2 + |Wνr |2) + ν‖Uνr‖2 + ν1‖Uνr‖2

≤ c(‖u‖2 + |w|2‖w‖2)|Uνr |2 + cνr(|wνr |2 + ‖u‖2) + cν2
r (|uνr |2 + |wνr |2),
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where we have used the fact that (Kuνr −Ku, Uνr ) ≥ 0. Hence
d

dt
(|Uνr |2 + |Wνr |2) ≤ k(t)(|Uνr |2 + |Wνr |2) + νrh(t),

where

h(t) = c(|wνr |2 + ‖u‖2) + cνr(|uνr |2 + |wνr |2),

k(t) = c(‖u‖2 + |w|2‖w‖2).

Then, by Gronwall’s lemma we have

|Uνr (t)|2 + |Wνr (t)|2 ≤ νr
∫ t

τ

h(s)e
R t
s
g(r) dr ds,

and thus

‖Sνr (t, τ)z − S0(t, τ)z‖2H ≤ νr
∫ t

t−T
h(s)e

R t
s
g(r) dr ds,

for any τ ∈ [t− T, t] and z ∈ B. Thus the proof is complete. �
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