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Abstract. We consider the initial value problem

d2u

dt2
+ Au(t) = f(u(t), u(t− w)), t > 0,

u(t) = ϕ(t), −w ≤ t ≤ 0

for a nonlinear hyperbolic equation with time delay in a Hilbert space with
the self adjoint positive definite operator A. We establish the existence and

uniqueness of a bounded solution, and show application of the main theorem

for four nonlinear partial differential equations with time delay. We present
first and second order accuracy difference schemes for the solution of one di-

mensional nonlinear hyperbolic equation with time delay. Numerical results

are also given.

1. Introduction

Delay differential equations are used to model biological, physical, and sociolog-
ical processes, as well as naturally occurring oscillatory systems (see, for example
[2, 3, 14, 16, 21, 29, 31]). It is known that, in delay differential equations, the pres-
ence of the delay term causes the difficulties in analysis of differential equations. Lu
[23], studies monotone iterative schemes for finite-difference solutions of reaction-
diffusion systems with time delays and gives modified iterative schemes by combing
the method of upper-lower solutions and the Jacobi method or the Gauss-Seidel
method.

Ashyralyev and Sobolevskii [13], consider the initial-value problem for linear
delay partial differential equations of the parabolic type and give a sufficient condi-
tion for the stability of the solution of this initial-value problem. They obtain the
stability estimates in Hölder norms for the solutions of the problem.

Ashyralyev and Agirseven [1, 5, 6, 7, 8, 9, 10] investigated several types of initial
and boundary value problems for linear delay parabolic equations. They give theo-
rems on stability and convergence of difference schemes for the numerical solution
of initial and boundary value problems for linear parabolic equations with time
delay.
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Moreover, Ashyralyev, Agirseven and Ceylan [11], are interested in finding suf-
ficient conditions for the existence of a unique bounded solution of the initial value
problem

du

dt
+Au(t) = f(u(t), u(t− w)), t > 0,

u(t) = ϕ(t), −w ≤ t ≤ 0
(1.1)

for the differential equation in a Banach space E with the positive operator A
with dense domain D(A). The main theorem on the existence and uniqueness of
a bounded solution of problem (1.1) was established for a nonlinear evolutionary
equation with time delay. The application of the main theorem for four differ-
ent nonlinear partial differential equations with time delay was shown. Numerical
results were given.

Henriquez, Cuevas and Caicedo [19] study the existence of almost periodic so-
lutions for linear retarded functional differential equations with finite delay. They
consider the existence of almost periodic solutions with the stabilization of dis-
tributed control systems.

Hao, Fan, Cao and Sun [18] proposed a linearized quasi-compact finite difference
scheme for semilinear space-fractional diffusion equations with a fixed time delay.
Under the local Lipschitz conditions, they proved the solvability and convergence
of the scheme in the discrete maximum norm by the energy method.

Liang [22] is concerned with the convergence and asymptotic stability of semidis-
crete and full discrete schemes for linear parabolic equations with delay. She proved
that the semidiscrete scheme, backward Euler and Crank-Nicolson full discrete
schemes can unconditionally preserve the delay-independent asymptotic stability
with some additional restrictions on time and spatial stepsizes of the forward Euler
full discrete scheme.

Bhrawy, Abdelkawy and Mallawi [15] investigated the Chebyshev Gauss-Lobatto
pseudospectral scheme in spatial directions for solving one-dimensional, coupled,
and two-dimensional parabolic partial differential equations with time delays. They
also develop an efficient numerical algorithm based on the Chebyshev pseudospec-
tral algorithm to obtain the two spatial variables in solving the two-dimensional
time delay parabolic equations.

Firstly based on the Vishik’s results and using methods of operator theory, Is-
mailov, Guler and Ipek [20] described all solvable extensions of a minimal operator
generated by linear delay differential-operator expression of first order in the Hilbert
space of vector-functions in finite interval. They found sharp formulas for the spec-
trums of these solvable extensions.

Piriadarshani and Sengadir [24] obtain an existence theorem for a semi-linear
partial differential equation with infinite delay employing a phase space in which
discretizations can naturally be performed. For linear partial differential equations
with infinite delay they show that the solutions of the ordinary differential equa-
tion with infinite delay obtained by the semi-discretization converge to the original
solution.

Castro, Rodriguez, Cabrera and Martin [17] developed an explicit finite difference
scheme for a model with coefficients variable in time and studied their properties
of convergence and stability.

It is known that various initial-boundary value problems for evolutionary nonlin-
ear delay partial differential equations can be reduced to the initial value problem
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for the differential equation

d2u

dt2
+Au(t) = f(u(t), u(t− w)), t > 0,

u(t) = ϕ(t),−w ≤ t ≤ 0
(1.2)

in a Hilbert space H with the self adjoint positive definite operator A with dense
domain D(A). Let {c(t), t ≥ 0} be a strongly continuous cosine operator-function
defined by the formula

c(t) =
eitA1/2

+ e−itA1/2

2
.

Then, from the definition of the sine operator-function s(t),

s(t)u =
∫ t

0

c(s)u ds

it follows that

s(t) = A−1/2 e
itA1/2 − e−itA1/2

2i
.

The following estimates hold:

‖c(t)‖H→H ≤ 1, ‖A1/2s(t)‖H→H ≤ 1, t > 0. (1.3)

In this article, we are interested in finding sufficient conditions for the existence
of a unique bounded solution of problem (1.2). The main theorem on the existence
and uniqueness of a bounded solution of problem (1.2) is established for a nonlinear
evolutionary equation with time delay. The application of the main theorem for
four different nonlinear partial differential equations with time delay is shown. In
general, it is not possible to get exact solution of nonlinear problems. Therefore, we
can not be able to obtain a sharp estimate for the constants figuring in theorems
on existence and uniqueness of a bounded solution. Finally, the first and second
order of accuracy difference schemes for the solution of one dimensional nonlinear
hyperbolic equation with time delay are presented. Numerical results are given.
Note that bounded solutions of nonlinear one dimensional parabolic and hyperbolic
partial differential equations with time delay have been investigated in earlier papers
[25, 26, 27, 28, 32]. The generality of the approach considered in this paper, however,
allows for treating a wider class of multidimensional delay nonlinear differential
equations.

2. Main existence and uniqueness theorem

The method of proof is based on reducing problem (1.2) to the integral equation

u(t) = c(t− (n− 1)w)u((n− 1)w) + s(t− (n− 1)w)
du((n− 1)w)

dt

+
∫ t

(n−1)w

s(t− y)f(u(y), u(y − w))dy,

(n− 1)w ≤ t ≤ nw, n = 1, 2, . . . , u(t) = ϕ(t), −w ≤ t ≤ 0
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in [0,∞)×H ×H and the use of successive approximations. The recursive formula
for the solution of problem (1.2) is

ui(t) = c(t− (n− 1)w)ui((n− 1)w) + s(t− (n− 1)w)
dui((n− 1)w)

dt

+
∫ t

(n−1)w

s(t− y)f(ui−1(y), ui(y − w))dy,

u0(t) = c(t− (n− 1)w)ui((n− 1)w) + s(t− (n− 1)w)
dui((n− 1)w)

dt
,

(n− 1)w ≤ t ≤ nw, n = 1, 2, . . . , i = 1, 2, . . . ,

ui(t) = ϕ(t), −w ≤ t ≤ 0.

(2.1)

Theorem 2.1. Assume the following hypotheses: For each t, −w ≤ t ≤ 0, we have
ϕ(t) ∈ D(A) and

‖ϕ(t)‖H ≤M, ‖A−1/2ϕ′(t)‖H ≤ M̃ . (2.2)
The function f : H ×H −→ H is continuous and bounded, that is

‖A−1/2f(u, v)‖H ≤ M̄ (2.3)

in H ×H, and the Lipschitz condition holds uniformly with respect to z,

‖A−1/2(f(u, z)− f(v, z))‖H ≤ L‖u− v‖H . (2.4)

Here, L,M, M̃, M̄ are positive constants. Then there exists a unique solution to
problem (1.2) which is bounded in [0,∞)×H ×H.

Proof. We consider the interval 0 ≤ t ≤ w. Problem (1.2) becomes

d2u

dt2
+Au(t) = f(u(t), ϕ(t− w)), u(0) = ϕ(0), u′(0) = ϕ′(0)

and it can be written in equivalent integral form

u(t) = c(t)ϕ(0) + s(t)ϕ′(0) +
∫ t

0

s(t− y)f(u(y), ϕ(y − w))dy. (2.5)

According to the method of recursive approximation (2.1), we get

ui(t) = c(t)ϕ(0) + s(t)ϕ′(0) +
∫ t

0

s(t− y)f(ui−1(y), ϕ(y − w))dy, (2.6)

for i = 1, 2, . . . . Therefore,

u(t) = u0(t) +
∞∑

i=0

(ui+1(t)− ui(t)), (2.7)

where
u0(t) = c(t)ϕ(0) + s(t)ϕ′(0).

Applying estimates (1.3) and (2.2), we get

‖u0(t)‖H ≤ ‖c(t)‖H→H‖ϕ(0)‖H + ‖A1/2s(t)‖H→H‖A−1/2ϕ′(0)‖H ≤M + M̃.

Applying formula (2.6) and estimates (1.3) and (2.3), we get

‖u1(t)− u0(t)‖H ≤
∫ t

0

‖A1/2s(t− y)‖‖A−1/2f(u0(y), ϕ(y − w))‖Hdy

≤ M̄t.
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Using the triangle inequality, we get

‖u1(t)‖H ≤M + M̃ + M̄t.

Applying formula (2.6) and estimates (2.4), (1.3) and (2.3), we get

‖u2(t)− u1(t)‖H

≤
∫ t

0

‖A1/2s(t− y)‖‖A−1/2[f(u1(y), ϕ(y − w))− f(u0(y), ϕ(y − w))]‖Hdy

≤ L
∫ t

0

‖u1(y)− u0(y)‖Hdy

≤ LM̄
∫ t

0

ydy =
M̄

L

(Lt)2

2!
.

Then

‖u2(t)‖H ≤M + M̃ +
M̄

L

Lt

1!
+
M̄

L

(Lt)2

2!
.

Let

‖un(t)− un−1(t)‖H ≤
M̄

L

(Lt)n

n!
.

Then, we obtain

‖un+1(t)− un(t)‖H

≤
∫ t

0

‖A1/2s(t− y)‖‖A−1/2[f(un(y), ϕ(y − w))− f(un−1(y), ϕ(y − w))]‖Hdy

≤
∫ t

0

L‖un(y)− un−1(y)‖Hds

≤
∫ t

0

L
M̄

L

(Ly)n

n!
dy =

M̄

L

(Lt)n+1

(n+ 1)!
.

Therefore, for any n, n ≥ 1, we have

‖un+1(t)− un(t)‖H ≤
M̄

L

(Lt)n+1

(n+ 1)!
,

‖un+1(t)‖H ≤M + M̃ +
M̄

L

Lt

1!
+ · · ·+ M̄

L

(Lt)n+1

(n+ 1)!

by mathematical induction. From this and formula (2.7) it follows that

‖u(t)‖H ≤ ‖u0(t)‖H +
∞∑

i=0

‖ui+1(t)− ui(t)‖H

≤M + M̃ +
∞∑

i=0

M̄

L

(Lt)i+1

(i+ 1)!

≤M + M̃ +
M̄

L
eLt, 0 ≤ t ≤ w

which proves the existence of a bounded solution of problem (1.2) in [0, w]×H×H.
Now, we consider solution of problem (1.2) in w ≤ t ≤ 2w. We note that

0 ≤ t− w ≤ w. We denote that

ϕ1(t) = u(t− w), w ≤ t ≤ 2w.
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Replacing t and t− w and assuming that

‖A−1/2f(u0(t), ϕ1(t))‖H ≤ M̄1,

‖ϕ1(t)‖H ≤M1, ‖A−1/2ϕ′1(t)‖H ≤ M̃1.

Therefore,

u0(t) = c(t− w)ϕ1(w) + s(t− w)
dϕ1(w)
dt

,

ui(t) = c(t− w)ϕ1(w) + s(t− w)
dϕ1(w)
dt

+
∫ t

w

s(t− y)f(ui−1(y), ui(y − w))dy, i = 1, 2, . . . .

In a similar manner, for any n, n ≥ 1, we obtain

‖un+1(t)− un(t)‖H ≤
M̄1

L

(L(t− w))n+1

(n+ 1)!
,

‖un+1(t)‖H ≤M1 + M̃1 +
M̄1

L

Lt

1!
+ · · ·+ M̄1

L

(L(t− w))n+1

(n+ 1)!
.

From this it follows that

‖u(t)‖H ≤M1 + M̃1 +
M̄1

L
eL(t−w), w ≤ t ≤ 2w

which proves the existence of a bounded solution of problem (1.2) in [w, 2w]×H×H.
In a similar manner, we can obtain

‖u(t)‖H ≤Mn + M̃n +
M̄n

L
eL(t−nw), nw ≤ t ≤ (n+ 1)w,

where Mn, M̃n and M̄n are bounded. This proves the existence of a bounded
solution of problem (1.2) in [nw, (n+ 1)w]×H ×H. In general, the function u(t)
constructed is a solution of problem (1.2) which is bounded in [0,∞)×H ×H.

Now we will prove uniqueness of this solution of problem (1.2). Assume that
there is a bounded solution v(t) of problem (1.2) and v(t) 6= u(t). We denote that
z(t) = v(t)− u(t). Therefore for z(t), we have

d2z(t)
dt2

+Az(t) = f(v(t), v(t− w))− f(u(t), u(t− w)), t > 0,

z(t) = 0, −w ≤ t ≤ 0.

We consider the interval 0 ≤ t ≤ w. Since v(t−w) = u(t−w) = ϕ(t−w), we have

d2z(t)
dt2

+Az(t) = f(v(t), ϕ(t− w))− f(u(t), ϕ(t− w)), t > 0,

z(t) = 0, −w ≤ t ≤ 0.

Therefore,

z(t) =
∫ t

0

s(t− y)[f(v(y), ϕ(y − w))− f(u(y), ϕ(y − w))]ds.

Applying estimates (1.3) and (2.3), we get

‖z(t)‖H ≤
∫ t

0

‖A1/2s(t− y)‖‖A−1/2[f(v(y), ϕ(y − w))− f(u(y), ϕ(y − w))]‖Hdy
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≤ L
∫ t

0

‖v(y)− u(y)‖Hds ≤ L
∫ t

0

‖z(y)‖Hdy.

Using the integral inequality, we get

‖z(t)‖H ≤ 0.

From that it follows that z(t) = 0 which proves the uniqueness of a bounded
solution of problem (1.2) in [0, w]×H ×H. Applying same way and mathematical
induction, we can prove the uniqueness of a bounded solution of problem (1.2) in
[0,∞)×H ×H. �

Remark 2.2. Method of present paper also enables to prove, under certain as-
sumptions, the existence of a unique bounded solution of the initial value problem
for evolutionary nonlinear partial differential equations

d2u

dt2
+Au(t) = f(t, u(t), u([t])), t > 0,

u(0) = ϕ(0), u′(0) = ϕ′(0)
(2.8)

in a Hilbert space H with the self adjoint positive definite operator A with dense
domain D(A). Here [t] denotes the greatest-integer function.

3. Applications

First, we consider the initial-boundary value problem for one dimensional non-
linear delay differential equations of hyperbolic type

∂2u(t, x)
∂t2

− (a(x)ux(t, x))x + δu(t, x) = f(x, u(t, x), u(t− w, x)),

0 < t <∞, x ∈ (0, l)

u(t, x) = ϕ(t, x), ϕ(t, 0) = ϕ(t, l), ϕx(t, 0) = ϕx(t, l),

−ω ≤ t ≤ 0, x ∈ [0, l],

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), −ω ≤ t <∞,

(3.1)

where a(x), ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the suffi-
ciently large number. We will assume that a(x) ≥ a > 0 and a(l) = a(0).

Theorem 3.1. Assume the following hypotheses:
(1) For each t,−w ≤ t ≤ 0, we have

‖ϕ(t, ·)‖L2[0,l] ≤M, ‖ϕ′(t, ·)‖L2[0,l] ≤ M̃. (3.2)

(2) The function f : (0, l) × L2[0, l] × L2[0, l] → L2[0, l] is continuous and
bounded, that is

‖f(u, v)‖L2[0,l] ≤M (3.3)

and the Lipschitz condition holds uniformly with respect to z

‖f(u, z)− f(v, z)‖L2[0,l] ≤ L‖u− v‖L2[0,l]. (3.4)

Here and below, L,M, M̃,M are positive constants.
Then there exists a unique solution to problem (3.1) which is bounded in [0,∞) ×
L2[0, l]× L2[0, l].
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The proof of Theorem 3.1 is based on the abstract Theorem 2.1, on the self-
adjointness and positivity in L2[0, l] of a differential operator Ax defined by the
formula

Axu = − d

dx

(
a(x)

du

dx

)
+ δu (3.5)

with domain D(Ax) = {u ∈ W 2
2 [0, l] : u(0) = u(l), u′(0) = u′(l)} [4] and on the

estimate

‖c{t}‖L2[0,l]→L2[0,l] ≤ 1, ‖(Ax)1/2s{t}‖L2[0,l]→L2[0,l] ≤ 1, t ≥ 0. (3.6)

Second, we consider the initial nonlocal boundary value problem for one dimen-
sional nonlinear delay differential equations of hyperbolic type with involution

∂2u(t, x)
∂t2

− (a(x)ux(t, x))x − β(a(−x)ux(t,−x))x + δu(t, x)

= f(x, u(t, x), u(t− w, x)), 0 < t <∞, x ∈ (−l, l),
u(t, x) = ϕ(t, x), ϕ(t,−l) = ϕ(t, l) = 0,

−ω ≤ t ≤ 0, x ∈ [−l, l],
u(t,−l) = u(t, l) = 0, −ω ≤ t <∞,

(3.7)

where a(x) and ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the
sufficiently large number. We will assume that a ≥ a(x) = a(−x) ≥ δ > 0,
δ − a|β| ≥ 0.

Theorem 3.2. Assume the following hypotheses:

(1) For each t, −w ≤ t ≤ 0, we have

‖ϕ(t, ·)‖L2[−l,l] ≤M, ‖ϕ′(t, ·)‖L2[−l,l] ≤ M̃.

(2) The function f : (−l, l)×L2[−l, l]×L2[−l, l]→ L2[−l, l] is continuous and
bounded, that is

‖f(u, v)‖L2[−l,l] ≤M

and the Lipschitz condition holds uniformly with respect to z,

‖f(u, z)− f(v, z)‖L2[−l,l] ≤ L‖u− v‖L2[−l,l].

Then there exists a unique solution to problem (3.7) which is bounded in [0,∞) ×
L2[−l, l]× L2[−l, l].

The proof of Theorem 3.2 is based on the abstract Theorem 2.1, on the self-
adjointness and positivity in L2[−l, l] of a differential operator Ax defined by the
formula

Axv(x) = −(a(x)vx(x)x − β(a(−x)vx(−x))x + δv(x)

with the domain D(Ax) = {u ∈ W 2
2 [−l, l] : u(−l) = u(l) = 0} [12] and on the

estimate

‖c{t}‖L2[−l,l]→L2[−l,l] ≤ 1, ‖(Ax)1/2s{t}‖L2[−l,l]→L2[−l,l] ≤ 1, t ≥ 0.

Third, let Ω ⊂ Rn be a bounded open domain with smooth boundary S, Ω = Ω∪
S. In [0,∞)×Ω we consider the initial boundary value problem for multidimensional
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nonlinear delay differential equations of hyperbolic type

∂2u(t, x)
∂t2

−
n∑

r=1

(ar(x)uxr
)xr + δu(t, x)

= f(x, u(t, x), u(t− w, x)), 0 < t <∞, x = (x1, . . . , xn) ∈ Ω,

u(t, x) = ϕ(t, x), −ω ≤ t ≤ 0, x ∈ Ω,

u(t, x) = 0, x ∈ S, 0 ≤ t <∞,

(3.8)

where ar(x) and ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the
sufficiently large number and ar(x) > 0.

Theorem 3.3. Assume the following hypotheses:
(1) For each t, −w ≤ t ≤ 0 we have

‖ϕ(t, ·)‖L2(Ω) ≤M, ‖ϕ′(t, ·)‖L2(Ω) ≤ M̃.

(2) The function f : Q × L2(Ω) × L2(Ω) → L2(Ω) is continuous and bounded,
that is

‖f(u, v)‖L2(Ω) ≤M
and the Lipschitz condition holds uniformly with respect to z,

‖f(u, z)− f(v, z)‖L2(Ω) ≤ L‖u− v‖L2(Ω).

Then there exists a unique solution to problem (3.8) which is bounded in [0,∞) ×
L2(Ω)× L2(Ω).

The proof of Theorem 3.3 is based on the abstract Theorem 2.1, on the self-
adjointness and positivity in L2(Ω) of a differential operator Ax defined by the
formula

Axu(x) = −
n∑

r=1

(ar(x)uxr
)xr

+ δu(x) (3.9)

with domain [30]

D(Ax) = {u(x) : u(x), uxr
(x), (ar(x)uxr

)xr
∈ L2(Ω), 1 ≤ r ≤ n, u(x) = 0, x ∈ S}

and on the estimate

‖c{t}‖L2(Ω)→L2(Ω) ≤ 1, ‖(Ax)1/2s{t}‖L2(Ω)→L2(Ω) ≤ 1, t ≥ 0. (3.10)

Fourth, in [0,∞)× Ω we consider the initial boundary value problem for multi-
dimensional nonlinear delay differential equations of hyperbolic type

∂2u(t, x)
∂t2

−
n∑

r=1

(ar(x)uxr
)xr + δu(t, x) = f(x, u(t, x), u(t− w, x)),

0 < t <∞, x = (x1, . . . , xn) ∈ Ω,

u(t, x) = ϕ(t, x), −ω ≤ t ≤ 0, x ∈ Ω,
∂u

∂~n
(t, x) = 0, x ∈ S, 0 ≤ t <∞,

(3.11)

where ar(x) and ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the
sufficiently large number and ar(x) > 0. Here, −→n is the normal vector to Ω.

Theorem 3.4. Suppose that assumptions of Theorem 3.3 hold. Then there exists
a unique solution to problem (3.11) which is bounded in [0,∞)× L2(Ω)× L2(Ω).



10 A. ASHYRALYEV, D. AGIRSEVEN EJDE-2018/21

The proof of Theorem 3.4 is based on the abstract Theorem 2.1, on the self-
adjointness and positivity in L2(Ω) of a differential operator Ax defined by the
formula

Axu(x) = −
n∑

r=1

(ar(x)uxr
)xr

+ δu(x)

with domain [30]

D(Ax) = {u(x) : u(x), uxr
(x), (ar(x)uxr

)xr
∈ L2(Ω), 1 ≤ r ≤ n, ∂u

∂~n
(x) = 0, x ∈ S}

and on estimate (3.10).

4. Numerical results

In general, it is not possible to get exact solution of nonlinear problems. There-
fore, the first and second order of accuracy difference schemes for the solution of
one dimensional nonlinear hyperbolic equation with time delay are presented. Nu-
merical results are provided. We consider the initial-boundary value problem

∂2u(t, x)
∂t2

− ∂2u(t, x)
∂x2

= 2e−t sinx+ cos(u(t, x)u(t− 1, x))

− cos(e−t sinxu(t− 1, x)),
0 < t <∞, 0 < x < π,

u(t, x) = e−t sinx, 0 ≤ x ≤ π, −1 ≤ t ≤ 0,

u(t, 0) = u(t, π) = 0, t ≥ 0

(4.1)

for the nonlinear delay hyperbolic differential equation. The exact solution of this
test example is u(t, x) = e−t sinx.

We get the following iterative difference scheme of first order of accuracy in t for
the approximate solution of the initial-boundary value problem (4.1),

mu
k+1
n − 2(mu

k
n) +m uk−1

n

τ2
− mu

k+1
n+1 − 2(mu

k+1
n ) +m uk+1

n−1

h2

= 2e−tk sinxn + cos((m−1u
k
n)(mu

k−N
n ))− cos(e−tk sinxn(mu

k−N
n )),

tk = kτ, xn = nh, 1 ≤ k <∞, 1 ≤ n ≤M − 1, Nτ = 1, Mh = π,

mu
k
n = e−tk sinxn,

mu
k+1
n −m uk

n

τ
= −e−tk sinxn,

tk = kτ, xn = nh, 0 ≤ n ≤M, −N ≤ k ≤ 0,

mu
k
0 =m uk

M = 0, 0 ≤ k <∞, m = 1, 2, . . .

(4.2)

for the nonlinear delay hyperbolic equation. Here and in future m denotes the
iteration index and an initial guess 0u

k
n, k ≥ 1, 0 ≤ n ≤ M is to be made. For

solving difference scheme (4.2), the numerical steps are given below. For 0 ≤ k <
N, 0 ≤ n ≤M the algorithm is as follows : the algorithm is as follows :

(1) m = 1.
(2) m−1u

k
n is known.

(3) mu
k
n is calculated.

(4) If the max absolute error between m−1u
k
n and mu

k
n is greater than the given

tolerance value, take m = m + 1 and go to step 2. Otherwise, terminate
the iteration process and take mu

k
n as the result of the given problem.
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We write (4.2) in the matrix form

Amu
k+1 +Bmu

k + Cmu
k−1 = Rϕ(m−1u

k,mu
k−N ),

Nl + 1 ≤ k ≤ (l + 1)N − 1, l = 0, 1, . . . ,

mu
k = e−tk{sinxn}Mn=0,mu

k+1 = mu
k − τe−tk{sinxn}Mn=0, −N ≤ k ≤ 0.

(4.3)

Here

a = − 1
h2
, b =

1
τ2

+
2
h2
, c = − 2

τ2
, d =

1
τ2

and A, B,and C are (M + 1)× (M + 1) matrices given below:

A =



1 0 0 0 0 . . . 0 0 0 0
a b a 0 0 0 0 0 0
0 a b a 0 0 0 0 0
0 0 a b a 0 0 0 0
0 0 0 a b 0 0 0 0
...

...
0 0 0 0 0 a b a
0 0 0 0 0 . . . 0 0 0 1


,

B =



0 0 0 0 0 . . . 0 0 0 0
0 c 0 0 0 0 0 0 0
0 0 c 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0
...

...
0 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 . . . 0 0 0 0


,

C =



0 0 0 0 0 . . . 0 0 0 0
0 d 0 0 0 0 0 0 0
0 0 d 0 0 0 0 0 0
0 0 0 d 0 0 0 0 0
...

...
0 0 0 0 0 0 d 0 0
0 0 0 0 0 0 0 d 0
0 0 0 0 0 . . . 0 0 0 0


and here and below R is the (M + 1)× (M + 1) identity matrix, mu

k
n = e−tk sinxn

for −N ≤ k ≤ 0, ϕ(m−1u
k,mu

k−N ) and mu
s are (M + 1)× 1 column vectors as

ϕ(m−1u
k,mu

k−N ) =


0

mϕ
k
1

. . .

mϕ
k
M−1

0

 , mu
s =


mu

s
0

mu
s
1

. . .

mu
s
M−1

mu
s
M

 , s = k, k ± 1,

mϕ
k
n = 2e−tk sinxn + cos((m−1u

k
n)(mu

k−N
n ))− cos(e−tk sinxn(mu

k−N
n ))

for Nl + 1 ≤ k ≤ (l + 1)N − 1, l = 0, 1, . . . , 1 ≤ n ≤M − 1.
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So, we have the first order difference equation with respect to k with matrix
coefficients. From (4.3) it follows that

mu
k+1 = −A−1(Bmu

k − Cmu
k−1 +A−1Rϕk(m−1u

k,mu
k−N )),

Nl + 1 ≤ k ≤ (l + 1)N − 1, l = 0, 1, . . . ,

mu
k = e−tk{sinxn}Mn=0,mu

k+1

= mu
k − τe−tk{sinxn}Mn=0, −N ≤ k ≤ 0.

(4.4)

Now, we get the following iterative difference scheme of second order of accuracy
in t for the approximate solution of the initial-boundary value problem (4.1),

mu
k+1
n − 2(mu

k
n) +m uk−1

n

τ2
− mu

k+1
n+1 − 2(mu

k+1
n ) +m uk+1

n−1

2h2

− mu
k−1
n+1 − 2(mu

k−1
n ) +m uk−1

n−1

2h2

= 2e−tk sinxn + cos((m−1u
k
n)(mu

k−N
n ))− cos(e−tk sinxn(mu

k−N
n )),

tk = kτ, xn = nh, 1 ≤ k <∞, 1 ≤ n ≤M − 1, Nτ = 1, Mh = π,

mu
k
n = e−tk sinxn,

mu
k+1
n −m uk

n

τ
= e−tk(−1 +

τ

2
) sinxn,

tk = kτ, xn = nh, 0 ≤ n ≤M, −N ≤ k ≤ 0

mu
k
0 =m uk

M = 0, 0 ≤ k <∞, m = 1, 2, . . . .

(4.5)

We have again (M + 1)× (M + 1) system of linear equations and we rewrite (4.5)
in the matrix form

Amu
k+1 +Bmu

k + Cmu
k−1 = Rϕ(m−1u

k,mu
k−N ),

Nl + 1 ≤ k ≤ (l + 1)N − 1, l = 0, 1, . . . ,

mu
k = e−tk{sinxn}Mn=0,mu

k+1

= mu
k +

(τ2

2
− τ
)
e−tk{sinxn}Mn=0, −N ≤ k ≤ 0.

(4.6)

Here

e = − 1
2h2

, f =
1
τ2

+
1
h2
, g = − 2

τ2

and A, B, and C are the (M + 1)× (M + 1) matrices given below:

A = C =



1 0 0 0 0 . . . 0 0 0 0
e f e 0 0 0 0 0 0
0 e f e 0 0 0 0 0
0 0 e f e 0 0 0 0
0 0 0 e f 0 0 0 0
...

...
0 0 0 0 0 e f e
0 0 0 0 0 . . . 0 0 0 1


,
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B =



0 0 0 0 0 . . . 0 0 0 0
0 g 0 0 0 0 0 0 0
0 0 g 0 0 0 0 0 0
0 0 0 g 0 0 0 0 0
...

...
0 0 0 0 0 0 g 0 0
0 0 0 0 0 0 0 g 0
0 0 0 0 0 . . . 0 0 0 0


and mu

k
n = e−tk sinxn for −N ≤ k ≤ 0, ϕ(m−1u

k,mu
k−N ) and mu

s are (M+1)×1
column vectors as in (4.3). Hence, we have the second order difference equation
with respect to k with matrix coefficients. From (4.6) it follows that

mu
k+1 = −A−1(Bmu

k − Cmu
k−1 +A−1Rϕk(m−1u

k,mu
k−N )),

Nl + 1 ≤ k ≤ (l + 1)N − 1, l = 0, 1, . . . ,

mu
k = {sinxn}Mn=0, mu

k+1 = mu
k + e−tk(

τ2

2
− τ){sinxn}Mn=0,

−N ≤ k ≤ 0.

(4.7)

In computations for both first and second order of accuracy difference schemes, the
initial guess is chosen as 0u

k
n = e−tk sinxn and when the maximum errors between

two consecutive results of iterative difference schemes (4.2) and (4.5) become less
than 10−8, the iterative process is terminated. We give numerical results for differ-
ent values of N and M and uk

n represent the numerical solutions of these difference
schemes at (tk, xn). Tables are constructed for N = M = 30, 60, 120 in t ∈ [0, 1],
t ∈ [1, 2], t ∈ [2, 3], respectively and the errors are computed by the formula

EN
M = max

lN≤k≤(l+1)N,l=0,1,...,1≤n≤M−1
|u(tk, xn)− uk

n|.

As can be seen from tables, these numerical experiments support the theoretical
statements. The number of iterations and maximum errors are decreasing with the
increase of grid points.

Table 1. Comparison of the errors of different difference schemes
in t ∈ [0, 1] (m is the iteration number)

Method N = M = 30 N = M = 60 N = M = 120

(4.2) for (4.1) 4.1195× 10−3, m = 6 2.0322× 10−3, m = 6 1.0098× 10−3, m = 6

(4.5) for (4.1) 1.7750× 10−5, m = 5 4.5557× 10−6, m = 4 1.1532× 10−6, m = 4

Table 2. Comparison of the errors of different difference schemes
in t ∈ [1, 2] (m is the iteration number)

Method N = M = 30 N = M = 60 N = M = 120

(4.2) for (4.1) 2.3014× 10−3, m = 6 1.1297× 10−3, m = 6 5.6051× 10−4, m = 2

(4.5) for (4.1) 1.7751× 10−5, m = 5 4.5556× 10−6, m = 4 1.1531× 10−6, m = 4
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Table 3. Comparison of the errors of different difference schemes
in t ∈ [2, 3] (m is the iteration number)

Method N = M = 30 N = M = 60 N = M = 120

(4.2) for (4.1) 1.0245× 10−3, m = 6 5.0161× 10−4, m = 6 2.4864× 10−4, m = 6

(4.5) for (4.1) 3.6898× 10−6, m = 5 9.4326× 10−7, m = 4 2.3890× 10−7, m = 4

In Tables 1–3, as we increase values of M and N each time starting from M =
N = 30 by a factor of 2 the errors in the first order of accuracy difference scheme
decrease approximately by a factor of 1/2, the errors in the second order of accuracy
difference scheme decrease approximately by a factor of 1/4. The errors presented
in the tables indicate the stability of the difference schemes and the accuracy of the
results. Thus, the second order of accuracy difference scheme increases faster than
the first order of accuracy difference scheme.
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