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SPREADING SOLUTIONS FOR A REACTION DIFFUSION
EQUATION WITH FREE BOUNDARIES IN

TIME-PERIODIC ENVIRONMENT

FANG LI, JUNFAN LU

Abstract. In this article, we consider a reaction diffusion equation with free

boundaries in a time-periodic environment. Such models can be used to de-
scribe the spreading of a new or invasive species over a one-dimensional habi-

tat, with the free boundaries representing the expanding fronts. We study an

equation with a general time-periodic nonlinearity, and present some sufficient
conditions for spreading phenomena. We also use time-periodic semi-waves to

characterize the spreading solutions.

1. Introduction

In this article, we study the spreading phenomena of the time-periodic reaction
diffusion equation with free boundaries,

ut = uxx + f(t, u), t > 0, g(t) < x < h(t),

u(t, h(t)) = 0, h′(t) = −µux(t, h(t)), t > 0,

u(t, g(t)) = 0, g′(t) = −µux(t, g(t)), t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(1.1)

where µ and h0 are given positive constants, u0 is a nonnegative function with
support in [−h0, h0], x = g(t) and x = h(t) are the moving boundaries to be
determined together with u(t, x). Moreover, for some T > 0, γ ∈ (0, 1) and some
α(t) ∈ C(R) (T -periodic and α0 := maxα(t) > α0 := minα(t) > 0), the function f
is a general nonlinearity satisfying the assumption

(H1) f(t, u) ∈ C
γ/2,1
loc ([0, T ] × R) is T -periodic in t, f(t, 0) = f(t, α(t)) ≡ 0,

fu(t, u) < 0 for any t ∈ [0, T ] and u ∈ [α0, α
0], f(t, u) < 0 for u > α(t), and∫ α0

u

min
t∈[0,T ]

f(t, s)ds > 0 for all u ∈ [0, α0). (1.2)

In the special case where f(t, u) = u(a − bu)(a, b > 0), the problem (1.1) was
studied in [5]. Such a problem can be regarded as a model describing the spreading
of a new or invasive species over a one-dimensional habitat, where u(t, x) represents
the density of the species at location x and time t, and its spreading fronts are
represented by the free boundaries x = g(t) and x = h(t). The Stefan conditions
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g′(t) = −µux(t, g(t)) and h′(t) = −µux(t, h(t)) are interpreted as saying that the
spreading fronts expand at a speed proportional to the population gradient at the
front, a deduction of these conditions from ecological considerations can be found
in [2]. Among others, Du and Lin [5] proved a spreading-vanishing dichotomy result
for the asymptotic behavior of the solutions, namely, there is a barrier R∗ > 0 such
that

(i) Spreading: the spreading fronts break the barrier at some finite time, and
then the free boundaries go to infinity (i.e., −g(t), h(t) → ∞ as t → ∞),
and the population successfully establishes itself in the new environment
(i.e., u(t, x)→ a/b as t→∞).

(ii) Vanishing: the fronts never break the barrier (i.e., h(t)− g(t) < R∗ for all
t ≥ 0), and the population vanishes (i.e., u(t, x)→ 0 as t→∞).

Moreover, when spreading occurs, the asymptotic spreading speed can be deter-
mined (namely, limt→∞ h(t)/t exists and is uniquely determined). The vanishing
phenomena is a remarkable result since it shows that the presence of free boundaries
makes spreading difficult and the hair-trigger effect in the Cauchy problem can be
avoided for some small initial data. These results have subsequently been extended
to more general situations in several directions. For example, Du and Lou [6] con-
sidered the monostable, bistable and combustion types nonlinearities and obtained
a rather complete description on the asymptotic behavior of the solutions. For time
dependent environments, Du, Guo and Peng [4] considered the time-periodic case
and Li, Liang and Shen [12, 13] considered the time almost periodic case, both
gave a spreading-vanishing dichotomy result, as in [5]. Especially, [4] specified the
spreading solution by using the semi-wave. Other studies for time dependent prob-
lem includes [15] (for time-periodic reaction-advection-diffusion equations), [3] (for
space-time periodic problem), etc.

In this article, we extend the Fisher-KPP type nonlinearity to general ones (in-
cluding monostable, bistable, combustion and other multi-stable nonlinearities as
special cases). From the recent works [9, 10] (for Cauchy problems) one sees that,
even for the homogeneous case (i.e. f(t, u) is independent of t), when f is a multi-
stable nonlinearity, the asymptotic behavior of the solutions can be very compli-
cated, and it is characterized by terrace rather than traveling waves. Due to this
reason, we mainly focus on the spreading phenomena of solutions to (1.1). We will
provide some sufficient conditions for spreading, and then use the time-periodic
semi-wave to characterize the spreading solutions.

To explain our results, we first list some special solutions of (1.1)1 (which denotes
the first equation in (1.1)), whose proofs are given in later sections.

(1) Positive periodic solution P (t). It is easily to know that the ODE ut =
f(t, u) has a unique maximal periodic solution P (t) with α0 ≤ P (t) ≤ α0.

(2) Compactly supported subsolutions. Denote ρ̃(u) := mint∈[0,T ] f(t, u).
By (H1) we have

ρ̃(α0) = 0, ρ̃(u) < 0 for u > α0,

∫ α0

u

ρ̃(s)ds > 0 for 0 ≤ u < α0.

We take a C1 function ρ(u) such that it is slightly smaller than ρ̃, ρ′(α0) < 0,
and that, for given small ε > 0 and αε := α0 − ε,

ρ(αε) = 0, ρ(u) < 0 for u > αε,

∫ αε

u

ρ(s)ds > 0 for 0 ≤ u < αε. (1.3)
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Denote

θ := max{u < αε : ρ(u) = 0}, θ̄ := inf{u > θ :
∫ u

0

ρ(s)ds > 0}.

Then θ ∈ [0, αε) and θ̄ ∈ [θ, αε). We will show in Lemma 2.1 that, for each
β ∈ (θ̄, αε), the problem

v′′ + ρ(v) = 0, v(0) = β, v′(0) = 0 (1.4)

has a unique solution V (x;β), positive in (−L,L) for some L > 0 and
V (±L;β) = 0. Clearly, each one of such functions is a subsolution of the
original equation (1.1)1.

(3) Periodic rightward traveling semi-wave. Consider the problem

Ut = Uzz − rUz + f(t, U), t ∈ [0, T ], z > 0,

U(t, 0) = 0, U(t,∞) = P (t), t ∈ [0, T ],

U(0, z) = U(T, z), Uz(t, z) > 0, t ∈ [0, T ], z > 0,

r(t) = µUz(t, 0), t ∈ [0, T ].

(1.5)

We will show in Proposition 3.3 that this problem has a solution pair (r, U)
with r = r(t) ∈ P+, where

P := {p ∈ Cγ/2([0, T ]) : p(0) = p(T )},
P+ := {p ∈ P : p(t) > 0 for all t ∈ [0, T ]}.

With R(t) :=
∫ t
0
r(s)ds, the function u(t, x) = U(t, R(t) − x;−r) satisfies

(1.1)1, u(t, R(t)) = 0 and R′(t) = −µux(t, R(t)). We call u = U(t, R(t) −
x;−r) a periodic rightward traveling semi-wave since it is only defined in
x ≤ R(t) and U(t, z;−r) is periodic in t.

Throughout this article we choose the initial data u0 from the set

X (h0) =
{
φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0,

φ′(h0) < 0, φ(x) > 0 in (−h0, h0)
}
.

(1.6)

By a similar argument as in [6], one can show that, for any h0 > 0 and any
initial data u0, the problem (1.1) has a time-global solution (u(t, x), g(t), h(t)),
with u ∈ C1+γ/2,2+γ((0,∞) × [g(t), h(t)]) and g, h ∈ C1+γ/2(0,∞). Moreover, it
follows from the maximum principal that, when t > 0, the solution u is positive in
(g(t), h(t)), with ux(t, g(t)) > 0 and ux(t, h(t)) < 0. Thus g′(t) < 0 < h′(t) for all
t > 0. Denote

g∞ := lim
t→∞

g(t), h∞ := lim
t→∞

h(t), I∞ := (g∞, h∞)

There are some possible situations on the asymptotic behavior of the solutions
to (1.1). Spreading phenomenon is the most interesting one among them. Our first
main result provides some sufficient conditions for spreading.

Theorem 1.1. Assume (H1). If u0 ∈ X (h0) satisfies u0 ≥ V (x;β), where V is the
unique solution of the problem (1.4) for some β ∈ (θ̄, αε), then spreading happens
in the sense that h∞ = −g∞ =∞, and

lim
t→∞

[u(t, ·)− P (t)] = 0 locally uniformly in R. (1.7)
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Furthermore, when spreading happens, we will show that the right front of u ≈
U(t, R(t) − x) and the left front of u ≈ U(t, x + R(t)). To construct precise sub-
and supersolutions in our approach, we need the exponential stability of P (t). For
this purpose we have an additional condition:

(H2) the function f satisfies

σ(t) := fu(t, P (t))− f(t, P (t))
P (t)

< 0 for t ∈ [0, T ]. (1.8)

Theorem 1.2. Assume (H1), (H2). When spreading happens, there exists H1, G1 ∈
R such that

lim
t→∞

[h(t)−R(t)] = H1, lim
t→∞

[h′(t)− r(t)] = 0, (1.9)

lim
t→∞

[g(t) +R(t)] = G1, lim
t→∞

[g′(t) + r(t)] = 0, (1.10)

lim
t→∞

‖u(t, ·)− U(t, R(t) +H1 − ·)‖L∞([0,h(t)]) = 0, (1.11)

lim
t→∞

‖u(t, ·)− U(t, ·+R(t)−G1)‖L∞([g(t),0]) = 0, (1.12)

where R(t) =
∫ t
0
r(s)ds. Here we extend U(t, z) to be zero for z < 0.

This article is organized as follows. In Section 2, we present the lower and
upper estimates for the solution to (1.1) and prove Theorem 1.1. In Section 3, we
construct a time-periodic traveling semi-wave and use it to characterize the profile
of the spreading solutions, and prove Theorem 1.2.

2. Spreading happening

In this section, we give sufficient conditions to ensure the spreading phenomena
happens. We first construct some subsolutions of (1.1)1 which will be used for
comparison, then we present the lower and upper estimates for u and prove Theorem
1.1. Throughout this section, we assume (H1) and use the notation ρ, αε, θ, θ̄ etc.
as in Section 1.

2.1. Subsolutions. In this subsection, we construct the subsolutions to (1.1)1,
which are solutions to v′′ + ρ(v) = 0 with compact supports.

Lemma 2.1. For any β ∈ (θ̄, αε), the unique solution V (x;β) of (1.4) exists in
the interval [−L,L] for some L = L(β) > 0, and

V (±L;β) = 0, V (x;β) = V (−x;β), V ′(x;β) < 0 for 0 < x ≤ L. (2.1)

Proof. We use the phase plane to consider the initial value problem (1.4) in a
suitable interval J ⊂ R. The equation in (1.4) is equivalent to the system

v′(x) = w, w′ = −ρ(v). (2.2)

A solution (v(x), w(x)) of this system traces out a trajectory in the v-w phase plane.
Such a trajectory has slope

dw

dv
= −ρ(v)

w
(2.3)

at any point where w 6= 0. It is easily seen that (αε, 0) is one singular point on

the phase plane. w =
√

2
∫ αε
v

ρ(s)ds is the unique strictly increasing solution of

v′′ + ρ(v) = 0 in [0,∞) connecting the regular point (0,
√

2
∫ αε
0

ρ(s)ds) and the
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singular point (αε, 0). Since the solution depends on initial value β continuously,
for any β ∈ (θ̄, αε), there exists a unique L(β) > 0 such that the problem (1.4)
has a solution V (x;β) ∈ C2([−L(β), L(β)]) with V (±L(β);β) = 0. Obviously,
V = V (x;β) satisfies the properties (2.1). �

Collecting the solutions of (1.4) for different β we obtain a set

S = {v : v = V (x;β) for some β ∈ (θ̄, αε)}.

The previous lemma indicates that this set is not empty. Moreover, from the above
phase plane analysis, it is easily seen that L(β) is continuous in β ∈ (θ̄, αε) and, as
β → αε, L(β)→∞ and V (x;β)→ αε in L∞loc(R) topology.

2.2. Lower estimate. Since α0 > αε > θ̄, we have δ := (α0 − θ̄)/3 > 0. When we
take ε > 0 small in αε we have α0 − δ < αε < α0.

Now we show that spreading happens for the solution (u, g, h) of (1.1) in a weak
sense.

Lemma 2.2. Let (u, g, h) be the solution triple of problem (1.1) with initial data
u0 as in Theorem 1.1. Then h∞ = −g∞ = ∞, and for any integer n, there exists
τ(n) > 0 such that

u(t, x) ≥ α0 − 2δ, x ∈ [−n, n], t ≥ τ(n). (2.4)

Proof. Let u0 be the initial data in Theorem 1.1. Consider the auxiliary problem

wt = wxx + ρ(w), g̃(t) < x < h̃(t), t > 0,

w(t, g̃(t)) = 0, g̃′(t) = −µw(t, g̃(t)), t > 0,

w(t, h̃(t)) = 0, h̃′(t) = −µw(t, h̃(t)), t > 0,

−g̃(0) = h̃(0) = h0, w(0, x) = u0(x), −h0 ≤ x ≤ h0.

(2.5)

By [6, Theorem 1.1], either h̃(t)− g̃(t) remains bounded and w(t, ·)→ 0 as t→∞,
or h̃(t),−g̃(t)→∞ and w(t, ·) converges to a stationary solution w∞(x) as t→∞.
In particular, if u0(x) ≥ V (x;β) as in Theorem 1.1, we have w∞(x) ≥ V (x;β) by
the comparison principle, and so h̃(t),−g̃(t) →∞. Therefore, w∞(x) is a solution
of v′′ + ρ(v) = 0, positive in R and larger than V (x;β), which is nothing but αε.
This implies that, for any integer n, there exists τ(n) > 0 such that

w(t, x) ≥ αε − δ, x ∈ [−n, n], t ≥ τ(n).

Since ρ(u) ≤ f(t, u) by the definition of ρ, we see that (w, g̃, h̃) is a subsolution
of (1.1), and so

h(t) ≥ h̃(t)→∞, g(t) ≤ g̃(t)→ −∞ as t→∞,
u(t, x) ≥ w(t, x) ≥ αε − δ > α0 − 2δ, x ∈ [−n, n], t ≥ τ(n).

This completes the proof. �

In the rest of this subsection we will use (2.4) to give the lower estimate P (t)− ε
for u. Define

k1(t, η) =
f(t, α0)

2δ
[η − (α0 − 2δ)], t ∈ [0, T ], η ∈ R,

k(t, η) = min{k1(t, η), f(t, η)}, t ∈ [0, T ], η ≥ α0 − 2δ. (2.6)
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For any large integer n > 0, let τ(n) be the time in (2.4), then there exists a large
integer kn such that knT > τ(n). Consider the problem

ηt = ηxx + k(t, η), −n < x < n, t > 0,

η(t,±n) = α0 − 2δ, t > 0,

η(0, x) = u(knT, x), −n ≤ x ≤ n.
(2.7)

By [1, Theorem 1], the solution η(t, x;n) of (2.7) converges as t → ∞ to a time-
periodic solution ηper(t, x;n) of (2.7). Note that k(t, η) is a Fisher-KPP type non-
linearity (above α0 − 2δ), by [11, 14], ηper(t, x;n) → P (t) as n → ∞ in L∞loc(R)
topology.

Lemma 2.3. Under the assumption of Theorem 1.1, for any ε > 0 and any M > 0,
there exists τ(M, ε) > 0 such that

u(t, x) ≥ P (t)− ε, x ∈ [−M,M ], t ≥ τ(M, ε). (2.8)

Proof. By ηper(t, x;n)→ P (t) as n→∞, there exists an integer n0 > M depending
on M and ε such that

ηper(t, x;n0) > P (t)− ε

2
, x ∈ [−M,M ], t ∈ [0, T ]. (2.9)

For this fixed n0, we see that the solution η(t, x;n0) of (2.7) (with n = n0) converges
as t→∞ to ηper(t, x;n0). Thus, there exists a integer n1 such that for any integer
m ≥ n1 we have

η(mT + t, x;n0) ≥ ηper(t, x;n0)− ε

2
, x ∈ [−n0, n0], t ∈ [0, T ]. (2.10)

Finally, using (2.4) and the comparison principle to compare u(kn0T + t, x) with
the solution η(t, x;n0) of (2.7) we have

u(kn0T + t, x) ≥ η(t, x;n0), x ∈ [−n0, n0], t > 0. (2.11)

Combining the inequalities in (2.9), (2.10) and (2.11) we obtain

u(kn0T +mT + t, x) ≥ P (t)− ε, x ∈ [−M,M ], t ∈ [0, T ], m ≥ n1.

Choosing τ(M, ε) = kn0T + n1T we obtain (2.8). �

Proof of Theorem 1.1. Consider the initial value problem, of ODE,

ζt = f(t, ζ), t > 0,

ζ(0) = α0 + ‖u0‖∞.
(2.12)

It is known that ζ(t) decreases for small t and then converges to P (t) as t → ∞.
Hence for any small ε > 0, there exists τ1 > 0 such that ζ(t) ≤ P (t)+ε when t ≥ τ1.
By comparison we have

u(t, x) ≤ ζ(t) ≤ P (t) + ε, x ∈ [g(t), h(t)], t ≥ τ1.

Combining with (2.8) we prove (1.7). This conclusion and Lemma 2.2 complete the
proof. �
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3. Using semi-wave to characterize the spreading phenomena

In this section we first construct a time-periodic traveling semi-wave U propagat-
ing rightward with speed r(t), and then prove the boundedness of |h(t)−

∫ t
0
r(s)ds|

and |g(t)+
∫ t
0
r(s)ds| by using the method of lower and upper solutions as in [8]. At

last, we characterize the fronts of spreading solutions by the semi-wave and prove
Theorem 1.2.

3.1. Time-periodic traveling semi-wave. In this subsection we construct a
traveling semi-wave which is periodic in time and is used to characterize the spread-
ing solutions near the boundaries. Our approach is similar as that in [15]. For
readers’ convenience, we present the details.

Let P be the set of periodic functions defined as in section 1, P (t) be the largest
periodic solution to ut = f(t, u). First, we consider the following problem

vt = vzz + k(t)vz + f(t, v), t ∈ [0, T ], z ∈ (0, l),

v(t, 0) = 0, v(t, l) = P 0 := max
0≤t≤T

P (t), t ∈ [0, T ],

v(0, z) = v(T, z), z ∈ [0, l].

(3.1)

Lemma 3.1. For any k ∈ P and any l > 0, the problem (3.1) has a maximal
solution v = U1(t, z; k, l), which is strictly increasing in both z ∈ [0, l] and k ∈ P,
strictly decreasing in l > 0.

Proof. Consider the equation and the boundary condition in (3.1) with initial
data v(0, z) := P 0 · χ[0,l](z), which is the characteristic function on the interval
[0, l]. This initial boundary value problem has a unique solution v(t, z; k, l). Using
the maximum principle we see that v(t, z; k, l) is strictly increasing in z ∈ [0, l]
and k ∈ P, strictly decreasing in l > 0, and v(t, z; k, l) ≤ P 0. Using the zero
number argument in a similar way as in the proof of [1, Theorem 1] one can
show that ||v(t, ·; k, l) − U1(t, ·; k, l)||C2([0,l]) → 0 as t → ∞, where U1(t, z; k, l) ∈
C1+γ/2,2+γ([0, T ] × [0, l]) is a time-periodic solution of (3.1). By the maximum
principle again, we see that U1 has the same monotonic properties as v in z, k and
l. �

Next, we consider the problem on the half line,

vt = vzz + k(t)vz + f(t, v), t ∈ [0, T ], z > 0,

v(t, 0) = 0, t ∈ [0, T ],

v(0, z) = v(T, z), z ≥ 0.
(3.2)

Lemma 3.2. For each k ∈ P, problem (3.2) has a maximal bounded and nonnega-
tive solution U(t, z; k) with Uz(t, z; k) ≥ 0 in [0, T ]×[0,∞). Uz(t, 0; k) is continuous
in k in the sense that, for {k1, k2, . . . } ⊂ P, Uz(t, 0; kn)→ Uz(t, 0; k) in Cγ/2([0, T ])
if kn → k in Cγ/2([0, T ]).

Assume further that k ≥ 0. Then Uz(t, z; k) > 0 in [0, T ] × [0,∞), U(t, z; k) −
P (t) → 0 as z → ∞. Uz(t, 0; k) has a positive lower bound δ (independent of t),
and it is strictly increasing in k: Uz(t, 0; k1) < Uz(t, 0; k2) for k1, k2 ∈ P satisfying
0 ≤ k1 ≤, 6= k2.

Proof. Let U1(t, z; k, l) be the solution of (3.1) obtained in the previous lemma.
Since it is decreasing in l, by taking limit as l → ∞ we see that U1(t, z; k, l)
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converges to some function U(t, z; k), which is non-decreasing in z and in k since
U1 is so. By standard regularity argument, U is a classical solution of (3.2). The
continuous dependence in k can be proved in a similar way as [4, Theorem 2.4].

By Lemma 2.1, we know that for any fixed β ∈ (θ̄, αε), there exists a unique
positive solution V (z;β) of (1.4). Since β < P 0, for any k ≥ 0, it follows from the
comparison principle for parabolic equations that

U1(t, z; k, l) ≥ V (z − L(β);β) for l >
L(β)

2
.

Hence, U(t, z; k) ≥ V (z−L(β);β). It means that Uz(t, 0; k) ≥ δ := V ′(−L(β);β) >
0.

Using the strong maximum principle to Uz we conclude that Uz(t, z; k) > 0 in
[0, T )× [0,∞). Thus P1 := limz→∞ U(t, z; k) exists. In a similar way as in the proof
of [4, Proposition 2.1] one can show that P1(t) is nothing but the maximal positive
periodic solution P (t) of ut = f(t, u). Since U(t, z; k) is non-decreasing in k we
have Uz(t, 0; k1) ≤ Uz(t, 0; k2) when k1 ≤ k2. The strict inequality Uz(t, 0; k1) <
Uz(t, 0; k2) follows from the Hopf Lemma and the assumption k1 ≤, 6= k2. �

For each k ∈ P, let U(t, z; k) be the solutions obtained in the above lemma,
denote

A[k](t) := µUz(t, 0; k),

where µ is the constant in the Stefan condition in (1.1). From Lemma 3.2 we see
that A[k](t) is non-decreasing in k ∈ P. The solution of r = A[−r] can lead to the
traveling semi-wave as follows.

Proposition 3.3. Assume (H1). Then there exists a function r(t) ∈ P+ such that
u(t, x) = U(t, R(t) − x;−r) (with R(t) :=

∫ t
0
r(s)ds) solves the equation (1.1)1 for

t ∈ R, x < R(t) and r(t) = −µux(t, R(t)) = A[−r](t).

Proof. By Lemma 3.2, for any r ∈ P, the problem (3.2) with k = −r has a bounded
and nonnegative solution U(t, z;−r), and A[−r](t) = µUz(t, 0;−r) is non-increasing
in r. When r = 0 we have A[0] = µUz(t, 0; 0) > 0. When r = A[0] we have
A[−A[0]] = µUz(t, 0;−A[0]) ≥ 0 and A[−A[0]] ≤ A[0]. Set R := [0, A[0]], then
as in the proof of [4, Theorem 2.4] one can show that the mapping A[−·] maps R
continuously into a precompact set in R. Using the Schauder fixed point theorem
we see that there exists r(t) ∈ R such that r(t) = A[−r](t). Clearly, r(t) ≥
0. Obviously, r(t) ≡ 0 is impossible since A[0] > 0. If r(t) ≥, 6= 0, the strong
maximum principle and Hopf Lemma tells us that Uz(t, 0;−r) > 0, so it contradicts
to r(t) = A[−r](t). This yields r(t) ∈ P+. Finally, a direct calculation shows that
the function u = U(t, R(t)−x;−r) with R(t) :=

∫ t
0
r(s)ds solves the equation (1.1)1

in R× (−∞, R(t)). �

3.2. Boundedness for |h(t)−R(t)| and |g(t)+R(t)|. Let U(t, R(t)−x;−r) be the
rightward periodic traveling semi-wave with speed r(t), where R(t) :=

∫ t
0
r(s)ds.

We show that |h(t)−R(t)| and |g(t) +R(t)| are both bounded for all t ≥ 0.

Lemma 3.4. Assume that (H1), (H2). There exists C > 0 such that

|h(t)−R(t)|, |g(t) +R(t)| ≤ C for all t ≥ 0. (3.3)
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We will show the boundedness of |h(t)−R(t)| only, since the situation for |g(t)+
R(t)| can be proved similarly. For convenience, write v(t, x) := u(t,x)

P (t) , ν(t) := µP (t)
to normalize the problem (1.1) into

vt = vxx + F (t, v), t > 0, g(t) < x < h(t),

v(t, h(t)) = 0, h′(t) = −ν(t)vx(t, h(t)), t > 0,

v(t, g(t)) = 0, g′(t) = −ν(t)vx(t, g(t)), t > 0,

v(0, x) = u0(x)/P (0), −h0 ≤ x ≤ h0,

(3.4)

where F (t, v) = 1
P (t) [f(t, P (t)v)−f(t, P (t))v] satisfying F (t, v) ∈ Cγ/2,1loc ([0, T ]×R)

for some γ ∈ (0, 1), T -periodic in t, F (t, 0) ≡ F (t, 1) ≡ 0.
Then by assumption (H2) and the fact that P (t) > 0, there exists δ > 0 such

that Fv(t, 1) = P (t)fu(t,P (t))−f(t,P (t))
P (t) < −2δ, so we can find some ε > 0 such that

Fv(t, v) ≤ −δ for t ∈ [0, T ], v ∈ [1− ε, 1 + ε]. (3.5)

Consider the solution ξ(t) of ODE ξt = F (t, ξ) with initial value ξ(0) = M/P (0)+
1, where M = ‖u0‖L∞([−h0,h0]) + 1. Clearly, ξ(t) decreases to 1 as t → ∞ by the
uniqueness of P (t). Hence for ε > 0 given in (3.5), one can choose a large integer
m such that 1 < ξ(t) < 1 + ε and ξt = F (t, ξ) ≤ δ(1 − ξ) for t ≥ mT . So
ξ(t) ≤ 1 + εeδ(mT−t) for t ≥ mT . Then by the comparison principle, we have

v(t, x) ≤ ξ(t) ≤ 1 + εeδ(mT−t) for g(t) ≤ x ≤ h(t), t ≥ mT.

Now we also normalize the periodic rightward semi-wave U(t, z;−r) by setting
V (t, z) := U(t,z;−r)

P (t) , then V (t, z) satisfies

Vt = Vzz − r(t)Vz + F (t, V ), t ∈ [0, T ], z > 0,

V (t, 0) = 0, V (t,∞) = 1, t ∈ [0, T ],

V (0, z) = V (T, z), Vz(t, z) > 0, t ∈ [0, T ], z > 0,

r(t) = ν(t)Vz(t, 0), t ∈ [0, T ].

(3.6)

Then we can find an integer m1 > m and a constant X > 0 large enough such that

(1 +M1e
−δT1)V (t, z) ≥ 1 + εeδ(mT−T1) for all t ∈ [0, T ], z ≥ X. (3.7)

where M1 = 2εeδmT , T1 = m1T .
We construct a supersolution (v+, g, h+) to (3.4) as follows: let

h+(t) :=
∫ t

T1

r(s)ds+ h(T1) +KM1(e−δT1 − e−δt) +X,

v+(t, x) := (1 +M1e
−δt)V (t, h+(t)− x).

where K is a positive constant that can be chosen sufficiently large. By direct
computations, one can easily check that

v+
t − v+

xx ≥ F (t, v+) for t ≥ T1, g(t) < x < h+(t),

v+ ≥ v for t ≥ T1, x = g(t),

v+ = 0, (h+)′(t) > −γ(t)v+(t, x) for t ≥ T1, x = h+(t),

h(T1) ≤ h+(T1), v(T1, x) ≤ v+(T1, x) for x ∈ [g(T1), h(T1)].



10 F. LI, J. LU EJDE-2018/185

Proposition 3.5. For sufficiently large K > 0, the function h(t) satisfies

h(t) < R(t) +Hr for all t ≥ 0, (3.8)

where Hr := h(T1) +X +KM1 and T1, X,M1 are defined as above.

To give the lower bounds for h(t) and v(t, x), we need the property that v(t, ·)→
1 exponentially near x = 0.

Proposition 3.6. For any δ > 0 given above, there exists some c > 0 and K1 > 0
such that

‖u(t, ·)− P (t)‖L∞([−ct,ct]) ≤ K1e
−δt for t� 1. (3.9)

Proof. For c > 0 small enough and some suitable ε1 to be determined below, by
simple phase plane analysis, the problems

qzz ± cqz + ρ(q) = 0, z ∈ [−L,L],

q(±L) = 0, max q(z) = αε − ε1,
(3.10)

have the solutions q±(z) respectively. Therefore, w(t, x) = q+(x− ct) and w(t, x) =
q−(x+ ct) are two compactly supported traveling wave solutions to the problems

wt = wxx + ρ(w), x ∈ [±ct− L,±ct+ L], t ∈ R,
w(t,±ct+ L) = 0, w(t,±ct− L) = 0, t ∈ R,

maxw(t, x) = αε − ε1, t ∈ R.
(3.11)

Since spreading happens for the solution (u, g, h), there exists a large integer m0

such that

u(mT, x) > αε − ε1 for all m ≥ m0, x ∈ [−cT − L, cT + L].

Thus, we have

u(mT, x) > q±(x+ x0) for all m ≥ m0, x ∈ [−cT − L, cT + L], x0 ∈ [−cT, cT ].

Then by the comparison principle,

u(mT + t, x) ≥ q+(x+ x0 − ct), q−(x+ x0 + ct)

for all t > 0 and x ∈ [−L− cT ± ct, L+ cT ± ct]. Using this inequality it is easily
to show that

u(mT + t, x) ≥ αε − ε1 for t > 0, x ∈ [−ct− L, ct+ L].

Since ε and ε1 can be chosen sufficiently small, using the same argument for nor-
malized function v as in the proof of [6, Lemma 6.5], one can check that

|v(t, x)− 1| ≤ k1e
−δt for x ∈ [−ct, ct], t ≥ T2 := m2T,

where m2 > m0 is an integer and k1 > 0 is a constant sufficiently large. This
reduces to (3.9).

Let c,K1 and δ be the constant as before, we define

g−(t) := 0, h−(t) :=
∫ t

T2

r(s)ds+ h(T1)−K2K1(e−δT2 − e−δt) + cT2,

v−(t, x) := (1−K1e
−δt)V (t, h−(t)− x).

Then for a suitable constant K2 > 0, by the similar argument as in the construction
of supersolution, one can show that (v−, g−, h−) is a subsolution. Hence

h(t) ≥ h−(t)− max
t∈[0,T2]

|h(t)− h−(t)| ≥ R(t)−Hl for all t ≥ 0,
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where Hl := maxt∈[0,T2] |h(t)− h−(t)|+ cT2 +K2K1. Then we obtain (3.3). �

Proof of Theorem 1.2. We only prove (1.9) and (1.11), since the proof for (1.10)
and (1.12) are similar.

By using changing the coordinate y := x−R(t), we set

h1(t) := h(t)−R(t), g1(t) := g(t)−R(t) for t ≥ 0,

u1(t, y) := u(t, y +R(t)) for t > 0, y ∈ [g1(t), h1(t)].

Also for any constant y0 ∈ R, we define V1(t, y) := U(t, y0 − y;−r), which is a
rightward periodic traveling semi-wave with speed r(t). Consider the zero number of
function η1(t, y) := u1(t, y)−V1(t, y) in the moving area J(t) := [g(t),min(y0, h(t))],
and denote by ZJ(t)[η1] the zero number of η1(t, ·) in the interval J(t). Then the zero
number argument yields that ZJ(t)[η1] is finite and decreases strictly when h1(t)
gets across y0. So h1(t)− y0 changes sign at most finite times, namely, h1(t) > y0
or h1(t) < y0 or h1(t) ≡ y0 for t large enough. Since y0 is arbitrary, we can get that
there exists a constant H1 ∈ R such that limt→∞[h(t) − R(t)] = H1. Meanwhile,
by the parabolic estimate, for any τ > 0,

‖h′(t)‖
C
γ
2 ([τ,τ+1])

≤ C,

where C > 0 is independent of τ . Combining with the convergence of h1(t) we have
h′1(t)→ 0 as t→∞, that is, limt→∞[h′(t)− r(t)] = 0.

Next, we prove (1.11). We use the variable substitution z := x− h(t) to set

g2(t) := g(t)− h(t) for t ≥ 0,

u2(t, z) := u(t, z + h(t)) for t > 0, z ∈ [g2(t), 0].

Then the rightward free boundary of u is fixed at z = 0 and (u2, g2) satisfies

u2t = u2zz + h′(t)u2z + f(t, u2), t > 0, g2(t) < z < 0,

u2(t, z) = 0, g′2(t) = −µu2z(t, z)− h′(t), t > 0, z = g2(t),

u2(t, 0) = 0, h′(t) = −µu2z(t, 0), t > 0.

(3.12)

By Lp theory and Soblev embedding theorem, for any constant K > 0, there exists
a sequence mn with mn →∞ such that

‖u2(mnT + t, z)‖
C1+ γ2 ,2+γ([−K,K]×[−K,0]) ≤ C,

where C > 0 is a constant independent of n. By using Cantor’s diagonal argument,
there is a function w(t, z) ∈ C1+ γ

2 ,2+γ(R × (−∞, 0]) and a subsequence of mn,
denote again by mn, such that

lim
n→∞

‖u2(mnT + t, z)− w(t, z)‖C1,2
loc (R×(−∞,0]) = 0.

Replacing t by mnT + t in (3.12) and taking limit as n→∞, we obtain

wt = wzz + r(t)wz + f(t, w), −∞ < z < 0, t ∈ R,
w(t, 0) = 0, r(t) = −µwz(t, 0), t ∈ R.

Set V2(t, z) := U(t,−z;−r), then V2(t, z) ≥ w(t, z) by the conclusions in Subsection
3.1. Set η2(t, z) := w(t, z) − V2(t, z) ≤ 0. It follows that w(t, z) ≡ V2(t, z). For
otherwise, z = 0 is a degenerate zero of η2(t, ·), contradicting to the Hopf Lemma.
Combining this with the arbitrary of mn, we obtain

‖u2(t+ nT, z)− V2(t, z)‖L∞([−K,K]×[−K,0]) → 0 as n→∞.
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Namely,

‖u(t+ nT, x)− U(t, h(t+ nT )− x;−r)‖L∞([−K,K]×[h(t+nT )−K,h(t+nT )]) → 0

as n→∞. Note that U(t, z;−r) is a T-periodic function in t. then we have

‖u(t, ·)− U(t, h(t)− ·;−r)‖L∞([h(t)−K,h(t)]) → 0 as t→∞.
Combing this with (1.9) we obtain

‖u(t, ·)− U(t, R(t) +H1 − ·;−r)‖L∞([h(t)−K,h(t)]) → 0 as t→∞.
This, and (1.7), yield that (1.11) holds. The proof is complete. �
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