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CENTER PROBLEM FOR GENERALIZED Λ-Ω
DIFFERENTIAL SYSTEMS

JAUME LLIBRE, RAFAEL RAMÍREZ, VALENTÍN RAMÍREZ

Abstract. Λ-Ω differential systems are the real planar polynomial differential

equations of degree m of the form

ẋ = −y(1 + Λ) + xΩ, ẏ = x(1 + Λ) + yΩ,

where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials of degree at most m − 1

such that Λ(0, 0) = Ω(0, 0) = 0. A planar vector field with linear type center
can be written as a Λ-Ω system if and only if the Poincaré-Liapunov first

integral is of the form F = 1
2

(x2 + y2)(1 + O(x, y)). The main objective of

this article is to study the center problem for Λ-Ω systems of degree m with

Λ = µ(a2x−a1y), and Ω = a1x+a2y+
Pm−1

j=2 Ωj , where µ, a1, a2 are constants

and Ωj = Ωj(x, y) is a homogenous polynomial of degree j, for j = 2, . . . ,m−1.

We prove the following results. Assuming that m = 2, 3, 4, 5 and

(µ+ (m− 2))(a2
1 + a2

2) 6= 0 and

m−2X
j=2

Ωj 6= 0

the Λ-Ω system has a weak center at the origin if and only if these systems
after a linear change of variables (x, y) → (X,Y ) are invariant under the

transformations (X,Y, t) → (−X,Y,−t). If (µ + (m − 2))(a2
1 + a2

2) = 0 andPm−2
j=1 Ωj = 0 then the origin is a weak center. We observe that the main

difficulty in proving this result for m > 6 is related to the huge computations.

1. Introduction

Let X = P ∂
∂x +Q ∂

∂y be the real planar polynomial vector field associated to the
real planar polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where the dot denotes derivative with respect to an independent variables here
called the time t, and P and Q are real coprime polynomials in R[x, y]. We say
that the polynomial differential system (1.1) has degree m = max{degP, degQ}.

In what follows we assume that the origin O := (0, 0) is a singular or equilibrium
point, i.e. P (0, 0) = Q(0, 0) = 0.

The equilibrium point O is a center if there exists an open neighborhood U of
O where all the orbits contained in U \ {O} are periodic.
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We shall work with the polynomial differential systems of degree m such that

ẋ = −y +X, ẏ = x+ Y, (1.2)

where X = X(x, y) and Y = Y (x, y) are polynomials starting at least with qua-
dratic terms in the neighborhood of the origin, so m = max{degX, deg Y } ≥ 2.
The center-focus problem asks about conditions on the coefficients of X and Y un-
der which the origin of system (1.2) is a center. To know centers help for studying
the limit cycles which can bifurcate from the periodic orbits of the centers when we
perturb them, see for instance [15].

If a system (1.2) has a local first integral at the origin of the form

F =
1
2

(x2 + y2)Φ(x, y),

where Φ = Φ(x, y) is an analytic function such that Φ(0, 0) = 1, then the origin of
system (1.2) is a center called a weak center. The weak center contain the uniform
isochronous centers and the holomorphic isochronous centers (for a prof of these
results see [12]), but they do not coincide with the all class of isochronous centers
(see [12, Remark 19]).

In this paper we shall study the particular case of differential systems (1.2) of
the form

ẋ = −y(1 + Λ) + xΩ, ẏ = x(1 + Λ) + yΩ, (1.3)

where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials such m = max{deg Λ, deg Ω}+
1.

By applying the inverse approach in ordinary differential equations see [10] the
following theorem is proved and shows the importance of system (1.3) in the theory
of ordinary differential equations (see [12, Theorem 15]).

Theorem 1.1. The polynomial differential system (1.2) has a weak center at the
origin if and only if it can be written as (1.3) with

Λ =
m∑
j=2

(j + 1
2

Υj−1 +
j

2
g1Υj−2 + · · ·+ 3

2
gj−2Υ1 + gj−1

)
,

Ω =
1
2

m∑
j=2

(
{Υj−1, H2}+ g1{Υj−2, H2}+ · · ·+ gj−2{Υ1, H2}

)
,

where gj and Υj are homogenous polynomials of degree j for j ≥ 1 and has a first
integral of the form

H = H2Φ = H2(1 + µ1Υ1 + · · ·+ µm−1Υm−1),

where H2 = (x2 + y2)/2, and µj = µj(x, y) is a convenient analytic function in the
neighborhood of the origin for j = 1, . . . ,m− 1.

2. Statement of main results

In this section we give the statements of our main results which will be proved
in sections 4 and 5, also we state some conjectures.
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Conjecture 2.1. The polynomial differential system of degree m

ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y +
m−1∑
j=2

Ωj(x, y)),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y +
m−1∑
j=2

Ωj(x, y)),

(2.1)

under the assumptions (µ + (m − 2))(a2
1 + a2

2) 6= 0 and
∑m−2
j=2 Ωj 6= 0, where

Ωj = Ωj(x, y) is a homogenous polynomial of degree j for j = 2, . . . ,m − 1, has a
weak center at the origin if and only if system (2.1) after a linear change of variables
(x, y) → (X,Y ) is invariant under the transformations (X,Y, t) → (−X,Y,−t).
Moreover differential system (2.1) in the variables X,Y becomes

Ẋ = −Y (1 + µY ) +X2Θ(X2, Y ) = −Y (1 + µY ) +X{H2,Φ},

Ẏ = X(1 + µY ) +XYΘ(X2, Y ) = X(1 + µY ) + Y {H2,Φ},

where Θ(X2, Y ) is a polynomial of degree m − 2, and Φ is a polynomial of degree
m− 1 such that {H2,Φ} = XΘ(X2, Y ).

The case when (µ+ (m− 2))(a2
1 + a2

2) = 0 and
∑m−2
j=2 Ωj = 0 was study in [13].

Theorem 2.2. Conjecture 2.1 holds for m = 2, 3 and for m = 4 with µ = 0.

The proof of Theorem 2.2 for µ = 0 and m = 2 goes back to Loud [16]. The
proof of Theorem 2.2 for µ = 0 and m = 3 was done by Collins [5]. The proof of
Theorem 2.2 for µ = 0 and m = 4 goes back to [1, 2, 4]. However, in the proof of
this last result there are some mistakes. The phase portraits of these systems are
classified in [3, 8, 9]. The proof that these centers are weak centers has been done
in Theorem 1.1.

Conjecture 2.3. Assume that the polynomial differential system of degree m− 1

ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y +
m−2∑
j=2

Ωj(x, y)),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y +
m−2∑
j=2

Ωj(x, y)),

where a1a2 6= 0, and Ωj = Ωj(x, y) is a homogenous polynomial of degree j for
j = 2, . . . ,m − 2, after a linear change of variables (x, y) → (X,Y ) it is invariant
under the transformations (X,Y, t)→ (−X,Y,−t). Then the polynomial differential
system of degree m

ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y +
m−1∑
j=2

Ωj(x, y)),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y +
m−1∑
j=2

Ωj(x, y)),

has a weak center at the origin if and only if the system
ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y + Ωm−1(x, y)),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y + Ωm−1(x, y)),
(2.2)
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under the assumption (µ+(m−2))(a2
1+a2

2) 6= 0 and after a linear change of variables
(x, y)→ (X,Y ) it is invariant under the transformations (X,Y, t)→ (−X,Y,−t).

The existence of the weak center of (2.2) was solve in [13].

Theorem 2.4. Conjecture 2.3 holds for m = 3, 4, 5, 6.

We note that when system (2.1) with µ = 0 has a center at the origin this center
is a uniform isochronous center, i.e. if we write these systems in polar coordinates
(r, θ) we obtain that θ̇ is constant. Clearly if µ = 0 then the weak centers are
uniform isochronous centers. Also note that Conjecture 2.3 is a particular case of
Conjecture 2.1.

3. Preliminary results

In the proofs of Theorems 2.2 and 2.4, the following results and notation, which
we can find in [12], plays a very important role. As usual the Poisson bracket of
the functions f(x, y) and g(x, y) is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

The following result is a simple consequence of the Liapunov result given in [14,
Theorem 1, page 276].

Corollary 3.1. Let U = U(x, y) be a homogenous polynomial of degree m. The
linear partial differential equation {H2, V } = U , has a unique homogenous poly-
nomial solution V of degree m if m is odd; and if V is a homogenous polynomial
solution when m is even then any other homogenous polynomial solution is of the
form V + c(x2 + y2)m/2 with c ∈ R. Moreover, for m even these solutions exist if
and only if

∫ 2π

0
U(x, y)

∣∣
x=cos t, y=sin t

dt = 0.

Proposition 3.2 (see [12, Proposition 6]). The relation∫ 2π

0

{H2,Ψ}
∣∣
x=cos t, y=sin t

dt = 0

holds for an arbitrary C1 function Ψ = Ψ(x, y) defined in the interval [0, 2π].

Proposition 3.3 ([12, Proposition 24]). Consider the polynomial differential sys-
tem (1.1) of degree m which satisfies∫ 2π

0

(∂P
∂ x

+
∂Q

∂ y

)∣∣∣
x=cos t, y=sin t

dt = 0.

Then there exist polynomials F = F (x, y) and G = G(x, y) of degree m + 1 and
m− 1 respectively such that system (1.1) can be written as

ẋ = P = {F, x}+ (1 +G){H2, x}, ẏ = Q = {F, y}+ (1 +G){H2, y},

with G(0, 0) = 0.

We need the following definitions and notion.
A function V = V (x, y) is an inverse integrating factor of system (1.1) in an

open subset U ⊂ R2 if V ∈ C1(U), V 6≡ 0 in U and ∂
∂x

(
P
V

)
+ ∂

∂y

(
Q
V

)
= 0.



EJDE-2018/184 CENTER PROBLEM FOR Λ-Ω DIFFERENTIAL SYSTEMS 5

Theorem 3.4 ([Reeb ’s criterion, [20]). The analytic differential system

ẋ = −y +
∞∑
j=2

, Xj , ẏ = x+
∞∑
j=2

Yj

has a center at the origin if and only if there is a local nonzero analytic inverse
integrating factor of the form V = 1 + higher order terms in a neighborhood of the
origin.

An analytic inverse integrating factor of the form V = 1 + h.o.t. in a neighbor-
hood of the origin is called a Reeb inverse integrating factor. The analytic function

H =
∞∑
j=2

Hj(x, y) =
1
2

(x2 + y2) +
∞∑
j=3

Hj(x, y),

where Hj is homogenous polynomials of degree j > 1, is called the Poincaré-
Liapunov local first integral if H is constant on the solutions of (1.2).

Theorem 3.5 (see [12, Theorem 13 and Remark 14 ]]). Consider the polynomial
vector field X = (−y +

∑m
j=2 Xj) ∂

∂x + (x +
∑m
j=2 Yj)

∂
∂y . Then this vector field

has a Poincaré-Liapunov local first integral H if and only if it has a Reeb inverse
integrating factor V . Moreover, the differential system associated to the vector field
X for which H = (x2 + y2)/2+h.o.t. is a local first integral can be written as

ẋ =V {H,x}
={Hm+1, x}+ (1 + g1){Hm, x}+ · · ·+ (1 + g1 + · · ·+ gm−1){H2, x},

ẏ =V {H, y}
={Hm+1, y}+ (1 + g1){Hm, y}+ · · ·+ (1 + g1 + · · ·+ gm−1){H2, y},

(3.1)

and V and H are such that

V = 1 +
∞∑
j=1

gj ,

H =
1
2

(x2 + y2) +
∞∑
j=2

Hj = τ1Hm+1 + τ2Hm + · · ·+ τmH2

=
∫
γ

(dHm+1

V
+

(1 + g1)dHm

V
+ · · ·+ (1 + g1 + · · ·+ gm−1)dH2

V

)
,

(3.2)

where γ is an oriented curve (see [21]), τj = τj(x, y) is a convenient analytic
function in the neighborhood of the origin such that τj(0, 0) = 1, and gj = gj(x, y)
is an arbitrary homogenous polynomial of degree j which we choose in such a way
that V is the inverse Reeb integrating factor which satisfies the first order partial
differential equation

{Hm+1,
1
V
}+ {Hm,

1 + g1

V
}+ · · ·+ {H2,

1 + g1 + · · ·+ gm−1

V
} = 0. (3.3)
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Remark 3.6 (see [11, formula (44) and the proof of Theorem 13]). From (3.3) and
(3.2) the following infinite number of equations must hold

{Hm+1, g1}+ {Hm, g2}+ · · ·+ {H3, gm−1}+ {H2, gm} = 0,

{Hm+1, g
2
1 − g2}+ {Hm, g1g2 − g3}+ . . .

+ {H3, g1gm−1 − gm}+ {H2, g1gm + gm+1} = 0,
. . . .

(3.4)

Consequently∫ 2π

0

({Hm+1, g1}+ {Hm, g2}+ · · ·+ {H3, gm−1})
∣∣
x=cos(t), y=sin(t)

dt = 0,∫ 2π

0

(
{Hm+1, g

2
1 − g2}+ {Hm, g1g2 − g3}+ . . .

+ {H3, g1gm−1 − gm}
)∣∣
x=cos(t), y=sin(t)

dt = 0,

. . . .

(3.5)

Conditions (3.4) and (3.5) are equivalent to the following relations.

{Hm+j+1, g1}+ {Hm+j , g2}+ · · ·+ {H3, gm+j−1}+ {H2, gm+j} = 0,∫ 2π

0

(
{Hm+j+1, g1}+ {Hm+j , g2}+ . . .

+ {H3, gm+j−1}
)∣∣∣
x=cos(t),y=sin(t)

dt = 0,

(3.6)

for j ≥ 0. Theorem 3.5 can be applied to determine the Poincaré-Liapunov first
integral, Reeb inverse integrating factor and Liapunov constants for the case when
the polynomial differential system is given (see [12, section 8]. Indeed, given a
polynomial vector field X of degree m with a linear type center at the origin of
coordinates, using (3.1) we determine its first integral H and its Reeb inverse in-
tegrating factor. Thus, if in (1.2) X =

∑m
j=2Xj and Y =

∑m
j=2 Yj with Xj and

Yj homogenous polynomials of degree j, from (3.1) and from the proof of Theorem
3.5 equating the terms of the same degree we get

{Hj+1, x}+ g1{Hj , x}+ · · ·+ gj−1{H2, x} = Xj

{Hj+1, y}+ g1{Hj , y}+ · · ·+ gj−1{H2, y} = Yj ,

{Hk+1, x}+ g1{Hk, x}+ · · ·+ gk−1{H2, x} = 0

{Hk+1, y}+ g1{Hk, y}+ · · ·+ gk−1{H2, y} = 0,

for j = 2, . . . ,m, and k > m. Then the compatibility condition of these equations
are

{Hj , g1}+ · · ·+ {H2, gj−1} =
∂ Xj

∂x
+
∂ Yj
∂y

for j = 2, . . . ,m,

{Hk, g1}+ · · ·+ {H2, gk−1} = 0 for k > m,
(3.7)

for k > 1.
If (3.7) holds then by considering that Hn for n > 1 are homogenous polynomials

of degree n. Then applying Euler’s Theorem for homogenous polynomials we obtain
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the homogenous polynomial Hn as follows

Hj+1 = − 1
j + 1

(yXj − xXj + jg1Hj + · · ·+ 2gj−1H2) ,

Hk+1 = − 1
k + 1

(kg1Hk + · · ·+ 2gk−1H2) ,
(3.8)

for j = 2, . . . ,m, and k > m.

We need the following results.
Let

x = κ1X − κ2Y, y = κ2X + κ1Y, (3.9)

be a non-degenerated linear transformation, i.e. κ2
1 + κ2

2 6= 0. Then the differential
system (1.3) becomes

Ẋ = −Y
(
1 + Λ̃(X,Y )

)
+XΩ̃(X,Y ),

Ẏ = X
(
1 + Λ̃(X,Y )

)
+ Y Ω̃(X,Y ),

(3.10)

where Λ̃(X,Y ) = Λ(κ1X − κ2Y, κ2X + κ1Y ) and Ω̃(X,Y ) = Ω(κ1X − κ2Y, κ2X +
κ1Y ). Here we say that system (1.2) is reversible with respect to a straight line l
through the origin if it is invariant with respect to reversion about l and a reversion
of time t (see for instance [6]). In particular Poincaré’s Theorem is applied for the
case when (1.2) is invariant under the transformations (x, y, t) → (−x, y,−t), or
(x, y, t)→ (x,−y,−t).

In the proof of the results which we give later on we need the Poincare’s Theorem
(see [18, p.122]).

Theorem 3.7. The origin of system (1.2) is a center if the system is reversible.

Since a rotation with respect to the origin of coordinates is a particular trans-
formation of type (3.9), when a center of system (1.3) is invariant with respect
to a straight line it is not restrictive to assume that such straight line is the
x-axis. So the center of system (1.3) will be invariant by the transformation
(X,Y, t) → (−X,Y,−t) or (X,Y, t) → (X,−Y,−t). Without loss of the gener-
ality we shall study only the first case, i.e. we shall suppose that the Λ-Ω system is
invariant with respect to the transformation (X,Y, t)→ (−X,Y,−t). The following
proposition is easy to prove (see [19]).

Proposition 3.8. Differential system (3.10) is invariant under the transformation
(X,Y, t)→ (−X,Y,−t) if and only if it can be written as

Ẋ = −Y
(
1 + Θ1(X2, Y )

)
+X2Θ2(X2, Y ),

Ẏ = X
(
1 + Θ1(X2, Y )

)
+XYΘ2(X2, Y ).

(3.11)

The following result was proved in [13, Corollary 15].

Corollary 3.9. Polynomial differential system (3.11) can be written as

Ẋ = −Y
(
1 + Θ1(X2, Y )

)
+X{H2, Φ},

Ẏ = X
(
1 + Θ1(X2, Y )

)
+ Y {H2, Φ},

(3.12)

where Φ = Φ(x, y) is a polynomial of degree at most m−1 and such that {H2, Φ} =
XΘ2(X2, Y ).
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Corollary 3.10. Any weak centers of the type

ẋ = −y (1 + Λ) + x{H2, Φ} = p,

ẏ = x (1 + Λ) + y{H2, Φ} = q,
(3.13)

satisfies that the integral of the divergence on the unit circle is zero. Moreover
differential system (3.12) can be written as

ẋ = {Φ, x}+ (1 +G){H2, x} := p,

ẏ = {Φ, y}+ (1 +G){H2, y} := q,
(3.14)

where G = G(x, y) is a polynomial of degree m− 1.

Proof. Indeed from the relations

∂p

∂x
+
∂q

∂y
= 2{H2, Φ}+ x

∂{H2, Φ}
∂x

+ y
∂{H2, Φ}

∂y
+ {H2,Λ}

= {H2, 2Φ + x
∂Φ
∂x

+ y
∂Φ
∂y

+ Λ},

and by Proposition 3.2 we obtain∫ 2π

0

(∂p
∂x

+
∂q

∂y

)∣∣∣
x=cos(t), ,x=sin(t)

dt = 0.

Consequently from Proposition 3.3 we get that (3.13) becomes (3.14). Thus the
proof is complete. �

4. Proof of Theorem 2.2

The proof of Theorem 2.2 for m = 2 and m = 3 follows from the proof of [13,
Theorem 7]. For m = 4 we prove Theorem 2.4 in the following propositions.

Proposition 4.1. The fourth polynomial differential system

ẋ = −y + x
(
a1x+ a2y + a3x

2 + a4y
2

+ a5xy + a6x
3 + a7y

3 + a8x
2y + a9xy

2
)

:= P,

ẏ = x+ y
(
a1x+ a2y + a3x

2 + a4y
2

+ a5xy + a6x
3 + a7y

3 + a8x
2y + a9xy

2
)

:= Q,

(4.1)

where a2
1 +a2

2 +a2
3 +a2

4 +a2
5 6= 0 has a weak center at the origin if and only if after a

linear change of variables (x, y)→ (X,Y ) it is invariant under the transformations
(X,Y, t)→ (−X,Y,−t) or (X,Y, t)→ (X,−Y,−t). Moreover,

(i) if a2
1 +a2

2 6= 0, then system (4.1) has a weak center at the origin if and only
if

a3 + a4 = 0, a5a1a2 + (a2
2 − a2

1)a4 = 0,

a3
1a7 − a2

1a2a9 + a1a
2
2a8 − a3

2a6 = 0,

3a1a
2
2a7 − 3a2

1a2a6 + (a3
1 − 2a1a

2
2)a8 + (2a2

1a2 − a3
2)a9 = 0.

(4.2)

Consequently
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(a)

a3 + a4 = 0, a5 +
(a2

2 − a2
1)

a1a2
a4 = 0,

a6 +
1

2a3
2

(
a7(a3

1 − 3a2
2a1) + a9(a3

2 − a2
1a2)

)
= 0,

a8 +
1

2a2
2a1

(
a7(3a3

1 − 3a1a
2
2) + a9(a3

2 − 3a2
1a2)

)
= 0.

(4.3)

when a1a2 6= 0,
(b) a2 = a3 = a4 = a7 = a8 = 0, when a1 6= 0,
(c) a1 = a3 = a4 = a6 = a9 = 0, when a2 6= 0.

(ii) If a1 = a2 = 0 and a4a5 6= 0 then system (4.1) has a weak center at the
origin if and only if

a3 + a4 = 0,

λa5 + (1− λ2)a4 = 0,

λ3a7 − λ2a9 + λ a8 − a6 = 0,

3λ2a7 + 3λa6 + (λ3 − 2λ2)a8 + (2λ2 − 1)a9 = 0,

where λ = a5+
√

4a2
4+a2

5
2a4

. Moreover the weak center in this case after a linear
change of variables (x, y) → (X,Y ) it is invariant under the transforma-
tions (X,Y, t)→ (−X,Y,−t).

(iii) if a1 = a2 = a3 = a4 = a5 = 0, then the origin is a weak center.

Proof. Sufficiency: First of all we observe that the polynomial differential system
(4.1) after the linear change of variables (3.9) would be invariant under the trans-
formation (X,Y, t)→ (−X,Y,−t) if and only if

κ2a1 − κ1a2 = 0,

κ2
1a3 + κ2

2a4 + κ1κ2a5 = 0,

κ2
2a3 + κ2

1a4 − κ1κ2a5 = 0,

κ3
1a7 − κ2

1κ2a9 + κ1κ
2
2a8 − κ3

2a6 = 0,

3κ1κ
2
2a7 − 3κ2

1κ2a6 + (κ3
1 − 2κ1κ

2
2)a8 + (2κ2

1κ2 − κ1 κ
3
2)a9 = 0.

(4.4)

We suppose that (4.4) holds, and consequently the origin of the new system is a
center. When a2

1 +a2
2 6= 0, after the change x = a1X−a2Y , y = a2X+a1Y , we get

that the system has the form of system (3.11) with m = 4, here κ1 = a1 and κ2 = a2

and consequently this system is invariant under the change (X,Y, t)→ (−X,Y,−t)
i.e. it is reversible. Thus in view of the Poincaré Theorem we get that the origin
is a center. Hence system (4.1) under conditions (4.18) has a weak center at the
origin. Thus the sufficiency under assumption (i) is proved.

When κ1κ2 6= 0 then by solving (4.4) with respect to κ1 and κ2, and if we denote
by κ1 = a1 and κ2 = a2 we obtain (4.3). For the case when κ2 = 0 and k1 6= 0,
then from (4.4) it follows that

a2 = a3 = a4 = a7 = a8 = 0. (4.5)

If (4.5) holds then system (4.1) becomes

ẋ = −y + x2
(
a1 + a5y + a6x

2 + a9y
2
)
,
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ẏ = x+ yx
(
a1 + a5y + a6x

2 + a9y
2
)
,

which is invariant under the change (x, y, t) → (−x, y,−t). If κ1 = 0 and k2 6= 0
then from (4.4) it follows that

a1 = a3 = a4 = a6 = a9 = 0. (4.6)

If (4.6) holds then (4.1) becomes

ẋ = −y + xy
(
a2 + a5x+ a7y

2 + a8x
2
)
,

ẏ = x+ y2
(
a2 + a5x+ a7y

2 + a8x
2
)
,

which is invariant under the change (x, y, t)→ (x,−y,−t).
When a1 = a2 = 0 and a4a5 6= 0, then by taking

κ1 = cos θ :=
λ√

1 + λ2
, κ2 = sin θ :=

1√
1 + λ2

,

where λ is a solution of the equation λ2 − a5
a4
λ − 1 = 0. After the rotation x =

cos θX − sin θ Y , y = sin θX + cos θ Y then in view of (4.4) we get that (4.1)
becomes

Ẋ = −Y +
1 + λ2

2λ
X2
(
− 2a4Y +

(a9 − 3λ a7)√
1 + λ2

Y 2 +
λ3a7 − λ2 a9 − 2λ a7√

1 + λ2
X2
)
,

Ẏ = X +
1 + λ2

2λ
XY

(
− 2a4Y +

(a9 − 3λ a7)√
1 + λ2

Y 2 +
λ3a7 − λ2 a9 − 2λ a7√

1 + λ2
X2
)
.

Thus this system is invariant under the change (X,Y, t) → (−X,Y,−t), i.e. it is
reversible. thus in view of the Poincaré Theorem we get that the origin is a center.
Therefore the sufficiency is proved and (ii) holds.

If a1 = a2 = a3 = a4 = a5 = 0, then system (4.1) becomes

ẋ = −y + x
(
a6x

3 + a9xy
2 + a7y

3 + a8x
2y
)

= −y + xΩ3,

ẏ = x+ y
(
a6x

3 + a9xy
2 + a7y

3 + a8x
2y
)

= x+ yΩ3,

By considering that
∫ 2π

0
Ω3(cos(t), sin(t))dt = 0, then in view of [13, Corollary 4]

we get that the origin is a weak center which in general is not reversible. Thus the
sufficiency of the proposition follows.

Necessity in case (i) We shall study only the case (a). The case (b) and (c)
can be studied in analogous form. Therefore we assume that a1a2 6= 0. Now we
suppose that the origin is a center of (4.1) and we prove that (4.3) holds. Indeed,
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from Theorem 3.5 it follows that differential system (4.1) can be written as

P = {H5, x}+ (1 + g1){H4, x}+ (1 + g1 + g2){H3, x}
+ (1 + g1 + g2 + g3){H2, x}

= −y + x
(
a1x+ a2y + a4y

2 + a3x
2 + a5xy + a6x

3

+ a7y
3 + a8x

2y + a9xy
2
)
,

Q = {H5, y}+ (1 + g1){H4, y}+ (1 + g1 + g2){H3, y}
+ (1 + g1 + g2 + g3){H2, y},

= x+ y
(
a1x+ a2y + a4y

2 + a3x
2 + a5xy + a6x

3

+ a7y
3 + a8x

2y + a9xy
2
)

(4.7)

In view of Corollary 3.1 and assisted by an algebraic computer we can obtain the
solutions of (4.7), i.e. the homogenous polynomials H5, H3, g1, g3 of degree odd are
unique and the homogenous polynomials H4, g2 of degree even are obtained modulo
an arbitrary polynomial of the form c(x2 + y2)k where k = 1, 2. Indeed taking the
homogenous part of these equations of degree two we obtain

{H3, x}+ g1{H2, x} = x(a1x+ a2y),

{H3, y}+ g1{H2, y} = y(a1x+ a2y).

The solutions of these equations are

g1 = 3(a1y − a2x), H3 = 2H2(a2x− a1y).

The homogenous part of (4.7) of degree 3 is

{H4, x}+ g1{H3, x}+ g2{H2, x} = x(a4y
2 + a3x

2 + a5xy) = xΩ2,

{H4, x}+ g1{H3, x}+ g2{H2, x} = y(a4y
2 + a3x

2 + a5xy) = yΩ2.
(4.8)

The compatibility condition of these two last equations becomes of {H3, g1} +
{H2, g2} = 4Ω2, and by considering that {H3, g1} = {H2,−3(a2x− a1y)2} since

{H2, g2 − 3(a2x− a1y)2} = 4Ω2.

Hence, in view of proposition 3.2, we obtain∫ 2π

0

Ω2(cos(t), sin(t))dt = 2π(a3 + a4) = 0.

So a3 + a4 = 0. Therefore g2 = 3(a2x − a1y)2 − a4xy − 2a5x
2 + c1H2, where c1

is a constant. Then from system (4.8) by considering that H4 is a homogenous
polynomial of degree four we obtain the solution

H4 =− 1
4

(3g1H3 + 2g2H2) + c1H
2
2

=H2

(
3
(
(a2

2 − a2)x2 − a1a2xy
)

+ a5x
2 + 2a4xy

)
+ c1H

2
2
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Inserting these previous solutions g1, H3, g2 and H4 into the partial differential
equations

{H5, x}+ g1{H4, x}+ g2{H3, x}+ g3{H2, x}
= x(a6x

3 + a7y
3 + a8x

2y + a9xy
2) = xΩ3 := X4,

{H5, y}+ g1{H4, y}+ g2{H3, y}+ g3{H2, y}
= y(a6x

3 + a7y
3 + a8x

2y + a9xy
2) = yΩ3 := Y4,

(4.9)

we get that these differential equations have a unique solution. Indeed, in this case
the compatibility condition is

{H4, g1}+ {H3, g2}+ {H2, g3} = 5Ω3, (4.10)

because ∂ X4
∂x + ∂ Y4

∂x = 5Ω3, and Ω3 is a homogenous polynomial of degree 3. Con-
sequently there exists a unique solution g3 of (4.10) such that

g3 :=
(
− 6a2a

2
1 − a3

2 +
11
3
a2a5 −

5
3
a1a4 −

10
3
a7 −

5
3
a8

)
x3

+
(

(2a3
1 − a1a

2
2)µ2 + (8a3

1 − 2a1a
2
2 − 2a1a5 − a2a4 − 4a1c1)µ

+ 6a3
1 + 3a1a

2
2 − 2a1a5 + 9a2a4 + 5a6 − 4a1c1

)
x2y

+
(
− a2a

2
1µ

2 + (a1a4 + 4a2c1 + a1a4)µ− 9a2a
2
1 + 4c1a2 − 9a1a4 − 5a7

)
xy2

+
(5

3
a3

1µ
2 +

1
3

(22a3
1 − 5a1a5 − 5a2a4 − 4a1c1)µ

+
1
3

(21a3
1 + 5a1a5 + 5a2a4 + 5a9 + 10a6 − 12a1c1)

)
y3,

Thus the homogenous polynomial H5 can be computed as

H5 = −1
5

(4g1H4 + 3g2H3 + 2g3H2) ,

using (4.9).
Hence partial differential system (4.9) has a solution if and only if a3 + a4 = 0.

On the other hand from (3.4) for m = 4 and assuming that a1a2 6= 0 and denoting

λ1 := a5 −
(a2

1 − a2
2)a4

a1a2
,

λ2 := a6 −
1

2a3
2

(
a7(a3

1 − 3a2
2a1) + a9(a3

2 − a2
1a2)

)
,

λ3 := a8 −
1

2a2
2a1

(
a7(3a3

1 − 3a1a
2
2) + a9(a3

2 − 3a2
1a2)

)
.

From Remak 3.6 with m = 4 we obtain

I1 :=
∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3})
∣∣
x=cos(t),y=sin(t)

dt

=(3/2)π (2a1a2λ1 + 2a2λ2 − 2a1λ3) = 0.

Under this condition the first differential equation of (3.4)with m = 4 becomes

{H5, g1}+ {H4, g2}+ {H3, g3}+ {H2, g4} = 0.
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It has a solution g4 which in view of Corollary 3.1 can be obtained as follows

g4 = G4(x, y) + 8c1x(2a4y + 2a5x)H2 + 4c2H2
2 ,

where G4 = G4(x, y) is a convenient homogenous polynomial of degree four, c2 is a
constant. Using formula (3.8) with k = 1 X5 = Y5 = 0 we obtain the homogenous
polynomial H6 as follows

H6 = −5
6
g1H5 −

4
6
g2H4 −

3
6
g3H3 −

2
6
g4H2.

By considering that the integral of the homogenous polynomial of degree 5,∫ 2π

0

({H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4})
∣∣∣
x=cos(t),y=sin(t)

dt ≡ 0,

then we obtain that there is a unique solution for the homogenous polynomial g5

of degree 5 of the equation

{H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4}+ {H2, g5} = 0,

which comes from the first equation of (3.6) with m = 4 and j = 1.
Using formula (3.8) with k = 2 X6 = Y6 = 0 we obtain the homogenous polyno-

mial

H7 = −6
7
g1H5 −

5
7
g2H5 −

4
7
g3H4 −

3
7
g4H3 −

2
7
g5H2

and inserting it into the next integral of the homogenous polynomials of degree 6
we obtain

I2 :=
∫ 2π

0

({H7, g1}+ {H6, g2}+ {H4, g3}+ {H3, g4})
∣∣
x=cos(t),y=sin(t)

dt

=π (ν2λ1λ2 + ν4λ1 + ν5λ2 + ν6λ3) .
(4.11)

where

ν4 = −
2
(
4(a1a2)3 + 16a1a

5
2 + 2a4

2a4 + (5a1a
2
2 − a3

1)a7 + (a2
1a2 − a3

2)a9

)
a2

2

,

ν2 = −4a2, ν5 =
−24a3

1 − 88a1a
3
2 − 8a2

2a4

a1
, ν6 = −8a2(a2

1 + 3a2
2)

By solving I1 = 0 and I2 = 0 and assuming that a1(4a2
2 + λ1) + 2a2a4 6= 0, we

obtain

λ2 =
a1λ1

(
−4a1a

5
2 − 2a4

2a4 + (a3
1 − 5a1a

2
2)a7 + (a3

2 − a2
1a2)a9

)
2a3

2(a1(4a2
2 + λ1) + 2a2a4)

,

λ3 =
λ1(−4a1a

5
2 + 2a1a

3
2λ1 − 24

2a4 + (3a3
1 − 15a1a

2
2)a7 + (3a3

2 − 3a2
1a2)a9)

2a3
2(a1(4a2

2 + λ1) + 2a2a4)
.

(4.12)
By continuing this process, the following relation must hold

I3 :=
∫ 2π

0

({H9, g1}+ {H8, g2}+ {H7, g3}+ · · ·+ {H3, g7})
∣∣
x=cos(t),y=sin(t)

dt

=p(λ1, λ2, λ3) = 0,
(4.13)
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where p is a convenient polynomial of degree five in the variables λ1, λ2, λ3. Insert-
ing into I3 the values of λ2 and λ3 from (4.12) we get that the following relations
must hold

p̃ = p(λ1, λ2, λ3)
∣∣ = λ1

(
e4λ

4
1 + e3λ

3
1 + e2λ

2
2 + e1λ1 + e0

)
= 0, (4.14)

where
e4 = 6550πa4

2a
4
1,

e3 = 41280πa4
2a

4
1c1 + r

(3)
0 ,

e2 =
(
99840πa4

2a
4
1π
)
c21 + r

(2)
1 ,

e1 =
(
10a2a1(79872a3

1a
5
2 + 3993a2

1a
4
2a4)

)
c21 + r

(1)
1 ,

e0 = π(20a1a2 + 10a4)
(
79872a3

1a
7
2 + 39936a2

1a
6
2a4

)
c21 + r

(0)
1 ,

(4.15)

where r(k)
j is a convenient polynomial of degree j in the variable c1 for k = 0, 1, 2, 3,.

Now we show that the polynomial p̃ has only one real root. Indeed from the results
given in [17] we get that a quartic polynomial with real coefficients e4x

4 + e3x
3 +

e2x
2 + e1x+ e0 with e4 6= 0 has four complex roots if

D2 = 3e2
3 − 8e2e4 ≤ 0,

D4 = 256e3
4e

3
0 − 27e2

4e
4
1 − 192e2

4e1e
2
0e3 − 27e4

3e
2
0 − 6e4e

2
3e0e

2
3 + e2

2e
2
1e

2
3

− 4e4e
3
2e

2
1 + 18e2e

3
3e1e0 + 144e4e2e

2
0e

2
3 − 80e4e

2
2e0e3e1 + 18e4e2e

3
1e3

− 4e3
2e0e

2
3 − 4e3

3e
3
1 + 16e4e

4
2e0 − 128e2

4e
2
2e

2
0 + 144e2

4e2e0e
2
1 > 0.

(4.16)

After some computations we can prove that for the ej ’s given in (4.15) for j =
0, 1, 2, 3, 4 obtain

D2 =
(
− 119500800π2a8

1a
8
2

)
c21 + q

(2)
1 ,

D4 =
(

3584286725689459049392896000000π6a21
1 a

27
2 (2a1a2 + a4)3

)
c91 + q

(4)
8 ,

where q(k)
j is a convenient polynomial of degree j in the variable c1, for k = 2, 4.

Taking the arbitrary constant c1 big enough and such that a1a2(2a1a2 + a4)c1 > 0
we obtain that the polynomial p̃ has the unique real root λ1 = 0, and consequently
λ2 = λ3 = 0.

Finally we study the case when 2a1a2 + a4. By repeating the process of the
previous case we finally obtain that from the equations Ij = 0 for j = 1, 2, 3 we
obtain

λ3 =
3a2

a1
λ2,

0 = λ2

(
174a3

2λ2 + a2(87a2
1 − 29a2

2)a9 + a2(261a2
2 − 87a2

1)a7

+ a3
2a1(605a2

2 − 995a2
1) + 704a1a

3
2c1

)
.

By choosing the arbitrary constant properly, we can obtain that the unique solution
of Ij = 0 for j = 1, 2, 3 is λ1 = λ2 = λ3 = 0. Thus the origin is a weak center in
this particular case. Thus the necessity of the proposition is proved. �

We observe that Proposition 4.1 provides the necessary and sufficient conditions
for the existence of quartic uniform isochronous centers. We observe that this
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problem was study in [4, 1, 2], but in these papers there are some mistakes. For
more details see the appendix.

Proposition 4.1 can be generalized as follows and the proof is similar.

Proposition 4.2. The fourth polynomial differential system

ẋ = −y(1 + µ(a2x− a1y)) + x
(
a1x+ a3x

2 + a2y + a4y
2

+ a5xy + a6x
3 + a7y

3 + a8x
2y + a9xy

2
)
,

ẏ = x(1 + µ(a2x− a1y)) + y
(
a1x+ a2y + a3x

2 + a4y
2

+ a5xy + a6x
3 + a7y

3 + a8x
2y + a9xy

2
)
,

(4.17)

where (µ + m − 2)(a2
1 + a2

2) + a2
3 + a2

4 + a2
5 6= 0 has a weak center at the origin if

and only if after a linear change of variables (x, y)→ (X,Y ) it is invariant under
the transformations (X,Y, t)→ (−X,Y,−t) or (X,Y, t)→ (X,−Y,−t). Moreover,

(i) if a2
1 + a2

2 6= 0, then system (4.17) has a weak center at the origin if and
only if

a3 + a4 = 0, a5a1a2 + (a2
2 − a2

1)a4 = 0,

a3
1a7 − a2

1a2a9 + a1a
2
2a8 − a3

2a6 = 0,

3a1a
2
2a7 − 3a2

1a2a6 + (a3
1 − 2a1a

2
2)a8 + (2a2

1a2 − a3
2)a9 = 0.

(4.18)

Consequently
(a)

a3 + a4 = 0, a5 +
(a2

2 − a2
1)

a1a2
a4 = 0,

a6 +
1

2a3
2

(
a7(a3

1 − 3a2
2a1) + a9(a3

2 − a2
1a2)

)
= 0,

a8 +
1

2a2
2a1

(
a7(3a3

1 − 3a1a
2
2) + a9(a3

2 − 3a2
1a2)

)
= 0.

when a1a2 6= 0,
(b) a2 = a3 = a4 = a7 = a8 = 0, when a1 6= 0,
(c) a1 = a3 = a4 = a6 = a9 = 0, when a2 6= 0.

(ii) If a1 = a2 = 0 and a4a5 6= 0 then system (4.17) has a weak center at the
origin if and only if

a3 + a4 = 0,

λa5 + (1− λ2)a4 = 0,

λ3a7 − λ2a9 + λa8 − a6 = 0,

3λ2a7 + 3λa6 +
(
λ3 − 2λ2

)
a8 +

(
2λ2 − 1)

)
a9 = 0,

where λ = a5+
√

4a2
4+a2

5
2a4

. Moreover the weak center in this case after a linear
change of variables (x, y) → (X,Y ) it is invariant under the transforma-
tions (X,Y, t)→ (−X,Y,−t).

(iii) if a1 = a2 = a3 = a4 = a5 = 0, then the origin is a weak center.
(iv) µ+ 2 = a3 = a4 = a5 = 0, then the origin is a weak center.
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5. Proof of Theorem 2.4

The proof follows from the next propositions.

Proposition 5.1. A cubic polynomial differential system

ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y + a3x
2 + a4y

2 + a5xy),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y + a3x
2 + a4y

2 + a5xy),
(5.1)

has a weak center at the origin if and only if

a3 + a4 = 0, a1a2a5 + (a2
2 − a2

1)a4 = 0, (5.2)

Moreover system (5.1) under condition (5.2) and (µ + 1)(a2
1 + a2

2) 6= 0, after a
linear change of variables (x, y)→ (X,Y ) it is invariant under the transformations
(X,Y, t)→ (−X,Y,−t).

Proposition 5.1 is proved in [13, Proposition 23]. We give the proof of Propo-
sition 5.2. The proofs of Propositions 5.3 and 5.4 are analogous to the proofs of
Proposition 5.2.

Proposition 5.2. A polynomial differential system of degree four

ẋ = −y(1 + µ(a2x− a1y)) + x
(
a1x+ a2y + a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

+ a6x
3 + a7y

3 + a8x
2y + a9xy

2
)
,

ẏ = x(1 + µ(a2x− a1y)) + y
(
a1x+ a2y + a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

+ a6x
3 + a7y

3 + a8x
2y + a9xy

2
)
,

(5.3)

where a1a2 6= 0 has a weak center at the origin if and only if the following conditions
hold.

λ1 := a9 +
1

2a2a2
1

(
(3a1a

2
2 − a3

1

)
a8 + . . . ) = 0,

λ2; = a7 +
1

2a3
1

(
(a3

2 − 3a2a
2
1)a8 + . . .

)
= 0

(5.4)

Moreover system (5.3) under conditions (5.4) and after a linear change of vari-
ables (x, y)→ (X,Y ) it is invariant under the transformations (X,Y, t)→ (−X,Y,−t).

Proof. Sufficiency: First we observe that the differential system (5.3) under the
linear transformation (3.9) can be written as (3.10) with m = 4, and

Λ = µ(a2x− a1y) = 0,

Ω = a1x+ a2y + a4(y2 − x2 − a2
2 − a2

1)
a1a2

xy)

+ a6x
3 + a7y

3 + a8xy + a9xy
2 = 0.

This differential system is invariant under the transformation (X,Y, t)→ (−X,Y,−t)
if and only if

κ1a2 − κ2a1 = 0,

κ1(κ2
1a7 + κ2

2a8)− κ2(κ2
2a6 + κ2

1a9) = 0,

3κ1κ2(a7κ2 − a6κ1) + κ1(κ2
1 − 2κ2

2)a8 + κ1(2κ2
1 − κ2

2)a9 = 0,

(5.5)
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We suppose that (5.4) holds and show that then the origin is a center of system
(5.3). Assume that a1a2 6= 0. Then after the transformation

x = a1X − a2Y, y = a2X + a1Y, (5.6)

we get that this system can be written as system (3.11) for m = 4 and with κ1 = a1

and κ2 = a2, and consequently the conditions (5.5) becomes

a1(a2
1a7 + a2

2a8)− a2(a2
2a6 + a2

1a9) = 0,

3a1a2(a7a2 − a6a1) + a1(a2
1 − 2a2

2)a8 + a1(2a2
1 − a2

2)a9 = 0.

By solving these two equations with respect to a7 and a9 we get (5.4). Hence (5.3)
is invariant, after the given linear change (5.6) is invariant under the transformation
(X,Y, t)→ (−X,Y,−t), i.e. it is reversible. Thus in view of the Poincaré Theorem
we get that the origin is a center of (5.3) if (5.4) holds.

Necessity: Now we suppose that the origin is a center of (5.3) and we prove that
(5.4) holds. Indeed, from Theorem 3.5 it follows that differential system (5.3) can
be written as
{H5, x}+ (1 + g1){H4, x}+ (1 + g1 + g2){H3, x}+ (1 + g1 + g2 + g3){H2, x}

= −y + x(a1x+ a2y + a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

+ a6x
3 + a7y

3 + a8x
2y + a9xy

2),

{H5, y}+ (1 + g1){H4, y}+ (1 + g1 + g2){H3, y}+ (1 + g1 + g2 + g3){H2, y},

= x+ y(a1x+ a2y + a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

+ a6x
3 + a7y

3 + a8x
2y + a9xy

2).

Hence
{H3, x}+ g1{H2, x} = −yµ(a1y − a2x) + x(a1x+ a2y) = X2,

{H3, y}+ g2{H2, y} = xµ(a1y − a2x) + y(a1x+ a2y) = Y2,

{H4, x}+ g1{H3, x}+ g2{H2, x} = a4x
(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

= xΩ2 = X3,

{H4, y}+ g1{H3, y}+ g2{H2, y} = a4y
(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

= yΩ2 = Y3,

{H5, x}+ g1{H4, x}+ g2{H3, x}+ g3{H2, x}
= x

(
a6x

3 + a7y
3 + a8x

2y + a9xy
2
)

:= xΩ3 = X4,

{H5, y}+ g1{H4, y}+ g2{H3, y}+ g3{H2, y}
=y
(
a6x

3 + a7y
3 + a8x

2y + a9xy
2
)

:= yΩ3 = Y4,

(5.7)
The two first equations of (5.7) are compatible if and only if g1 satisfies

{H2, g1} = −(µ− 3)(a1x+ a2y) =
∂X2

∂x
+
∂Y2

∂y
.

Thus g1 = −(µ − 3)(a1y − a2x), and consequently from the first part of (5.7) we
obtain that H3 = −(x2 + y2) (a1y − a2x)

From the third and fourth equations of (5.7) we get that these equations are
compatible if and only if

{H3, g1}+ {H2, g2} = 3a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
)

=
∂X3

∂x
+
∂Y3

∂y
,
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and in view of Proposition 3.2 we get that this equation has the polynomial solution
g2 if and only if∫ 2π

0

(
{H3, g1}+ 3a4

(
y2 − x2 − (a2

2 − a2
1)

a1a2
xy
))∣∣∣

x=cos(t), y=sin(t)
dt = 0,

which holds identically. Thus we obtain the homogenous polynomial

g2 =
(

(a2
1 + 2a2

2)(µ− 3a1a2) +
(a2

1 − a2
2)a4

a1a2

)
x2 − 2(a1a2(µ− 3)− 2a4)xy

+
(

(a2
2 + 2a2

1)(µ− 3) +
(a2

2 − a2
1)a4

a1a2

)
y2 + c1H2,

where c1 is an arbitrary constant. From (3.8) with j = 3 we obtain the homogenous
polynomial

H4 = −1
4

(3g1H3 + 2g2H2)

= c1H
2
2 +

H2

2

(
µ+

1
a1a2

(a4 − 3a1a2)((a1 − a2)x

+ (a1 + a2)y)((a1 − a2)y + (a1 + a2)x)
)
.

From (3.7) with j = 4 we compute

{H4, g1}+ {H3, g2}+ {H2, g3} = 4Ω3 =
∂X4

∂x
+
∂Y4

∂y
.

This last equation has a unique homogenous polynomial solution g3, which we insert
in the expression for H5 (see (3.8) when j = 4) and we obtain

H5 = −4g1H4/5− 3g2H3/5− 2g3H2/5.

Hence the homogenous polynomials H5, H3, g1, g3 are determined and H4, g2

are obtained with and arbitrary term of the type ck(x2 + y2)k where k = 1, 2,
respectively. On the other hand from (3.5) with m = 4 and assuming that a1a2 6= 0
we get

I1 :=
∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3})
∣∣
x=cos(t),y=sin(t)

dt

= 3π (a2λ1 − 3a1λ2) = 0

under this condition the partial differential equation (coming from (3.7) with k = 5)

{H5, g1}+ {H4, g2}+ {H3, g3}+ {H2, g4} = 0,

has a homogenous polynomial solution g4 which in view of Corollary 3.1 can be
obtained with arbitrary term of the type c(x2 + y2)2.

The homogenous polynomial H6 can be determined as follows (see (3.8) when
k=5)

H6 = −5
6
g1H5 −

4
6
g2H4 −

3
6
g3H3 −

2
6
g4H2.

Since the integral of the homogenous polynomial of degree 5,∫ 2π

0

({H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4})
∣∣
x=cos(t),y=sin(t)

dt
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is zero, we obtain that there is a unique homogenous polynomial g5 of degree 5
solution of the equation

{H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4}+ {H2, g5} = 0.

Calculating the homogenous polynomial of degree 7 (see (3.8) when k = 6) we
obtain

H7 = −6
7
g1H5 −

5
7
g2H5 −

4
7
g3H4 −

3
7
g4H3 −

2
7
g5H2,

and inserting it into the integral of the homogenous polynomial of degree 6,

I2 :=
∫ 2π

0

({H7, g1}+ {H6, g2}+ {H4, g3}+ {H3, g4})
∣∣
x=cos(t),y=sin(t)

dt

=π(µ− 3) (ν1λ1 + ν2λ2) = 0,

where

ν1 = − π

42

( (
4203a3

2 + 108ca2

)
a1 − 3255a3

1a2 + (157a2
1 − 489a2

2)a4

)
,

ν2 = − π

42

(
(1401a3

2 + 36ca2)a1 − 2601a3
1a2 + (147a2

1 − 163a2
2)a4

)
.

By solving the linear system I1 = 0, I2 = 0 with respect to λ1 and λ2, and by
considering that the determinant of the matrix of this system is ∆ = 2π2a2

1
7 (71a4 −

1137a1a2). Assuming that ∆ 6= 0 we deduce that λ1 = λ2 = 0.
The case when 71a4 − 1137a1a2 = 0 can be analyzed in analogous form.
By solving Ij = pj(λ1, λ2) for j = 1, 2 we obtain that λ2 = λ2(λ1). Inserting

these expressions into I3 = 0 we get that λ1

(
e4λ

4
1 + e3λ

3
1 + e2λ

2
1 + e1λ1 + e0

)
= 0,

where

e4 = 166446510550a2
2a

2
1π,

e3 = 1048994191680a2
1a

2
2π c

2
1 + r

(3)
0 ,

e2 = 2537102231040a2
2a

2
1πc

2
1 + r

(2)
1 ,

e1 = 182814295971840a2
1a

4
2πc

2
1 + r

(4)
1 ,

e0 = 329323217673216a2
1a

6
2c

2
1 + r

(0)
1 ,

where r(n)
j are convenient polynomials of degree j in the variable c1. By applying

the result given in [17] with D2 and D4 given in (4.16) and choosing the arbitrary
constant c1 conveniently we deduce that the unique real solution of I3 = 0 is λ1 = 0.
Consequently λ2 = λ3 = 0. In short the proof complete. �

The following two propositions can be proved in analogous way of the proof of
Proposition 5.2.
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Proposition 5.3. A polynomial differential system of degree five

ẋ = −y(1 + µ(a2x− a1y))

+ x
(
a1x+ a2y + +a4(y2 − x2 +

(a2
2 − a2

1)
a1a2

xy) + a6x
3

+
1

2a3
1

((3a2a
2
1 − a3

2)a6 + (a2
2a1 − a3

1)a8))y3 + a8x
2y

+
1

2a2a2
1

(3(a2
1a2 − a3

2)a6 + (3a1a
2
2 − a3

1)a8))xy2

+ a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4
)
,

ẏ = x(1 + µ(a2x− a1y))

+ y
(
a1x+ a2y + a4(y2 − x2 +

(a2
2 − a2

1)
a1a2

xy) + a6x
3

+
1

2a3
1

(
(3a2a

2
1 − a3

2)a6 + (a2
2a1 − a3

1)a8

))
y3 + a8x

2y

+
1

2a2a2
1

((
3(a2

1a2 − a3
2)a6 + (3a1a

2
2 − a3

1)a8

))
xy2

+ a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4,

(5.8)

where a1a2 6= 0 has a weak center at the origin if and only if the following conditions
hold

a12 + 3(a10 + a14) = 0,

2a3
1a

3
2a13 −

(
a6

1 + 7(a2
1a

4
2 − a4

1a
2
2

)
a10 −

(
a5

1a2 − 4a3
1a

3
2 + a1a

5
2

)
a11 = 0,

2a2
1a

2
2a14 −

(
a4

1 − 4a2
1a

2
2 + a4

2

)
a10 − (a3

1a2 − a1a
3
2)a11 = 0.

Moreover system (5.8) under these conditions and after a linear change of variables
(x, y)→ (X,Y ) it is invariant under the transformations (X,Y, t)→ (−X,Y,−t).

Proposition 5.4. A polynomial differential system of degree six,

ẋ = −y(1 + µ(a2x− a1y)) + x
(
a1x+ a2y + a4(y2 − x2

+
(a2

2 − a2
1)

a1a2
xy) + a6x

3 +
1

2a3
1

((3a2a
2
1 − a3

2)a6

+ (a2
2a1 − a3

1)a8))y3 + a8x
2y

+
1

2a2a2
1

(3(a2
1a2 − a3

2)a6 + (3a1a
2
2 − a3

1)a8))xy2

+ a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4
)
,

ẏ = x(1 + µ(a2x− a1y)) + y
(
a1x+ a2y + +a4(y2 − x2

+
(a2

2 − a2
1)

a1a2
xy) + a6x

3 +
1

2a3
1

((3a2a
2
1 − a3

2)a6 + (a2
2a1 − a3

1)a8))y3

+ a8x
2y +

1
2a2a2

1

(3(a2
1a2 − a3

2)a6 + (3a1a
2
2 − a3

1)a8))xy2

+ a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4
)
,

(5.9)
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where a1a2 6= 0 has a weak center at the origin if and only if the following conditions
hold

λ1 = a15 +
1

8a2
1a

5
2

( (
2a5

1a
2
2 − 4a3

1a
4
2 + 2a1a

6
2

)
a19

−
(
3a7

1 − 15a5
1a

2
2 + 25a3

1a
4
2 − 5a1a

6
2

)
a16

+
(
a7

2 + 11a4
1a

3
2 − 9a2

1a
5
2 − 3a6

1a2

)
a20

)
= 0,

λ2 = a17 −
1

8a3
1a

4
2

(
(15a7

1 − 55a5
1a

2
2 + 45a3

1a
4
2 − 5a1a

6
2)a16

+ (10a5
1a

2
2 − 12a3

1a
4
2 + 2a1a

6
2)a19

+ (−15a6
1a2 + 35a4

1a
3
2 − 13a2

1a
5
2 + a7

2)a20

)
= 0,

λ3 = a18 +
1

2a2
1a

3
2

(
− (5a5

1 − 10a3
1a

2
2 + 5a1a

4
2)a16

− (4a3
1a

2
2 − 2a1a

4
2)a19 − (6a2

1a
3
2 − 5a4

1a2 − a5
2)a20

)
= 0.

Moreover system (5.9) under these conditions and after a linear change of variables
(x, y)→ (X,Y ) is invariant under the transformations (X,Y, t)→ (−X,Y,−t).

Remark 5.5. A weak center in general is not invariant with respect to a straight
line. Indeed, the cubic Λ-Ω system with a weak center at the origin [22]

ẋ = −y
(

1 + y +
y2

2

)
+
x

2
(x− y − y2),

ẏ = x
(

1 + y +
y2

2

)
+
y

2
(x− y − y2),

(5.10)

is not invariant with respect to the straight line.

6. Appendix

The classification of the isochronous centers of Proposition 4.1 for system (4.1)
has been previously studied in [4, 2]. But in both papers there are some mistakes.
More precisely, in [4] they write system (4.1) in in polar coordinates as

ṙ = P2(ϕ)r2 + P3(ϕ)r3 + P4(ϕ)r4, ϕ̇ = 1, (6.1)

where

P2(ϕ) = R1 cosϕ+ r1 sinϕ,

P3(ϕ) = R2 cos 2ϕ+ r2 sin 2ϕ,

P4(ϕ) = R3 cos 3ϕ+ r3 sin 3ϕ+R4 cosϕ+ r4 sinϕ.

In [4] they forgot to write the term r1 sinϕ. The relations between the parameters
of (4.1) and the parameters of system (6.1) are

R1 = a1, r1 = a2, R2 = (a3 − a4)/2, r2 = a5/2,

R0 = (a3 + a4)/2, R3 = (a6 − a9)/4, r3 = (a8 − a7)/4,

R4 = (3a6 + a9)/4, r4 = (3a7 + a8)/4.

In [2] they write system (4.1) in complex notation as

ż = iz+z
(
Az+ Āz̄+Bz2 +2(b1 +b3)zz̄+B̄z̄2 +Cz3 +Dz2z̄+D̄z̄z2 + C̄z̄3

)
, (6.2)
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being z = x+iy, z̄ = x−iy, A = (a1−ia2)/2, B = (b1+b3−ib2)/4, C = (d1−id2)/8
and D = (d3 − id4)/8 where a1, a2, b1, b2, b3, d1, d2, d3, d4 are real constants. The
relations between the parameters of system (4.1) and the parameters of system
(6.2) are

a1 = a1, a2 = a2, a3 = 5(b1 + b3)/2,

a4 = 3(b1 + b3)/2, a5 = b2, a6 = (d3 + d1)/4,

a7 = (d4 − d2)/4, a8 = (d4 + 3d2)/4, a9 = (d3 − 3d1)/4.

The following sets of conditions are equivalent
• r1 = r4 = R0 = R4 = 0 and r3 6= 0 for system (6.1),
• a2 = b1 + b3 = d3 = d4 = 0 and b2 6= 0 for system (6.2),
• a2 = 3a7 + a8 = 3a6 + a9 = a3 + a4 = 0 and a5 6= 0 for system (4.1).

In [4, 2] they claim that system (4.1) under the previous conditions has a center,
but this is incorrect because such a system has a week focus because their Liapunov
constants are not all zero. Thus its first non-zero Liapunov constant is πa2

1a3/2.
For more details on Liapunov constants see [7, chapter 5].

Acknowledgments. J. Llibre was y supported by the Ministerio de Economı́a,
Industria y Competitividad, Agencia Estatal de Investigación grant MTM2016-
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