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NONLINEAR ROBIN PROBLEMS WITH UNILATERAL
CONSTRAINTS AND DEPENDENCE

ON THE GRADIENT

NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

Communicated by Marco Squassina

Abstract. We consider a nonlinear Robin problem driven by the p-Laplacian,

with unilateral constraints and a reaction term depending also on the gradient

(convection term). Using a topological approach based on fixed point the-
ory (the Leray-Schauder alternative principle) and approximating the original

problem using the Moreau-Yosida approximations of the subdifferential term,

we prove the existence of a smooth solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following nonlinear elliptic differential inclusion with Robin boundary
condition

−∆pu(z) + ∂ϕ(u(z)) 3 f(z, u(z),∇u(z)) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

(1.1)

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈W 1,p(Ω), 2 ≤ p < +∞.
Also ϕ ∈ Γ0(R), the cone of proper, convex and lower semicontinuous functions

(see Section 2), and ∂ϕ(·) denotes the subdifferential in the sense of convex analysis.
The presence of the subdifferential term, incorporates in our framework problems
with unilateral constraints (differential variational inequalities). The forcing term
f(z, x, y) is a measurable function which is locally Hölder in the (x, y) ∈ R × RN
variables. The dependence on the gradient implies that we can not use directly
on (1.1) variational methods. For this reason our approach is topological based on
the fixed point theory (the Leray-Schauder alternative principle). In the boundary
condition, ∂u

∂np
is the conormal derivative of u defined by extension of the map

C1(Ω) 3 u→ |∇u|p−2 ∂u

∂n
,

with n(·) being the outward unit normal on ∂Ω.
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By a solution of (1.1) we understand a function u ∈ W 1,p(Ω) such that there
exists g ∈ L2(Ω) satisfying g(z) ∈ ∂ϕ(u(z)) for a.a. z ∈ Ω and∫

Ω

|∇u|p−2(∇u,∇h)RN dz +
∫
∂Ω

β(z)|u|p−2uhdσ +
∫

Ω

gh dz =
∫

Ω

f(z, u,∇u)h dz

for all h ∈W 1,p(Ω).
Existence theorems for nonlinear elliptic equations with convection were proved

by de Figueiredo-Girardi-Matzeu [2], Girardi-Matzeu [5] (semilinear Dirichlet prob-
lems driven by the Laplacian), Ruiz [16], Faraci-Motreanu-Puglisi [1], Huy-Quan-
Khanh [7], Iturriaga-Lorca-Sánchez [8] (nonlinear Dirichlet problems driven by the
p-Laplacian) and Gasiński-Papageorgiou [4], Papageorgiou-Rǎdulescu-Repovš [15]
(Neumann problems driven by a differential operator of the form div(a(u)∇u) with
a(·) continuous, bounded and strictly positive). Of the aforementioned works, only
Papageorgiou-Rǎdulescu-Repovš [15] consider problems with unilateral constraint
(that is, with a subdifferential term ∂ϕ(u)). Their conditions on the convection term
are different and they employ a suitable variant of the classical Nagumo-Hartman
condition. Their differential operator is of the form div(a(u)∇u) with a : R → R
Lipschitz continuous and 0 < c1 ≤ a(x) ≤ c2 for all x ∈ R. This particular form of
the differential operator is essential for their proofs to work and their method can
not accommodate a nonlinear differential operator like the p-Laplacian.

The presence of the subdifferential term ∂ϕ(u) introduces a multivalued unilat-
eral constraint in the problem which complicates the study of (1.1). Our aim is to
prove an existence theorem for problem (1.1). In fact we show the existence of a
smooth solution for problem. The method of proof passes through a regularization
of the subdifferential map. The regularization is based on the Moreau-Yosida ap-
proximation of ϕ. Exploiting the properties of the Moreau-Yosida approximation
we solve the regularized problem, using topological tools based on the fixed point
theory. Using the nonlinear regularity theory, we derive uniform a priori bounds for
the solutions of the approximate problems and then we pass to the limit to obtain
the desired solution of (1.1).

2. Mathematical background and hypotheses

Let X be a reflexive Banach space and X∗ its topological dual. By 〈·, ·〉 we denote
the duality brackets for the dual pair (X∗, X). A map A : D(A) ⊆ X → 2X

∗
is

said to be “monotone”, if

〈x∗ − u∗, x− u〉 ≥ 0 for all (x, x∗), (u, u∗) ∈ GrA.

Here GrA is the “graph of A(·)” defined by

GrA = {(x, x∗) ∈ X ×X∗ : x∗ ∈ A(x)}
and D(A) is the “domain of A(·)” defined by

D(A) = {x ∈ X : A(x) 6= ∅}.
We say that A(·) is “strictly monotone”, if it is monotone and

〈x∗ − u∗, x− u〉 = 0 ⇒ x = u.

A monotone map is “maximal monotone”, if its graph is maximal among the graphs
of monotone maps. This means that

〈u∗ − x∗, u− x〉 ≥ 0 for all (x, x∗) ∈ GrA ⇒ (u, u∗) ∈ GrA.
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The importance of maximal monotone maps, comes from their remarkable surjec-
tivity properties. More precisely we have (see, for example, Gasiński-Papageorgiou
[3, p. 319]).

Proposition 2.1. If A:X → 2X
∗

is maximal monotone and coercive (that is,
‖A(x)‖∗ → +∞ as ‖x‖ → +∞), then A is surjective.

By Γ0(X) we denote the cone of all functions ϕ:X → R = R ∪ {+∞} which
are convex, lower semicontinuous and proper (that is, the effective domain of ϕ,
domϕ = {x ∈ X : ϕ(x) < +∞} is nonempty).

For ϕ ∈ Γ0(X), the subdifferential of ϕ at x ∈ X, is defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x+ h)− ϕ(x) for all h ∈ X}.

Note that ∂ϕ(x) ⊆ X∗ is w-closed, convex and possibly empty. If ϕ(·) is contin-
uous at x ∈ X, then ∂ϕ(x) is nonempty, w-compact and convex. If ϕ(·) is Gâteaux
differentiable at x ∈ X, then

∂ϕ(x) = {ϕ′G(x)}

with ϕ′G(x) being the Gâteaux derivative of ϕ at x. The map ∂ϕ:X → 2X
∗

is
maximal monotone.

If X = H = a Hilbert space and ϕ ∈ Γ0(H), then for every λ > 0, the “Moreau-
Yosida approximation” ϕλ of ϕ, is defined by

ϕλ(x) = inf[ϕ(u) +
1

2λ
‖x− u‖2 : u ∈ H] for all x ∈ H.

This functional has the following properties:
• ϕλ is convex and domϕλ = H.
• ϕλ is Fréchet differentiable and the Fréchet derivative ϕ′λ is Lipschitz con-

tinuous with Lipschitz constant 1
λ .

• If λn → 0+, xn → x in H, ϕ′λn(un) w−→ x∗ in H∗, then x∗ ∈ ∂ϕ(x).
Let V and Z be Banach spaces. We say that g : V → Z is “compact” if it is

continuous and maps bounded sets in V to relatively compact sets in Z.
As we already mentioned, our approach is topological and will make use of the

“Leray-Schauder alternative principle” (see Gasiński-Papageorgiou [3, p. 827]).

Theorem 2.2. If V is a Banach space, ϕ : V → V is a compact map and

T (ϕ) = {x ∈ V : there exists t ∈ (0, 1) such that x = tϕ(x)},

then either T (ϕ) is unbounded or ϕ has a fixed point.

The main space of our analysis is the Sobolev space W 1,p(Ω). Endowed with the
norm

‖u‖ = [‖u‖pp + ‖∇u‖pp]
1
p for all u ∈W 1,p(Ω),

this Sobolev space becomes a separable reflexive Banach space. The nonlinear reg-
ularity theory will bring into play the Banach space C1(Ω) and the Robin boundary
condition the “boundary” Lebesgue spaces Lr(∂Ω), 1 ≤ r ≤ +∞. To define the
latter, on ∂Ω, we consider the (N − 1)-dimensional Hausdorff (surface) measure
denoted by σ(·). Using this measure on ∂Ω, we can define in the usual way the
Lebesgue spaces Lr(∂Ω). From the theory of Sobolev spaces, we know that there
exists a unique linear continuous map γ0:W 1,p(Ω)→ Lp(∂Ω), known as the “trace
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map”, such that γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω). Hence, we under-
stand the trace map as representing the boundary values of an arbitrary Sobolev
function u ∈ W 1,p(Ω). We know that γ0 is a compact operator into Lr(∂Ω) for
1 ≤ r < p(N−1)

N−p when N > p and into Lr(∂Ω) for 1 ≤ r < +∞, when N ≤ p.
Moreover,

im γ0 = W
1
p′ ,p(∂Ω)

(1
p

+
1
p′

= 1
)

and ker γ0 = W 1,p
0 (Ω).

In what follows, for notational simplicity, we drop the use of the trace map γ0.
All restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.
We introduce the following condition on the boundary coefficient β(·):

(H1) β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω.

Note that if β ≡ 0, then we recover the Neumann problem. We consider the
nonlinear eigenvalue problem

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

(2.1)

We say that λ̂ ∈ R is an eigenvalue of the Robin p-Laplacian, if problem (2.1) admits
a nontrivial solution û ∈ W 1,p(Ω), known as an “eigenfunction” corresponding to
the eigenvalue λ̂. We know that (2.1) admits a smallest eigenvalue λ̂1 which has
the following properties (see Papageorgiou-Rǎdulescu [13]):

• λ̂1 ≥ 0 (in fact, if β ≡ 0 (Neumann problem), then λ̂1 = 0, while if β 6≡ 0
then λ̂1 > 0).
• λ̂1 is isolated in the spectrum σ̂(p) of the Robin p-Laplacian (that is, there

exists ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σ̂(p) = ∅).
• λ̂1 is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1, then
û = ξv̂ for some ξ ∈ R \ {0}).
• If γ(u) = ‖∇u‖pp +

∫
∂Ω
β(z)|u|pdσ, then

λ̂1 = inf
[ γ(u)
‖u‖pp

: u ∈W 1,p(Ω), u 6= 0
]
. (2.2)

The infimum in (2.2) is realized on the corresponding one dimensional eigenspace.
It is clear from the above properties that the elements of this eigenspace do not
change sign. By û1 we denote the positive, Lp-normalized (that is, ‖û1‖p = 1),
eigenfunction corresponding to λ̂1. The nonlinear regularity theory of Lieberman
[9] implies that û1 ∈ C1(Ω). Moreover, the nonlinear strong maximum principle
(see Gasiński-Papageorgiou [3, p. 738]), implies that û1(z) > 0 for all z ∈ Ω. Using
these properties one can prove easily the following lemma (see Mugnai-Papageorgiou
[12, Lemma 4.11]).

Lemma 2.3. If ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1 for a.a. z ∈ Ω and this inequality is strict
on a set of positive measure, then there exists ĉ > 0 such that

ĉ‖u‖p ≤ γ(u)−
∫

Ω

ϑ(z)|u|p dz for all u ∈W 1,p(Ω).
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We say that a function f :Ω× R× RN → R is an L∞-locally Hölder function, if
for all ρ > 0, there exists ηρ ∈ L∞(Ω) such that

|f(z, x, y)− f(z, x′, y′)| ≤ ηρ(z) [|x− x′|µ + |y − y′|µ]

for a.a. z ∈ Ω, all |x|, |x′|, |y|, |y′| ≤ ρ, with 0 < µ ≤ 1.
Our hypotheses on the reaction term f(z, x, y) are:
(H2) f : Ω× R× RN → R is an L∞-locally Hölder function such that

(i) |f(z, x, y)| ≤ a(z)[1 + |x|p−1 + |y|q] for a.a. z ∈ Ω, all x ∈ R, y ∈ RN ,
with 2 ≤ p,

2(p− 1) ≤ p∗ =

{
Np
N−p if p < N,

+∞ if N ≤ p

and q = max{p−1
2 , 1};

(ii) there exists a function ϑ ∈ L∞(Ω) such that ϑ(z) ≤ λ̂1 for a.a.
z ∈ Ω, the above inequality is strict on a set of positive measure,
lim supx→±∞

f(z,x,y)
|x|p−2x ≤ ϑ(z) uniformly for a.a. z ∈ Ω, all y ∈ RN on a

bounded set.
Note that if p ≥ N

2 , then 2(p − 1) ≤ p∗ (see hypothesis (H2)(i)). The fol-
lowing function satisfies hypotheses (H2) (for the sake of simplicity, we drop the
z-dependence),

f(x, y) = ϑ|x|p−2x+ g(x)|y|q for all x ∈ R, y ∈ RN ,

with ϑ < λ̂1, 2 ≤ p < +∞ with 2(p − 1) ≤ p∗, q = max{p−1
2 , 1} and g : R → R is

locally Hölder continuous and limx→±∞
g(x)
|x|p−2x = 0.

The hypotheses on the function ϕ are:
(H3) ϕ ∈ Γ0(R) with 0 ∈ ∂ϕ(0).

These conditions mean that ϕ ≥ 0 and ϕ(0) = inf ϕ.

3. Existence of solutions

Recall that from hypothesis (H2)(ii), ϑ ∈ L∞(Ω) and ϑ(z) ≤ λ̂1 for a.a. z ∈ Ω,
ϑ 6≡ λ̂1. Let λ > 0, g ∈ L∞(Ω) and ξ̂ > ‖ϑ‖∞. We consider the auxiliary nonlinear
Robin problem

−∆pu(z) + ξ̂|u(z)|p−2u(z) + ∂ϕλ(u(z)) = g(z) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω, λ > 0.

(3.1)

Proposition 3.1. If hypotheses (H1) and (H3) hold, then problem (3.1) has a
unique solution Sλ(g) ∈ C1(Ω) and the solution map Sλ : L∞(Ω) → C1(Ω) is
compact.

Proof. First we show the existence of a solution for problem (3.1). So, we consider
the operator E : W 1,p(Ω)→W 1,p(Ω)∗ defined by

〈E(u), h〉 =
∫

Ω

|∇u|p−2(∇u,∇h)RN dz + ξ̂

∫
Ω

|u|p−2uh dz

+
∫
∂Ω

β(z)|u|p−2uhdσ +
∫

Ω

∂ϕλ(u)h dz for all u, h ∈W 1,p(Ω).
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Clearly E(·) is continuous, monotone, thus maximal monotone (see [3, p. 310]).
Also, for all u ∈W 1,p(Ω) we have

〈E(u), u〉 ≥ ‖∇u‖pp + ξ̂‖u‖pp ≥ c0‖u‖p with c0 = min{ξ̂, 1}
⇒ E(·) is coercive;

see hypothesis (H1) and recall that ∂ϕλ is monotone, ∂ϕλ(0) = 0).
Invoking Proposition 2.1, we can find ûλ ∈W 1,p(Ω) such that

E(ûλ) = g

⇒
∫

Ω

|∇ûλ|p−2(∇ûλ,∇h)RN dz + ξ̂

∫
Ω

|ûλ|p−2ûλh dz +
∫
∂Ω

β(z)|ûλ|p−2ûλhdσ

+
∫

Ω

∂ϕλ(ûλ)h dz =
∫

Ω

gh dz for all h ∈W 1,p(Ω), (3.2)

⇒

{
−∆pûλ(z) + ξ̂|ûλ(z)|p−2ûλ(z) + ∂ϕλ(ûλ(z)) = g(z) for a.a. z ∈ Ω,
∂buλ
∂np

+ β(z)|ûλ|p−2ûλ = 0 on ∂Ω;
(3.3)

see Papageorgiou-Rǎdulescu [13].
We know that |∂ϕλ(x)| ≤ 1

λ |x| for all x ∈ R (see Hu-Papageorgiou [6, p. 350]).
Hence from (3.3) and Papageorgiou-Rǎdulescu [14], we have uλ ∈ L∞(Ω). Invoking
Lieberman [9, Theorem 2], we infer that

uλ ∈ C1(Ω).

So, we have proved the existence of a smooth solution for problem (3.1). Next we
show the uniqueness of this solution. So, suppose that v̂λ ∈ W 1,p(Ω) is another
solution. Again we have v̂λ ∈ C1(Ω) and∫

Ω

|∇v̂λ|p−2(∇v̂λ,∇h)RN dz + ξ̂

∫
Ω

|v̂λ|p−2v̂λh dz

+
∫
∂Ω

β(z)|v̂λ|p−2v̂λhdσ +
∫

Ω

∂ϕλ(v̂λ)h dz

=
∫

Ω

gh dz for all h ∈W 1,p(Ω).

(3.4)

In both (3.4) and (3.2) we choose h = ûλ − v̂λ ∈ W 1,p(Ω) and then subtract
(3.4) from (3.2). We obtain∫

Ω

(|∇ûλ|p−2∇ûλ − |∇v̂λ|p−2∇v̂λ,∇ûλ −∇v̂λ)RN dz

+ ξ̂

∫
Ω

(|ûλ|p−2ûλ − |v̂λ|p−2v̂λ)(ûλ − v̂λ) dz

+
∫
∂Ω

β(z)[|ûλ|p−2ûλ − |v̂λ|p−2v̂λ](ûλ − v̂λ)dσ

+
∫

Ω

(∂ϕλ(ûλ)− ∂ϕλ(v̂λ))(ûλ − v̂λ) dz = 0.

Recalling that RN 3 y → |y|p−2y and R 3 x→ ∂ϕλ(x) are monotone and since
β ≥ 0 (see hypothesis (H1)), we obtain

ξ̂

∫
Ω

(|ûλ|p−2ûλ − |v̂λ|p−2v̂λ)(ûλ − v̂λ) dz ≤ 0 ⇒ ûλ = v̂λ,
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since R 3 x → |x|p−2x is strictly monotone. This proves the uniqueness of the
solution of (3.1). Therefore the solution map Sλ : L∞(Ω)→ C1(Ω) is well-defined.
We show that Sλ(·) is continuous. To this end, let gn → g in L∞(Ω) and set
un = Sλ(gn) for all n ∈ N and u = Sλ(g). We have∫

Ω

|∇un|p−2(∇un,∇h)RN dz + ξ̂

∫
Ω

|un|p−2unh dz

+
∫
∂Ω

β(z)|un|p−2unhdσ +
∫

Ω

∂ϕλ(un)h dz

=
∫

Ω

gnh dz for all h ∈W 1,p(Ω), all n ∈ N.

(3.5)

In (3.5) we choose h = un ∈ W 1,p(Ω). Using (H1), the monotonicity of ∂ϕλ(·)
and the fact that ∂ϕλ(0) = 0, we obtain

‖∇un‖pp + ξ̂‖un‖pp ≤ c1‖un‖ for some c1 > 0, all n ∈ N,
⇒ {un}n≥1 ⊆W 1,p(Ω) is bounded.

(3.6)

For every n ∈ N, we have

−∆pun(z) + ξ̂|un(z)|p−2un(z) + ∂ϕλ(un(z)) = gn(z) for a.a. z ∈ Ω,
∂un
∂np

+ β(z)|un|p−2un = 0 on ∂Ω;
(3.7)

see (3.5) and Papageorgiou-Rǎdulescu [13].
From (3.6), (3.7) and Papageorgiou-Rǎdulescu [14, Proposition 7] we infer that

there exists c2 > 0 such that

‖un‖∞ ≤ c2 for all n ∈ N.

Then Lieberman [9, Theorem 2] implies that there exist τ ∈ (0, 1) and c3 > 0 such
that

un ∈ C1,τ (Ω) and ‖un‖C1,τ (Ω) ≤ c3 for all n ∈ N. (3.8)

The space C1,τ (Ω) is embedded compactly in C1(Ω). So, from (3.8) and by passing
to a subsequence if necessary, we may assume that

un → û in C1(Ω) as n→ +∞. (3.9)

Passing to the limit as n→ +∞ in (3.5) and using (3.9), we obtain∫
Ω

|∇û|p−2(∇û,∇h)RN dz + ξ̂

∫
Ω

|û|p−2ûh dz

+
∫
∂Ω

β(z)|û|p−2ûhdσ +
∫

Ω

∂ϕλ(û)h dz

=
∫

Ω

gh dz for all h ∈W 1,p(Ω),

⇒ û = Sλ(g) = u.

So, for the original sequence we have that un → u in C1(Ω) which implies Sλ(·) is
continuous.

To show the compactness of Sλ(·) we need to show also that it maps bounded sets
in L∞(Ω) into relatively compact sets in C1(Ω). So, let B ⊆ L∞(Ω) be bounded.
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Then as above, using Papageorgiou-Rǎdulescu [14, Proposition 7], we have that

Sλ(B) ⊆ L∞(Ω) is bounded.

Then Lieberman [9, Theorem 2] implies that there exist η ∈ (0, 1) and c4 > 0 such
that

u ∈ C1,η(Ω) and ‖u‖C1,η(Ω) ≤ c4 for all u ∈ Sλ(B).

Exploiting the compact embedding of C1,η(Ω) into C1(Ω), we obtain that

{u : u ∈ Sλ(B)} ⊆ C1(Ω) is relatively compact,

⇒ Sλ : L∞(Ω)→ C1(Ω) is a compact map.

�

Let N̂ : C1(Ω)→ L∞(Ω) be defined by

N̂(u) = Nf (u) + ξ̂|u|p−2u for all u ∈ C1(Ω)

with Nf (·) being the Nemitsky map corresponding to f and defined by

Nf (u)(·) = f(·, u(·)) for all u ∈ C1(Ω).

We have the following result concerning this map.

Proposition 3.2. If hypothesis (H2)(i) holds, then N̂ : C1(Ω) → L∞(Ω) is con-
tinuous and bounded (that is, maps bounded sets to bounded sets).

Proof. It is clear from hypothesis (H2)(i), that N̂(·) is well-defined, namely it maps
C1(Ω) into L∞(Ω). Suppose that un → u in C1(Ω). Then we can find ρ > 0 such
that ‖un‖C1(Ω) ≤ ρ.

Since f(z, ·, ·) is L∞-locally Hölder continuous, we can find µ ∈ (0, 1] and c5 > 0
such that

|f(z, un(z),∇un(z))− f(z, u(z),∇u(z))|
≤ c5[|un(z)− u(z)|µ + |∇un(z)−∇u(z)|µ] for a.a. z ∈ Ω, all n ∈ N,

⇒ N̂(un)→ N̂(u) in L∞(Ω),

⇒ N̂(·) is continuous.

From (H2)(i) it is clear that N̂(·) is bounded. �

On account of Propositions 3.1 and 3.2, the map Sλ◦N̂ : C1(Ω)→ C1(Ω), λ > 0,
is compact. We set

Tλ =
{
u ∈ C1(Ω) : u = tSλ(N̂(u)), 0 < t < 1

}
.

Proposition 3.3. If hypotheses (H1)–(H3) hold, then for every λ > 0, Tλ ⊆ C1(Ω)
is bounded.
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Proof. Let u ∈ Tλ. We have

u = t(Sλ ◦ N̂)(u),

⇒ 1
t
u = Sλ(N̂(u)),

⇒ 1
tp−1

∫
Ω

|∇u|p−2(∇u,∇h)RN dz +
ξ̂

tp−1

∫
Ω

|u|p−2uh dz

+
1

tp−1

∫
∂Ω

β(z)|u|p−2uhdσ +
∫

Ω

∂ϕλ
(1
t
u
)
h dz

=
∫

Ω

[f(z, u,∇u) + ξ̂|u|p−2u]h dz for all h ∈W 1,p(Ω)

⇒
∫

Ω

|∇u|p−2(∇u,∇h)RN dz + ξ̂

∫
Ω

|u|p−2uh dz

+
∫
∂Ω

β(z)|u|p−2uhdσ + tp−1

∫
Ω

∂ϕλ
(1
t
u
)
h dz

= tp−1

∫
Ω

[f(z, u,∇u) + ξ̂|u|p−2u]h dz for all h ∈W 1,p(Ω) .

(3.10)

Hypothesis (H2)(ii) implies that given ε, η > 0, we can find M > 0 such that

f(z, x, y)x ≤ [ϑ(z) + ε]|x|p for a.a. z ∈ Ω, all |x| ≥M , all |y| ≤ η. (3.11)

On the other hand, from hypothesis (H2)(i) we see that we can find c6 > 0 such
that

f(z, x, y)x ≤ c6(1 + |y|q) for a.a. z ∈ Ω, all |x| < M , all y ∈ RN . (3.12)

Since ϑ ∈ L∞(Ω), combining (3.11) and (3.12), we obtain

f(z, x, y)x ≤ [ϑ(z) + ε]|x|p + c7(1 + |y|q) (3.13)

for a.a. z ∈ Ω, all x ∈ R, all y ∈ RN , some c7 > 0.
In (3.10) we choose h = u ∈ W 1,p(Ω) and use the fact that ∂ϕλ(x)x ≥ 0 for all

x ∈ R (recall that ∂ϕλ(·) is monotone and ∂ϕλ(0) = 0). We obtain

‖∇u‖pp + ξ̂‖u‖pp +
∫
∂Ω

β(z)|u|pdσ

≤ tp−1

∫
Ω

[f(z, u,∇u)u+ ξ̂|u|p] dz

≤ tp−1

∫
Ω

[(ϑ(z) + ε)|u|p + c7(1 + |∇u|q) + ξ̂|u|p] dz (see (3.13))

≤
∫

Ω

[(ϑ(z) + ε)|u|p + c7(1 + |∇u|q) + ξ̂|u|p] dz (recall that ξ̂ > ‖ϑ‖∞),

⇒ ‖∇u‖pp +
∫
∂Ω

β(z)|u|pdσ −
∫

Ω

ϑ(z)|u|p dz − ε‖u‖p ≤ c8(1 + ‖u‖q)

for some c8 > 0,

⇒ (ĉ− ε)‖u‖p ≤ c8(1 + ‖u‖q) (see Lemma 2.3).

By choosing ε ∈ (0, ĉ) we have that

‖u‖p ≤ c9(1 + ‖u‖q) for some c9 > 0.
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Since q < p (see hypothesis (H2)(i)), we conclude that

Tλ ⊆W 1,p(Ω) is bounded. (3.14)

For every u ∈ Tλ we have

−∆pu(z) + ξ̂|u(z)|p−2u(z)

= tp−1[f(z, u(z),∇u(z)) + ξ̂|u(z)|p−2u(z)]− tp−1∂ϕλ
(1
t
u(z)

)
for a.a. z ∈ Ω,

∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

(3.15)

Note that

tp−1
∣∣∂ϕλ(1

t
u(z)

)∣∣ ≤ tp−2|u(z)| ≤ |u(z)| (recall that 2 ≤ p, 0 < t < 1). (3.16)

Then (3.14), (3.15), (3.16) imply that there exists c10 > 0 such that

‖u‖∞ ≤ c10 for all u ∈ Tλ (see [14]).

Invoking Lieberman [9, Theorem 2], we can find s ∈ (0, 1) and c11 > 0 such that

u ∈ C1,s(Ω) and ‖u‖C1,s(Ω) ≤ c11 for all u ∈ Tλ,

⇒ Tλ ⊆ C1(Ω) is bounded.

�

We consider the following approximation of problem (1.1):

−∆pu(z) + ∂ϕλ(u(z)) = f(z, u(z),∇u(z)) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω, λ > 0.

(3.17)

On account of Propositions 3.2 and 3.3, we can use Theorem 2.2 (the Leray-
Schauder alternative principle) and have the following existence result for problem
3.17.

Proposition 3.4. If hypotheses (H1)–(H3) hold, then for every λ > 0 problem 3.17
admits a solution uλ ∈ C1(Ω).

Finally we pass to the limit as λ → 0+ to produce a solution of the original
problem (1.1). So, we can state the following existence theorem for problem (1.1).

Theorem 3.5. If hypotheses (H1)–(H3) hold, then problem (1.1) admits a solution
û ∈ C1(Ω).

Proof. Let λn → 0+ and let un = uλn ∈ C1(Ω) be a solution of problem (3.17)n
(see Proposition 3.4). We have∫

Ω

|∇un|p−2(∇un,∇h)RN dz +
∫
∂Ω

β(z)|un|p−2unhdσ +
∫

Ω

∂ϕλn(un)h dz

=
∫

Ω

f(z, un,∇un)h dz for all h ∈W 1,p(Ω), all n ∈ N.
(3.18)

In (3.18) we choose h = un ∈W 1,p(Ω) and have

‖∇un‖pp +
∫
∂Ω

β(z)|un|pdσ
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≤
∫

Ω

f(z, un,∇un)un dz

≤
∫

Ω

[(ϑ(z) + ε)|un|p + c7(1 + |∇un|q)] dz for all n ∈ N (see (3.13)),

⇒ ‖∇un‖pp +
∫
∂Ω

β(z)|un|pdσ −
∫

Ω

ϑ(z)|un|p dz − ε‖un‖p ≤ c12(1 + ‖un‖q)

for some c12 > 0, all n ∈ N,

⇒ (ĉ− ε)‖un‖p ≤ c12(1 + ‖un‖q) for all n ∈ N (see Lemma 2.3).

Choose ε ∈ (0, ĉ) and recall that q < p. We infer that

{un}n≥1 ⊆W 1,p(Ω) is bounded. (3.19)

So, we may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω). (3.20)

Since ∂ϕλn(·) is Lipschitz continuous, from Marcus-Mizel [10] (see also Gasiński-
Papageorgiou [3, Proposition 2.4.24, p. 194], we have

∂ϕλn(un(·)) ∈W 1,p(Ω) for all n ∈ N.

Hence we can choose h = ∂ϕλn(un) ∈W 1,p(Ω) in (3.18). We obtain∫
Ω

|∇un|p−2(∇un,∇(∂ϕλn(un)))RN dz

+
∫
∂Ω

β(z)|un|p−2un∂ϕλn(un)dσ + ‖∂ϕλn(un)‖22

=
∫

Ω

f(z, un,∇un)∂ϕλn(un) dz for all n ∈ N.

(3.21)

From the chain rule for Sobolev functions of Marcus-Mizel [10] (see also Gasiński-
Papageorgiou [3, p. 194]), we have

∇(∂ϕλn(un)) = (∂ϕλn)′(un)∇un for all n ∈ N.

Hence∫
Ω

|∇un|p−2(∇un,∇(∂ϕλn(un)))RN dz =
∫

Ω

|∇un|p(∂ϕλn)′(un) dz (3.22)

for all n ∈ N. Since ∂ϕλn(·) is nondecreasing, we have (∂ϕλn)′(un) ≥ 0. Therefore

0 ≤
∫

Ω

|∇un|p−2(∇un,∇(∂ϕλn(un)))RN dz for all n ∈ N (see (3.22)). (3.23)

Recall that ∂ϕλn(un)un ≥ 0 for all n ∈ N. So

0 ≤
∫
∂Ω

β(z)|un|p−2un∂ϕλn(un)dσ for all n ∈ N (see hypothesis (H1)). (3.24)

We return to (3.21) and use (3.23) and (3.24). We obtain

‖∂ϕλn(un)‖22 ≤
∫

Ω

f(z, un,∇un)∂ϕλn(un) dz for all n ∈ N. (3.25)
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From hypothesis (H2)(i) we have

|f(z, un(z),∇un(z))| ≤ a(z)[1 + |un(z)|p−1 + |∇un(z)|q] for a.a. z ∈ Ω,

⇒ |f(z, un(z),∇un(z))|2 ≤ c13[1 + |un(z)|2(p−1) + |∇un(z)|2q]
for some c13 > 0, a.a. z ∈ Ω, all n ∈ N,

⇒ Nf (un) ∈ L2(Ω) and ‖Nf (un)‖2 ≤ c14 for some c14 > 0, all n ∈ N;

(3.26)

see (3.19) and recall that 2(p− 1) ≤ p∗, 2q = max{p− 1, 2}. Then from (3.25) and
the Cauchy-Schwarz inequality, we have

‖∂ϕλn(un)‖22 ≤ c14‖∂ϕλn(un)‖2 for all n ∈ N (see (3.26))

⇒ {∂ϕλn(un)}n≥1 ⊆ L2(Ω) is bounded.
(3.27)

We may assume that

∂ϕλn(un) w−→ e in L2(Ω) as n→ +∞. (3.28)

In (3.18) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → +∞ and
use (3.20), (3.26), (3.28). Then

lim
n→+∞

∫
Ω

|∇un|p−2(∇un,∇(un − u))RN dz = 0 ⇒ un → u in W 1,p(Ω) (3.29)

as n → +∞; see Motreanu-Motreanu-Papageorgiou [11, Proposition 2.72, p. 40].
We have

Nf (un)→ Nf (u) in Lp
′
(Ω) (see hypothesis (H2)(i)). (3.30)

Passing to the limit as n → +∞ in (3.18) and using (3.28), (3.29), (3.30), we
obtain ∫

Ω

|∇u|p−2(∇u,∇h)RN dz +
∫
∂Ω

β(z)|u|p−2uhdσ +
∫

Ω

eh dz

=
∫

Ω

f(z, u,∇u)h dz
(3.31)

for all h ∈W 1,p(Ω). Also we have

∂ϕλn(un(z)) ∈ ∂ϕ(Jλn(un(z)) for a.a. z ∈ Ω, all n ∈ N,

with Jλn = (id− λn∂ϕ)−1 being the resolvent map. So, we have

Jλn(un(z)) + λn∂ϕλn(un(z)) = un(z) for a.a. z ∈ Ω, all n ∈ N. (3.32)

If we set Ĵλn(un(·)) = Jλn(un(·)) ∈ L2(Ω) for all n ∈ N (see Gasiński-Papageorgiou
[3, p. 323]), from (3.27), (3.29) and (3.32) we have

Ĵλn(un)− un → 0 in L2(Ω) (recall that λn → 0+),

⇒ Ĵλn(un)→ u in L2(Ω),

⇒ e(z) ∈ ∂ϕ(u(z)) for a.a z ∈ Ω,

(3.33)

see (3.28) and use Gasiński-Papageorgiou [3, Proposition 3.2.15, p. 308]). Then
from (3.31) and (3.33) we infer that u ∈ W 1,p(Ω) is a solution of (1.1). As before
the nonlinear regularity theory of Lieberman [9] implies that u ∈ C1(Ω). �
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4. Example

In this section we see a particular case of problem (1.1), which corresponds to a
variational inequality. Let

ϕ(x) = i+(x) =

{
0 if x ≥ 0,
+∞ if x < 0,

(the indicator function of the positive semiaxis R+ = [0,+∞)). Then ϕ ∈ Γ0(R)
and we have

∂ϕ(x) = NR+(x) (the normal cone to R+ at x);

see Gasiński-Papageorgiou [3, p. 526]. We have

NR+(x) = {x∗ ∈ R : x∗(c− x) ≤ 0 for all c ≥ 0}.
Evidently 0 ∈ ∂ϕ(0). We consider a reaction term f(z, x, y) satisfying (H2). Then
according to Theorem 3.5 we can find

u ∈ C1(Ω) with u(z) ≥ 0 for all z ∈ Ω

which satisfies

−∆pu(z) = f(z, u(z),∇u(z)) for a.a. z ∈ Ω+ = {z ∈ Ω : u(z) > 0},
−∆pu(z) ≥ f(z, u(z),∇u(z)) for a.a. z ∈ Ω0 = {z ∈ Ω : u(z) = 0},

(−∆pu(z))u(z) = f(z, u(z),∇u(z))u(z) for a.a. z ∈ Ω,
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω.
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