POSITIVE SOLUTION CURVES OF AN INFINITE SEMIPOSITONE PROBLEM

RAJENDRAN DHANYA

Communicated by Ratnasingham Shivaji

Abstract

In this article we consider the infinite semipositone problem $-\Delta u=$ $\lambda f(u)$ in Ω, a smooth bounded domain in \mathbb{R}^{N}, and $u=0$ on $\partial \Omega$, where $f(t)=t^{q}-t^{-\beta}$ and $0<q, \beta<1$. Using stability analysis we prove the existence of a connected branch of maximal solutions emanating from infinity. Under certain additional hypothesis on the extremal solution at $\lambda=\Lambda$ we prove a version of Crandall-Rabinowitz bifurcation theorem which provides a multiplicity result for $\lambda \in(\Lambda, \Lambda+\epsilon)$.

1. Introduction

Consider the infinite semi-positone problem

$$
\begin{gather*}
-\Delta u=\lambda f(u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

where $f(t)=t^{q}-t^{-\beta}, 0<q<1$ and $\beta \in(0,1)$ and λ a positive parameter. Here Ω is assumed to be a bounded domain with smooth boundary in \mathbb{R}^{N}. Note that $f(0)=-\infty$ (hence the name infinite semipositone problem) and f is an increasing concave function in \mathbb{R}^{+}. Finding a positive solution for semipositone problems are always challenging and in fact proving the existence of multiple positive solutions are even more difficult. The existence of a positive solution for 1.1) when λ large is studied using sub-super solutions technique in [18]. Later in [10], it was additionally shown that when λ is large there exists a maximal positive solution for (1.1) which is in fact bounded below by the distance function $d(x, \partial \Omega)=\inf \{|x-y|: y \in \partial \Omega\}$. The aim of this work is to further understand this maximal branch of solution of (1.1) which emanates from ∞.

Definition 1.1. We say u is a solution of (1.1), if $u \in C^{2}(\Omega) \cap C_{0}^{1}(\bar{\Omega})$ and $u(x) \geq$ $c d(x, \partial \Omega)$ for some positive constant $c=c(\lambda)$.

Suppose that $\partial \Omega$ is smooth and u is a solution of $\left(P_{\lambda}\right)$, then the outward normal derivative $\frac{\partial u}{\partial \nu}\left(x_{0}\right)<0$ for all $x_{0} \in \partial \Omega$. Conversely if we assume that $\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}<0$ then by the tubular neighbourhood lemma $u(x) \geq c, d(x, \partial \Omega)$ for some $c>0$.

[^0]Definition 1.2. Let $\mathcal{S}=\left\{\left(\lambda, u_{\lambda}\right): u_{\lambda}\right.$ is a solution to 1.1), as in Definition 1.1\} and let $\Lambda=\inf \{\lambda>0: 1.1$ admits at least one solution $\}$.
Definition 1.3. We say $\lambda_{\infty}=\infty$ is a bifurcation point at infinity for 1.1) if there exists a sequence $\left(\lambda_{n}, u_{\lambda_{n}}\right) \in \mathcal{S}$ such that $\lambda_{n} \rightarrow \lambda_{\infty}$ and $\left\|u_{\lambda_{n}}\right\| \rightarrow \infty$.

The principal eigenvalue of the linearized operator associated to 1.1 is denoted by $\Lambda_{1}(\lambda)$ and defined as

$$
\begin{equation*}
\Lambda_{1}(\lambda)=\inf _{\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{2}=1}\left(\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}(u) \varphi^{2}\right) \tag{1.2}
\end{equation*}
$$

where u solves (1.1) as in definition 1.1. Since the solution $u(x)$ behaves like $d(x)$ near $\partial \Omega$, by Hardy's inequality the term $\int_{\Omega} f^{\prime}(u) \varphi^{2}$ make sense. The functional $\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}(u) \varphi^{2}$ is bounded below and coercive on the set $\left\{\varphi \in H_{0}^{1}(\Omega)\right.$: $\left.\|\varphi\|_{2}=1\right\}$ and hence a minimizer exists. Also one can show that $\Lambda_{1}(\lambda)$ satisfies the differential equation $-\Delta \psi-\lambda f^{\prime}(u) \psi=\Lambda_{1}(\lambda) \psi$ for some non-negative $\psi \in H_{0}^{1}(\Omega)$. We say that a solution u of 1.1 is stable if $\Lambda_{1}(\lambda)$ is strictly positive. Our main result is the following theorem.
Theorem 1.4. Assume that Ω is a bounded open set in \mathbb{R}^{N} with smooth boundary and consider the infinite semipositone problem (1.1) $-\Delta u=\lambda\left(u^{q}-u^{-\beta}\right)$ in Ω for $0<q, \beta<1$ and $u=0$ on $\partial \Omega$.
(a) There exists a $\Lambda \in(0, \infty)$ and for all $\lambda>\Lambda$, there exists a maximal positive solution u_{λ} solving 1.1. And $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$, i.e. λ_{∞} is a bifurcation point at infinity. Also if $\lambda \in(0, \Lambda)$, the problem 1.1 does not admit any positive solution.
(b) The maximal solution u_{λ} is stable for all $\lambda>\Lambda$.
(c) There exists an unbounded connected branch \mathcal{C} of solutions of (1.1) emanating from (∞, ∞) consisting of the maximal solution u_{λ}. The map $(\Lambda, \infty) \ni \lambda \rightarrow u_{\lambda}$ is of class C^{2} in $\mathbb{R} \times C_{e}(\bar{\Omega})$.

We prove results (a) and (b) in Section 2 (see Theorems 2.1 and 2.5). We introduce the operator \mathcal{A} and the space $C_{e}(\bar{\Omega})$ in section 3 and prove the differentiability of the map \mathcal{A} (in fact we prove \mathcal{A} is a C^{2} map) in the Appendix. Using the stability analysis and smoothness of the map \mathcal{A} we prove (c) in Theorem3.3. Existence of a positive solution for large λ for similar problems are well studied in literature. For example Shi-Yao 21] and Hernández et al. [16] consider the semipositone problem of the type $-\Delta u=\lambda u^{q}-u^{-\beta}$ with Dirichlet boundary condition in an arbitrary smooth domain Ω and establish the existence of positive solution bounded below by the distance function using sub-super solution techniques. We also use similar techniques to prove the existence of solution for large λ, but here in this work we additionally show that the maximal solution curve $\lambda \rightarrow u_{\lambda}$ is in fact smooth. Also see [19, 9, 14] for related problems where they prove stability results for infinite semipositone problems. In [2] the authors discuss a bifurcation phenomenon for semipositone problems $(f(0) \in(-\infty, 0))$ depending on the behaviour of $f(t)$ at infinity, i.e. depending on if f is sublinear, superlinear or asymptotically linear at infinity. Positive solutions curves of concave semipositone problems are also studied in [8] and 7].

In Section 4, existence of a non-negative weak solution at $\lambda=\Lambda$ is proved using a limiting argument (see Proposition 4.1). We conclude our paper by proving the following result.

Theorem 1.5. Either of the following two alternatives hold:
(a) The extremal solution $u_{\Lambda}(x)$ does not belong to the interior of $C_{e}(\bar{\Omega})$, or
(b) The point $\lambda=\Lambda$ is a bifurcation point, i.e. there exists a C^{2} curve $(\lambda(s), u(s)) \in$ \mathcal{S} where $s \in(-\epsilon, \epsilon)$ with $\lambda(0)=\Lambda, \lambda^{\prime}(0)=0, \lambda^{\prime \prime}(0)<0$ and $u(0)=u_{\Lambda}$.

To the best of our knowledge a complete bifurcation diagram for semipositone problem is understood in either of the following two situations: (a) in case of $f(0)=$ $-\infty$ and dimension $N=1$ (see [17]) or (b) in case of strictly semipositone problems, i.e. $-\infty<f(0)<0$ in a ball (see [6]). In the latter work the results were obtained by using shooting methods for ODE as any positive solution for a semipositone problem in a ball is known to be radially symmetric. In Theorem 1.5 we make an attempt to understand the bifurcation curve in arbitrary domain Ω under certain additional hypothesis on extremal function u_{Λ}. The second alternative gives a precise description of the bifurcation branch at $\lambda=\Lambda$. At least in dimension $N=1$ and $\beta \in\left(0, \frac{1}{2}\right)$, it is clear from [17, Theorem 2] that the first case does not arise. The second alternative also suggests the existence of multiple positive solutions for (1.1) when $\lambda \in(\Lambda, \Lambda+\epsilon)$ for some $\epsilon>0$. In fact the solution in the lower branch (the non-maximal solution) is also bounded below by $\tilde{c}(\lambda) d(x, \partial \Omega)$. It is expected that the solutions exhibit a "free boundary" condition(i.e. a non negative solution becomes zero in a set of positive measure) beyond $\Lambda+\epsilon$.

2. Stability analysis

Theorem 2.1. There exists a $\Lambda \in(0, \infty)$ and for all $\lambda>\Lambda$, there exists a positive function u_{λ} solving (1.1) as defined in 1.1. In fact, the function u_{λ} is the maximal solution for (1.1).

Proof. For λ large enough the existence of a positive solution bounded below by $d(x, \partial \Omega)$ is obtained in Section 5 of [10] for more general nonlinear function f. Here we briefly explain the sub and supersolution to be chosen for our particular nonlinearity $f(t)=t^{q}-t^{-\beta}$. Following the lines of proof of [10, Example 5.6] we define $\psi=\lambda^{r}\left(\phi_{1}+\phi_{1}^{\frac{2}{1+\beta}}\right)$, where ϕ_{1} is the first eigenfunction of $-\Delta$, and $1<r<\frac{1}{1-q+\epsilon}$ is chosen so that $-\Delta \psi \leq \lambda\left(\psi^{q}-\psi^{-\beta}\right)$. We define a super-solution $\phi=v_{\lambda}$ where

$$
\begin{equation*}
-\Delta v_{\lambda}=\lambda v_{\lambda}^{q} \text { in } \Omega, \quad v_{\lambda}=0 \text { on } \partial \Omega \tag{2.1}
\end{equation*}
$$

Then we know that $v_{\lambda}=\lambda^{\frac{1}{1-q}} v_{1}$ and hence for large λ we have $\psi \leq \phi$. Now by [10, Theorem 5.5] there exists a maximal solution u_{λ} in the ordered interval $[\psi, \phi]$. Thus the solution is bounded below by ψ and hence

$$
\begin{equation*}
u_{\lambda}(x) \geq \psi=\lambda^{r}\left(\phi_{1}+\phi_{1}^{\frac{1}{1+\beta}}\right), \quad \text { i.e. }\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty \text { as } \lambda \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Suppose u is a solution of 1.1]. Then, $-\Delta u \leq \lambda u^{q}$ and by comparison [20, Lemma 2.2] $u \leq v_{\lambda}$. Thus the u_{λ} that we constructed via sub-super solution is in fact the maximal positive solution of (1.1). Now define $\Lambda=\inf \left\{\lambda>0:\left(P_{\lambda}\right)\right.$ admits at least one solution $\}$. Next we claim that

$$
\begin{equation*}
0<\Lambda<\infty \tag{2.3}
\end{equation*}
$$

Clearly from our previous discussion $\Lambda<\infty$. We shall now prove that $\Lambda>0$. Suppose on the contrary that $\Lambda=0$, then there exists a sequence $\left(\lambda_{m}, u_{\lambda_{m}}\right) \in \mathcal{S}$ and $\lambda_{m} \rightarrow 0$. By comparison Lemma we have $0<u_{\lambda_{m}} \leq v_{\lambda_{m}}$. Therefore for large
m, since $v_{\lambda_{m}}=\lambda_{m}^{\frac{1}{1-q}} v_{1}$ we have $0<u_{\lambda_{m}}<1$ and $-\Delta u_{\lambda_{m}}=\lambda_{m}\left(u_{\lambda_{m}}^{q}-u_{\lambda_{m}}^{-\beta}\right)<0$. This leads to a contradiction, since by maximum principle any such solution $u_{\lambda_{m}}$ has to be necessarily negative and hence $\Lambda>0$.

Next we claim that for any $\lambda>\Lambda$ there exists at least one solution for (1.1). Fix $\lambda>\Lambda$, then by definition there exists a $\lambda^{\prime} \in(\Lambda, \lambda)$ such that (1.1) with $\lambda=\lambda^{\prime}$ admits at least one solution which we call ψ. Note that we do not claim ψ is a sub-solution for (1.1), but still we prove that there exists a $u_{\lambda}>\psi$ solving (1.1). Clearly, $\psi<v_{\lambda^{\prime}}<v_{\lambda}=: u_{0}$. Let

$$
\begin{gathered}
-\Delta u_{1}=\lambda\left(u_{0}^{q}-u_{0}^{-\beta}\right) \quad \text { in } \Omega \\
u_{1}=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

By the standard weak comparison principle for the functions in $W^{2, p}(\Omega)$ we obtain $u_{1}<u_{0}$. We claim that $\psi<u_{1}<u_{0}$. In fact,

$$
\begin{aligned}
-\Delta\left(u_{1}-\psi\right) & =\lambda f\left(u_{0}\right)-\lambda^{\prime} f(\psi) \geq \lambda f(\psi)-\lambda^{\prime} f(\psi) \\
& =\left(\frac{\lambda-\lambda^{\prime}}{\lambda^{\prime}}\right) \lambda^{\prime} f(\psi)=-\Delta(\delta \psi)
\end{aligned}
$$

where $\delta=\left(\lambda-\lambda^{\prime}\right) / \lambda^{\prime}>0$. Thus once again by comparison method we prove the claim. Iteratively if we define the sequence

$$
\begin{gathered}
-\Delta u_{n+1}=\lambda\left(u_{n}^{q}-u_{n}^{-\beta}\right) \quad \text { in } \Omega \\
u_{n+1}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

by mathematical induction we can easily prove that

$$
\psi<\cdots \leq u_{n+1} \leq u_{n} \leq \cdots u_{1}<u_{0}
$$

Thanks to the lower and upper bound of the sequence $\left\{u_{n}\right\}$, we have have $u_{n} \in$ $C_{0}^{1, \gamma}(\bar{\Omega}) \cap C^{2}(\Omega)$ (see [10, Theorem 5.2] and [13]). Hence the sequence $\left\{u_{n}\right\}$ is bounded say in $H_{0}^{1}(\Omega)$ and if we define $u_{\lambda}=\lim _{n \rightarrow \infty} u_{n}$, then u_{λ} is the maximal solution of (1.1).

Our next aim is to prove that the principal eigenvalue of the linearized operator about the maximal solution u_{λ} is positive. As a first step towards it we prove the following proposition.

Proposition 2.2. The maximal solution u_{λ} is semi-stable or the principal eigenvalue of the linearized operator

$$
\Lambda_{1}(\lambda)=\inf _{\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{2}=1}\left(\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}\left(u_{\lambda}\right) \varphi^{2}\right) \geq 0 .
$$

Proof. For a fixed $\lambda>\Lambda$ we consider the ϵ-approximate regular problem

$$
\begin{gather*}
\left.-\Delta w=\lambda\left((w+\epsilon)^{q}-(w+\epsilon)^{-\beta}\right)\right) \quad \text { in } \Omega \\
w>0 \quad \text { in } \Omega \tag{2.4}\\
w=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Let

$$
-\Delta v_{\lambda}^{\epsilon}=\lambda\left(v_{\lambda}^{\epsilon}+\epsilon\right)^{q} \text { in } \Omega \quad v_{\lambda}^{\epsilon}>0 \text { in } \Omega ; \quad v_{\lambda}^{\epsilon}=0 \text { on } \partial \Omega
$$

It is easy to check that v_{λ}^{ϵ} exists and $v_{\lambda}^{\epsilon}<v_{\lambda}$, Note that u_{λ} and v_{λ}^{ϵ} are respectively sub and super solutions of (2.4) and by standard monotone iteration there exists a $w_{\epsilon} \in\left[u_{\lambda}, v_{\lambda}\right]$ solving (2.4). In fact w_{ϵ} is the maximal solution of (2.4). By Hopf's
maximum principle for some $\theta_{1}>0$ we have $w_{\epsilon}(x)+\theta_{1} d(x, \partial \Omega) \leq v_{\lambda}^{\epsilon}$. Next we observe that the sequence $\left\{w_{\epsilon}\right\}$ is bounded independent of ϵ since

$$
\int_{\Omega}\left|\nabla w_{\epsilon}\right|^{2} \leq \lambda \int_{\Omega}\left(w_{\epsilon}+1\right)^{q+1} \leq \lambda \int_{\Omega}\left(v_{\lambda}+1\right)^{q+1}<\infty
$$

Clearly w_{ϵ} converges to some function \tilde{w} which is a weak solution of 1.1 and $u_{\lambda} \leq \tilde{w} \leq v_{\lambda}^{\epsilon}$. Since u_{λ} is the maximal solution of we must have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} w_{\epsilon}=u_{\lambda} \tag{2.5}
\end{equation*}
$$

Let us write $f_{\epsilon}(t)=(t+\epsilon)^{q}-(t+\epsilon)^{-\beta}$.
Claim: $\Lambda_{1}^{\epsilon}(\lambda)=\inf _{\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{2}=1}\left(\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f_{\epsilon}^{\prime}\left(w_{\epsilon}\right) \varphi^{2}\right) \geq 0$. On the contrary suppose that $\Lambda_{1}^{\epsilon}(\lambda)<0$ and $\varphi_{\epsilon} \in H_{0}^{1}(\Omega)$ be the associated non-negative eigenfunction of

$$
-\Delta \varphi_{\epsilon}-\lambda f_{\epsilon}^{\prime}\left(w_{\epsilon}\right) \varphi_{\epsilon}=\Lambda_{1}^{\epsilon}(\lambda) \varphi_{\epsilon}
$$

We will show that $\left(w_{\epsilon}+\theta \varphi_{\epsilon}\right)$ is a sub solution of (2.4). For a non-negative $\varphi \in$ $H_{0}^{1}(\Omega)$,

$$
\begin{aligned}
& \int_{\Omega} \nabla\left(w_{\epsilon}+\theta \varphi_{\epsilon}\right) \nabla \varphi-\lambda \int_{\Omega} f_{\epsilon}\left(w_{\epsilon}+\theta \varphi_{\epsilon}\right) \varphi \\
& =\lambda \int_{\Omega} f_{\epsilon}\left(w_{\epsilon}\right) \varphi-f_{\epsilon}\left(w_{\epsilon}+\theta \varphi_{e}\right) \varphi+\theta f_{\epsilon}^{\prime}\left(w_{\epsilon}\right) \varphi_{\epsilon} \varphi+\theta \Lambda_{1}^{\epsilon}(\lambda) \int_{\Omega} \varphi \varphi_{e} \\
& =o(\theta)+\theta \Lambda_{1}^{\epsilon}(\Lambda) \int_{\Omega} \varphi \varphi_{\epsilon}
\end{aligned}
$$

Choosing $\theta>0$ small enough we have $\left(w_{\epsilon}+\theta \varphi_{\epsilon}\right)$ is a sub-solution of 2.4). If required we may choose θ smaller so that $w_{\epsilon}(x)+\theta \varphi_{\epsilon} \leq v_{\lambda}^{\epsilon}$. Thus $w_{\epsilon}+\theta \varphi_{\epsilon}$ and v_{λ}^{ϵ} forms an ordered pair of sub and super solution of (2.4) and we obtain a solution $\tilde{w}_{\epsilon} \in\left[w_{\epsilon}+\theta \varphi_{\epsilon}, v_{\lambda}\right]$ of (2.4). This contradicts the fact that w_{ϵ} is the maximal solution of 2.4 and hence the claim is verified. Thus for every $\varphi \in H_{0}^{1}(\Omega)$ such that $\|\varphi\|_{2}=1$,

$$
\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f_{\epsilon}^{\prime}\left(w_{\epsilon}\right) \varphi^{2} \geq 0
$$

Now passing through the limit using 2.5 and Hardy's inequality we obtain that $\Lambda_{1}(\lambda) \geq 0$.

Proposition 2.3. The semi-stable solution of 1.1 is unique.
Proof. Let u_{λ} be the maximal solution of 1.1 and v_{λ} be any other solution of 1.1. We know that u_{λ} is semi-stable by Proposition 2.2 and assume that v_{λ} is also semi-stable. Then

$$
\int_{\Omega}|\nabla w|^{2} \geq \lambda \int_{\Omega} f^{\prime}\left(v_{\lambda}\right) w^{2}
$$

for all $w \in H_{0}^{1}(\Omega)$. In particular,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{\lambda}-v_{\lambda}\right)\right|^{2} \geq \lambda \int_{\Omega} f^{\prime}\left(v_{\lambda}\right)\left(u_{\lambda}-v_{\lambda}\right)^{2} \tag{2.6}
\end{equation*}
$$

Since v_{λ} and u_{λ} are both the solutions of 1.1

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{\lambda}-v_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(f\left(u_{\lambda}\right)-f\left(v_{\lambda}\right)\right)\left(u_{\lambda}-v_{\lambda}\right) \tag{2.7}
\end{equation*}
$$

Combining the above two equations we have

$$
\int_{\Omega}\left\{f\left(u_{\lambda}\right)-f\left(v_{\lambda}\right)-f^{\prime}\left(v_{\lambda}\right)\left(u_{\lambda}-v_{\lambda}\right)\right\}\left(u_{\lambda}-v_{\lambda}\right) \geq 0
$$

Since u_{λ} is the maximal solution this implies

$$
\int_{\left\{u_{\lambda}>v_{\lambda}\right\}}\left\{f\left(u_{\lambda}\right)-f\left(v_{\lambda}\right)-f^{\prime}\left(v_{\lambda}\right)\left(u_{\lambda}-v_{\lambda}\right)\right\}\left(u_{\lambda}-v_{\lambda}\right) \geq 0
$$

Since f is strictly concave the above integral is strictly negative if the Lebesgue measure of the set $\left\{x: u_{\lambda}(x)>v_{\lambda}(x)\right\}$ is non-zero. Thus $u_{\lambda} \equiv v_{\lambda}$, or the semistable solution is unique.

Next we shall prove our main result of this section, the maximal u_{λ} is stable. We consider here a different approximate problem (2.8) for a parameter $\theta<0$.

$$
\begin{gather*}
\left.-\Delta z=\lambda\left(z^{q}-z^{-\beta}+\theta\right)\right) \quad \text { in } \Omega \\
z>0 \quad \text { in } \Omega \tag{2.8}\\
z=0 \\
\text { on } \partial \Omega
\end{gather*}
$$

Lemma 2.4. For each $\theta \in\left(\theta_{0}, 0\right)$ there exists a function z_{θ} which is a maximal solution of 2.8 . If $\theta<\theta^{\prime}$ then $z_{\theta} \leq z_{\theta^{\prime}}$ and $z_{\theta} \neq z_{\theta^{\prime}}$.

Proof. Fix a $\lambda \in(\Lambda, \infty)$ and choose $\lambda^{\prime} \in(\Lambda, \lambda)$. Let

$$
-\Delta V_{\lambda}=\lambda \text { in } \Omega ; \quad V_{\lambda}=0 \text { in } \partial \Omega
$$

and u_{λ} be the maximal solution of (1.1). Define $\underline{z}_{\epsilon}=\frac{\lambda}{\lambda^{\prime}} u_{\lambda^{\prime}}-\epsilon V_{\lambda}$. Then for some positive constants C_{1}, C_{2}

$$
\underline{z}_{\epsilon}-u_{\lambda^{\prime}}=\left(\frac{\lambda-\lambda^{\prime}}{\lambda^{\prime}}\right) u_{\lambda^{\prime}}-\epsilon V_{\lambda} \geq\left(C_{1}-\epsilon C_{2}\right) d(x, \partial \Omega)
$$

If we choose $0<\epsilon<\left|\theta_{0}\right|$ for some small $\theta_{0}<0$, we have $\underline{z}_{\epsilon}>u_{\lambda^{\prime}}$. For all $\theta \in\left(\theta_{0}, 0\right)$ define

$$
\begin{equation*}
\underline{z}_{\theta}=\frac{\lambda}{\lambda^{\prime}} u_{\lambda^{\prime}}+\theta V_{\lambda} . \tag{2.9}
\end{equation*}
$$

Then $-\Delta \underline{z}_{\theta}=\lambda\left(u_{\lambda^{\prime}}^{q}-u_{\lambda^{\prime}}^{-\beta}+\theta\right) \leq \lambda\left(\underline{z}_{\theta}^{q}-\underline{z}_{\theta}^{-\beta}+\theta\right)$ and hence a sub solution of (2.8). It is easy to check that $\bar{z}_{\theta}=v_{\lambda}$ is a super solution of 2.8) for all $\theta<0$. Since $u_{\lambda^{\prime}}<v_{\lambda^{\prime}}$

$$
\underline{z}_{\theta}-\bar{z}_{\theta}=\frac{\lambda}{\lambda^{\prime}} u_{\lambda^{\prime}}+\theta V_{\lambda}-v_{\lambda}<\frac{\lambda}{\lambda^{\prime}} v_{\lambda^{\prime}}-v_{\lambda}=\left(\frac{\lambda}{\lambda^{\prime}}\left(\lambda^{\prime}\right)^{\frac{1}{1-q}}-\lambda^{\frac{1}{1-q}}\right) v_{1}<0 .
$$

Thus there exists a solution z_{θ} of 2.8 in between the ordered pair $\left[\underline{z}_{\theta}, \bar{z}_{\theta}\right]$. As before using comparison lemma one can easily observe that z_{θ} is the maximal solution of (2.8). Now let $\theta<\theta^{\prime}$ and $z_{\theta}, z_{\theta^{\prime}}$ be the maximal solutions of 2.8 and (2.8) with $\theta=\theta^{\prime}$ respectively. Then

$$
-\Delta z_{\theta} \leq \lambda\left(z_{\theta}^{q}-z_{\theta}^{-\beta}+\theta^{\prime}\right) \quad \text { and } \quad z_{\theta} \leq \bar{z}_{\theta^{\prime}}
$$

Since $z_{\theta^{\prime}}$ is the maximal solution of 2.8 with $\theta=\theta^{\prime}$ we conclude that $z_{\theta} \leq z_{\theta^{\prime}}$.
Theorem 2.5. The maximal solution u_{λ} of (1.1) is stable.

Proof. Let $\Lambda_{1}^{\theta}(\lambda)$ denote the principal eigenvalue of 2.8 . Repeating the calculations of Proposition 2.2 we can show that $\Lambda_{1}^{\theta}(\lambda) \geq 0$. If $\theta_{1}<\theta_{2}$ using the strict concavity of f and Lemma 2.4 we have for all $\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{2}=1$,

$$
\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}\left(z_{\theta_{1}}\right) \varphi^{2}<\int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}\left(z_{\theta_{2}}\right) \varphi^{2}
$$

Since $\inf _{\varphi \in H_{0}^{1}(\Omega)} \int_{\Omega}|\nabla \varphi|^{2}-\lambda \int_{\Omega} f^{\prime}\left(z_{\theta}\right) \varphi^{2}$ is attained, we have $\Lambda_{1}^{\theta_{1}}(\lambda)<\Lambda_{1}^{\theta_{2}}(\lambda)$. Observe that $z_{\theta} \rightarrow u_{\lambda}$ as $\theta \rightarrow 0^{-}$and $\lim _{\theta \rightarrow 0^{-}} \Lambda_{1}^{\theta}(\lambda)=\Lambda_{1}(\lambda)$. Thus

$$
\Lambda_{1}(\lambda)>\Lambda_{1}^{\theta}(\lambda) \geq 0
$$

which is the main result.

3. Bifurcation analysis

In the previous section we have shown that for each $\lambda>\Lambda$ there exists a maximal solution for (1.1). In this section we try to understand this maximal branch of solution using bifurcation theory. For $\lambda>\Lambda$, consider the function $u_{\lambda^{\prime}}$ which is a solution of (1.1) with $\lambda=\lambda^{\prime}$ for some $\lambda^{\prime} \in[\Lambda, \lambda)$ and v_{λ} as in 2.1). To ease notation we omit the subscript λ and denote $\psi=\psi_{\lambda}=u_{\lambda^{\prime}}$ and $\phi=\phi_{\lambda}=v_{\lambda}$, then clearly $\psi<\phi$. Let

$$
\begin{equation*}
\mathcal{C}_{\lambda}=\left\{u \in C_{0}(\bar{\Omega}): \psi \leq u \leq \phi\right\} . \tag{3.1}
\end{equation*}
$$

For each $u \in \mathcal{C}_{\lambda}$ there exists $w \in C_{0}^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$ which is a solution of

$$
\begin{equation*}
-\Delta w=\lambda f(u) \text { in } \Omega, \quad w=0 \text { on } \partial \Omega \tag{3.2}
\end{equation*}
$$

The existence of $w \in W^{2, p}(\Omega)$ easily follows from the lower estimate on u and the regularity of w by [13] (see Section 5 of [10] for the details). Since we would repeatedly use the regularity result of Gui-Lin [13], for the sake of completeness we quote the result below.

Theorem 3.1 (Gui-Lin [13, Prop. 3.4]). Let Ω be a bounded Lipschitz domain in \mathbb{R}^{n}, and suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
|\Delta u(x)| \leq M d(x)^{-\beta} \quad \text { and } \quad|u(x)| \leq M d(x)^{\alpha}
$$

for some positive constants M, α. Then there exists some $\gamma \in(0,1)$ depending upon β and α such that $\|u\|_{C^{1, \gamma}(\bar{\Omega})} \leq C(M, \alpha, \beta)$.

We can in fact prove that the solution w of 3.2 belongs to \mathcal{C}_{λ}. One can observe that $w \leq \phi$ since ϕ is a supersolution of (3.2). It is not clear if ψ is a sub solution of (3.2) or not. But still by the specific choice of ψ we can show that

$$
\begin{equation*}
-\Delta(w-\psi)=\lambda f(u)-\lambda^{\prime} g(\psi) \geq \frac{\lambda-\lambda^{\prime}}{\lambda^{\prime}}(-\Delta \psi) \tag{3.3}
\end{equation*}
$$

Since $\lambda^{\prime}<\lambda$ it follows that $w>\psi$ and hence $w \in \mathcal{C}_{\lambda}$. For a fixed $\lambda \in(\Lambda, \infty)$ we define the map

$$
\begin{equation*}
\mathcal{A}: \mathcal{C}_{\lambda} \rightarrow \mathcal{C}_{\lambda} \text { is defined as } \mathcal{A}(u)=w \text { if } w \text { is a solution of } 3.2 . \tag{3.4}
\end{equation*}
$$

We aim to employ the well known abstract setting of bifurcation theory to prove the existence of a connected branch of solutions. If we consider the map $\mathcal{A}: \mathcal{C}_{\lambda} \rightarrow \mathcal{C}_{\lambda}$ it is not possible to use the implicit function theorem since the set $\mathcal{C}_{\lambda} \subset C_{0}(\bar{\Omega})$ has empty interior. Hence we introduce the space $C_{e}(\bar{\Omega})$ as in 1] and consider the set \mathcal{C}_{λ} with the topology induced from $C_{e}(\bar{\Omega})$ in which \mathcal{C}_{λ} has nonempty interior.

Let $e \in C^{2}(\bar{\Omega})$ denote the unique positive solution of

$$
\begin{aligned}
& -\Delta e=1 \quad \text { in } \Omega \\
& e=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Then $e(x)>0$ in $\Omega, \frac{\partial e}{\partial \nu}<0$ on $\partial \Omega$ and thus $e(x) \geq k d(x, \partial \Omega)$ for some constant $k>0 . C_{e}(\bar{\Omega})$ is the set of functions in $u \in C_{0}(\bar{\Omega})$ such that $-t e \leq u \leq t e$ for some $t \geq 0$. $C_{e}(\bar{\Omega})$ equipped with $\|u\|_{e}=\inf \{t>0:-t e \leq u \leq t e\}$ is a Banach space. Also the following continuous embedding holds:

$$
C_{0}^{1}(\bar{\Omega}) \hookrightarrow C_{e}(\bar{\Omega}) \hookrightarrow C_{0}(\bar{\Omega})
$$

Further $C_{e}(\bar{\Omega})$ is an ordered Banach space(OBS) whose positive cone $P_{e}=\{u \in$ $\left.C_{e}(\bar{\Omega}): u(x) \geq 0\right\}$ is normal and has non empty interior. In particular the interior of P_{e} consists of all those functions $u \in C(\bar{\Omega})$ with $t_{1} e \leq u \leq t_{2} e$ for some $t_{1}, t_{2}>0$. Define

$$
\begin{equation*}
\mathcal{M}_{\lambda}=\left\{u \in C_{e}(\bar{\Omega}): \psi \leq u \leq \phi\right\} \tag{3.5}
\end{equation*}
$$

Using the lower and upper bounds for ψ and ϕ in terms of $d(x, \Omega)$ we find that set theoretically \mathcal{C}_{λ} is same as \mathcal{M}_{λ}. But topologically they are different and in fact \mathcal{M}_{λ} has non empty interior which we denote by \mathcal{U}_{λ} where

$$
\begin{equation*}
\mathcal{U}_{\lambda}=\left\{u \in \mathcal{M}_{\lambda}: \psi+t_{1} e \leq u \leq \phi-t_{2} e \text { for some } t_{1}, t_{2}>0\right\} \tag{3.6}
\end{equation*}
$$

By definition the set \mathcal{U}_{λ} is open and we denote the restriction of the map \mathcal{A} to \mathcal{U}_{λ} as \mathcal{A} itself. From (3.4) \mathcal{A} maps \mathcal{U}_{λ} to \mathcal{C}_{λ}. In the next proposition we prove that \mathcal{A} maps \mathcal{U}_{λ} to itself and it is a C^{2} map.

Proposition 3.2. The map $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is twice continuously differentiable. The map $\mathcal{A}^{\prime}(u): C_{e}(\bar{\Omega}) \rightarrow C_{e}(\bar{\Omega})$ is continuous linear and compact.

Proof. Let $u \in \mathcal{U}_{\lambda}$, i.e there exists some $t_{1}, t_{2}>0$ such that $\psi+t_{1} e \leq u \leq \phi-t_{2} e$ and let $\mathcal{A}(u)=w$. Then $-\Delta(w-\phi)<0$ in Ω and $w-\phi=0$ on $\partial \Omega$, and by Hopf Maximum principle there exists a $\tilde{t}_{2}>0$ for which $w \leq \phi-\tilde{t}_{2} e$. From our previous discussion (3.3) if we take $\tilde{t}_{1}=\frac{\lambda-\lambda^{\prime}}{\lambda}$ we find $w \geq \psi+\tilde{t}_{1} e$. Thus \mathcal{A} maps \mathcal{U}_{λ} into itself. Proof of the smoothness of the map \mathcal{A} and the compactness of $\mathcal{A}^{\prime}(u)$ is much technical and we shall give the details in the Appendix.

Next we shall treat λ as a variable and define the map $A:(\Lambda, \infty) \times \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ as $A(\lambda, u)=w$ if w is a solution of

$$
\begin{equation*}
-\Delta w=\lambda f(u) \text { in } \Omega, \quad w=0 \text { on } \partial \Omega \tag{3.7}
\end{equation*}
$$

Fix λ_{1}, λ_{2} such that $\Lambda<\lambda_{1}<\lambda_{2}<\infty$. Then for all $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$ we can in fact fix the indexed set \mathcal{U}_{λ} independent of λ in the following way. By the definition of Λ there exists a $\lambda^{\prime} \in\left[\Lambda, \lambda_{1}\right)$ and (1.1) with $\lambda=\lambda^{\prime}$ is solvable. Let $\psi=u_{\lambda^{\prime}}$ and $\phi=v_{\lambda_{2}}$ and let \mathcal{M}_{λ} and \mathcal{U}_{λ} defined as before in (3.5) and (3.6) for this choice of ψ and ϕ. Now \mathcal{U}_{λ} is independent of λ for all $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$. For this particular choice of $\mathcal{U}=\mathcal{U}_{\lambda}$ we can prove that the map A is C^{2} in λ and u variable in $\left(\lambda_{1}, \lambda_{2}\right) \times \mathcal{U}$.
Theorem 3.3. There exists a connected branch of positive maximal solutions of (1.1) bifurcating from $\lambda_{\infty}=\infty$.

Proof. Fix an open interval $I \subset(\Lambda, \infty)$ and $\overline{\mathrm{I}}$ compactly contained in (Λ, ∞). Let $I=\left(\lambda_{1}, \lambda_{2}\right)$ and $\psi=u_{\lambda^{\prime}}$ and $\phi=v_{\lambda_{2}}$ as before. Thus for all $\lambda \in I$ we define
$\mathcal{M}=\left\{u \in C_{e}(\bar{\Omega}): \psi \leq u \leq \phi\right\}$ and \mathcal{U} to be the interior of \mathcal{M}. Consider the map $F: I \times \mathcal{U} \rightarrow \mathcal{U}$ defined as

$$
\begin{equation*}
F(\lambda, u)=u-A(\lambda, u) \tag{3.8}
\end{equation*}
$$

Clearly the zeroes of F are the solutions of (1.1) and $F\left(\lambda, u_{\lambda}\right)=0$ where u_{λ} is the maximal solution of 1.1. Note that $F: I \times \mathcal{U} \rightarrow \mathcal{U}$ is a C^{2} map and $\partial_{u} F(\lambda, u)=$ $I-\partial_{u} A(\lambda, u)$ is a compact perturbation of identity. Fix $\lambda_{0} \in I$ and let $u_{0}=u_{\lambda_{0}}$ be the maximal solution of (1.1) with $\lambda=\lambda_{0}$, then $F\left(\lambda_{0}, u_{0}\right)=0$. From Theorem 2.5 we know that u_{0} is a stable solution and hence $\partial_{u} F\left(\lambda_{0}, u_{0}\right)$ is one-one. Now by Fredholm alternative it is onto as well. Thus the linear map $\partial_{u} F\left(\lambda_{0}, u_{0}\right)$ is bijective and continuous, hence by open mapping theorem $\partial_{u} F\left(\lambda_{0}, u_{0}\right)$ has a continuous inverse. Now we can apply implicit function theorem around $\left(\lambda_{0}, u_{0}\right)$ and deduce that there exists a C^{2} curve $(\lambda, u(\lambda)) \in\left(\lambda_{0}-\epsilon, \lambda_{0}+\epsilon\right) \times \mathcal{U}$ such that the set of all solutions of $F(\lambda, u)=0$ in a neighbourhood of $\left(\lambda_{0}, u_{0}\right)$ is given by $(\lambda, u(\lambda))$. Note that this $u(\lambda)$ may be different from the maximal solution u_{λ}.

If we can show that $\lambda \longmapsto u_{\lambda}$ (where u_{λ} is the maximal solution) is continuous then by the uniqueness of the solution near $\left(\lambda_{0}, u_{0}\right)$ we have a $u(\lambda)=u_{\lambda}$. On the contrary suppose $\lambda \longmapsto u_{\lambda}$ is not continuous at λ_{0}. i.e. there exists a sequence $\lambda_{n} \rightarrow \lambda_{0}$ such that $u_{\lambda_{n}} \nrightarrow u_{0}$. One can use Hardy's inequality to prove that $\left\{u_{\lambda_{n}}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ and hence up to a sub sequence $u_{\lambda_{n}} \rightharpoonup \tilde{u}$ in $H_{0}^{1}(\Omega)$. It is also easy to check that \tilde{u} is a solution of $\left(P_{\lambda_{0}}\right)$. Since u_{0} is the maximal solution of ($P_{\lambda_{0}}$) we have

$$
\begin{equation*}
\tilde{u} \leq u_{0} \quad \text { and } \quad \tilde{u} \neq u_{0} \tag{3.9}
\end{equation*}
$$

On the other hand we have $u\left(\lambda_{n}\right) \rightarrow u_{0}$ and $u\left(\lambda_{n}\right) \leq u_{\lambda_{n}}$. Taking limit as $n \rightarrow \infty$ we find $u_{0} \leq \tilde{u}$ which contradicts $\left(3.9\right.$). We have now $u(\lambda)=u_{\lambda}$ and hence by implicit function theorem $\lambda \rightarrow u_{\lambda}$ is a C^{2} map which completes the proof of theorem.

Remark 3.4. The smoothness of the map $\lambda \rightarrow u_{\lambda}$ for $\lambda \in(\Lambda, \infty)$ is completely determined by the smoothness of the operator \mathcal{A}. We can in fact prove that the map is infinitely many times differentiable, hence $\lambda \rightarrow u_{\lambda}$ is a C^{∞} map.

The proof of our main result now follows from Theorem 2.1. equations 2.2), (2.3), Theorems 2.5, 3.3 and Remark 3.4.

4. Bifurcation analysis at $\lambda=\Lambda$

Proposition 4.1. There exists a non-negative solution u_{Λ} solving (1.1) with $\lambda=\Lambda$ in the weak sense. The Lebesgue measure of the set $\left\{x: u_{\Lambda}(x)=0\right\}$ is zero.

Proof. Let $\left\{u_{n}\right\}$ denote the sequence of maximal solutions of $\left(P_{\lambda_{n}}\right)$ where $\lambda_{n} \downarrow \Lambda$ and $\lambda_{n}<\bar{\lambda}$. If \bar{v} denote the solution of (2.1) for $\lambda=\bar{\lambda}$, we have $0<u_{n+1} \leq u_{n} \leq \bar{v}$ and

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{2}=\lambda_{n} \int_{\Omega}\left(u_{n}^{q+1}-u_{n}^{1-\beta}\right) \leq \lambda_{n} \int_{\Omega} u_{n}^{q+1} \leq \bar{\lambda} \int_{\Omega} \bar{v}^{q+1} \tag{4.1}
\end{equation*}
$$

Thus the sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ and denote the weak limit of u_{n} as

$$
\begin{equation*}
u_{\Lambda}:=\lim _{n \rightarrow \infty} u_{n} . \tag{4.2}
\end{equation*}
$$

We will show that u_{Λ} is in fact a solution of 1.1 with $\lambda=\Lambda$ in the weak sense. As a first step we shall prove that $\left\{x \in \Omega: u_{\Lambda}(x)=0\right\}$ has Lebesgue measure zero. Let ϕ_{1} be the first eigenfunction of $-\Delta$ and $\gamma \in(0,1), \epsilon>0$. Consider the function
$\psi=\left(\phi_{1}+\epsilon\right)^{\gamma}-\epsilon^{\gamma} \in H_{0}^{1}(\Omega)$. Then from a direct computation we find $-\Delta \psi \geq 0$ and hence $<-\Delta u_{n}, \psi>_{H_{0}^{1}(\Omega) \times H^{-1}(\Omega)} \geq 0$ which implies

$$
\begin{equation*}
\lambda_{n} \int_{\Omega}\left(u_{n}^{q}-u_{n}^{-\beta}\right) \psi \geq 0 \tag{4.3}
\end{equation*}
$$

Thus

$$
\int_{\Omega} u_{n}^{-\beta}\left(\left(\phi_{1}+\epsilon\right)^{\gamma}-\epsilon^{\gamma}\right) \leq \int_{\Omega} u_{n}^{q}\left(\left(\phi_{1}+\epsilon\right)^{\gamma}-\epsilon^{\gamma}\right)
$$

Now letting $\epsilon \rightarrow 0$ and $\gamma \rightarrow 0$ we have $\int_{\Omega} u_{n}^{-\beta} \leq \int_{\Omega} u_{n}^{q} \leq \int_{\Omega} \bar{v}^{q}<\infty$. Once again using Fatou's lemma,

$$
\begin{equation*}
\int_{\Omega} u_{\Lambda}^{-\beta}<\infty \tag{4.4}
\end{equation*}
$$

which in turn implies $\left\{x \in \Omega: u_{\Lambda}(x)=0\right\}$ is of Lebesgue measure zero. Now we will prove that u_{Λ} is a weak solution of (1.1) with $\lambda=\Lambda$. We have

$$
\int_{\Omega} \nabla u_{n} \nabla \varphi=\lambda_{n} \int_{\Omega}\left(u_{n}^{q}-u_{n}^{-\beta}\right) \varphi \quad \text { for all } \varphi \in C_{c}^{\infty}(\Omega)
$$

The only difficulty arises while passing through the limit in the term involving $u_{n}^{-\beta}$. But note that $u_{n}^{-\beta}|\varphi| \leq u_{\Lambda}^{-\beta}\|\varphi\|_{\infty} \in L^{1}(\Omega)$ and by dominated convergence theorem u_{Λ} is a weak solution of (1.1) with $\lambda=\Lambda$.

Next we shall discuss a sufficient condition that ensures the existence of multiple solutions for (1.1). We make a crucial assumption that the non-negative solution u_{Λ} belongs to $C_{e}(\bar{\Omega})$ and is bounded below by $c d(x, \partial \Omega)$ for some $c>0$. By the above assumption u_{Λ} is positive and it can be shown that the (1.1) with $\lambda=\Lambda$ admits a unique positive solution. Indeed, if \tilde{u}_{Λ} is another positive solution of (1.1) with $\lambda=\Lambda$ then we can show that a convex combination of u_{Λ} and \tilde{u}_{Λ} is a positive solution of 1.1) with $\lambda=\lambda^{\prime}$ for some $\lambda^{\prime}<\Lambda$ which is impossible (see [19, Proposition 5] for details). Now the uniqueness in the class of positive solutions imply that u_{Λ} is maximal and by Proposition $2.2, \Lambda_{1}(\Lambda)=0$. Indeed, since u_{Λ} is maximal it is clear that $\Lambda_{1}(\Lambda) \geq 0$. Suppose $\Lambda_{1}(\Lambda)>0$, then implicit function theorem would guarantee the existence of a positive solution for some $\lambda<\Lambda$ which would contradict the definition of Λ. Next we shall prove a local bifurcation result of Crandall-Rabinowitz [3] for an infinite semipositone problem. Similar ideas of the proof were used in [4, 11] when the authors studied a positone convex non-linearity.

Lemma 4.2. The solutions of $F(\lambda, u)=0$ near $\left(\Lambda, u_{\Lambda}\right)$ are described by a curve $(\lambda(s), u(s))=\left(\Lambda+\tau(s), u_{\Lambda}+s \phi_{\Lambda}+x(s)\right)$ where $s \rightarrow(\tau(s), x(s)) \in \mathbb{R} \times C_{e}(\bar{\Omega})$ is a continuously differentiable function near $s=0$ with $\tau(0)=\tau^{\prime}(0)=0, \tau^{\prime \prime}(0)>0$ and $x(0)=x^{\prime}(0)=0$. Moreover τ is of class C^{2} near 0 .

Proof. Consider the map $F(\lambda, u)$ and the Gateaux derivative of F at $\left(\Lambda, u_{\Lambda}\right)$. Clearly $\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right)=-\partial_{\lambda} A\left(\Lambda, u_{\Lambda}\right)=-\frac{u_{\Lambda}}{\Lambda}$. Now consider the null space of the linear operator $\partial_{u} F\left(\Lambda, u_{\Lambda}\right)$. Since $\Lambda_{1}(\Lambda)=0$, there exists a $\phi_{\Lambda} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
-\Delta \phi_{\Lambda}=\Lambda f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda} \quad \text { in } \Omega \\
\phi_{\Lambda}=0 \\
\text { on } \partial \Omega
\end{gathered}
$$

By the interior regularity results the eigenfunction $\phi_{\Lambda} \in C^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ itself. Now by [12, Theorem 8.16], the principal eigenvalue $\Lambda_{1}(\Lambda)$ is simple and the corresponding eigenfunction ϕ_{Λ} is positive. Hence $\operatorname{ker}\left(\partial_{u} F\left(\Lambda, u_{\Lambda}\right)\right)$ is one dimensional and is
spanned by ϕ_{Λ}. We claim that $\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \notin \operatorname{ker} \partial_{u} F\left(\Lambda, u_{\Lambda}\right)$. If so, then for some constant k we have $u_{\Lambda}=k \phi_{\Lambda}$. This implies $f\left(u_{\Lambda}\right)=k f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda}$ which is impossible since RHS is has a constant sign and LHS changes its sign inside Ω and hence that $\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \notin \operatorname{ker} \partial_{u} F\left(\Lambda, u_{\Lambda}\right)$.

Let X be any complement of the span of $\left\{\phi_{\Lambda}\right\}$ in $C_{e}(\bar{\Omega})$ and the map $\theta: \mathbb{R} \times \mathbb{R} \times$ $X \rightarrow C_{e}(\bar{\Omega})$ be defined as

$$
\theta(s, \tau, x)=F\left(\Lambda+\tau, u_{\Lambda}+s \phi_{\Lambda}+x\right)
$$

Then, we claim that $\partial_{\tau, x} \theta(0,0,0)=\left(\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right), \partial_{u} F\left(\Lambda, u_{\Lambda}\right)\right)$ is an isomorphism from $\mathbb{R} \times X$ on to X. Since $\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \notin$ Range $\partial_{u} F\left(\Lambda, u_{\Lambda}\right)$ the map $\partial_{\tau, x} \theta(0,0,0)$ is one-one in $\mathbb{R} \times X$. Now by Fredholm alternative $\partial_{\tau, x} \theta(0,0,0)$ is also onto. Now by implicit function theorem there exists an $\epsilon>0$ and a C^{2} function $p:(-\epsilon, \epsilon) \rightarrow \mathbb{R} \times X$ such that $p(s)=(\tau(s), x(s))$ and $\theta(s, p(s))=0, \tau(0)=0$ and $x(0)=0$. i.e., $F\left(\Lambda+\tau(s), u_{\Lambda}+s \phi_{\Lambda}+x(s)\right)=0$. Now differentiating with respect to s variable and evaluating at $s=0$, we obtain

$$
\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \tau^{\prime}(0)+\partial_{u} F\left(\Lambda, u_{\Lambda}\right) x^{\prime}(0)=0
$$

Since $\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \notin \operatorname{Range}\left(\partial_{u} F\left(\Lambda, u_{\Lambda}\right)\right)$ we have $\tau^{\prime}(0)=x^{\prime}(0)=0$. Once again differentiating $F\left(\Lambda+\tau(s), u_{\Lambda}+s \phi_{\Lambda}+x(s)\right)$ we obtain

$$
\begin{equation*}
\partial_{\lambda} F\left(\Lambda, u_{\Lambda}\right) \tau^{\prime \prime}(0)+\partial_{u u} F\left(\Lambda, u_{\Lambda}\right) \phi_{\Lambda}^{2}+\partial_{u} F\left(\Lambda, u_{\Lambda}\right) x^{\prime \prime}(0)=0 \tag{4.5}
\end{equation*}
$$

Let us write the middle term in the above expression as $W=\partial_{u u} F\left(\Lambda, u_{\Lambda}\right) \phi_{\Lambda}^{2}$. Then one can easily check that

$$
\begin{gathered}
\Delta W=\Lambda f^{\prime \prime}\left(u_{\Lambda}\right) \phi_{\Lambda}^{2} \quad \text { in } \Omega \\
W=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Since f is concave, by maximum principle $W \geq 0$. Now call $w=\partial_{u} F\left(\Lambda, u_{\Lambda}\right) x^{\prime \prime}(0)$ which by definition is equal to $x^{\prime \prime}(0)-\partial_{u} A\left(\Lambda, u_{\Lambda}\right) x^{\prime \prime}(0)$. If $w_{1}=\partial_{u} A\left(\Lambda, u_{\Lambda}\right) x^{\prime \prime}(0)$ then w_{1} solves

$$
\begin{gathered}
-\Delta w_{1}=\Lambda f^{\prime}\left(u_{\Lambda}\right) x^{\prime \prime}(0) \quad \text { in } \Omega \\
w_{1}=0 \\
\text { on } \partial \Omega
\end{gathered}
$$

Thus $\int_{\Omega} \nabla w_{1} \nabla \phi_{\Lambda}=\int_{\Omega} \Lambda f^{\prime}\left(u_{\Lambda}\right) x^{\prime \prime}(0) \phi_{\Lambda}$. From the definition of ϕ_{Λ}, we also have $\int_{\Omega} \nabla w_{1} \nabla \phi_{\Lambda}=\int_{\Omega} \Lambda f^{\prime}\left(u_{\Lambda}\right) w_{1} \phi_{\Lambda}$. Thus

$$
\int_{\Omega} \Lambda f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda} w=0
$$

Now multiplying 4.5) by $\Lambda f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda}$ and integrating over Ω,

$$
-\tau^{\prime \prime}(0) \int_{\Omega} u_{\Lambda} f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda}+\int_{\Omega} W \Lambda f^{\prime}\left(u_{\Lambda}\right) \phi_{\Lambda}=0
$$

We know f is monotonically increasing and ϕ_{Λ} is a non-negative function and $W \geq 0$. Thus $\tau^{\prime \prime} \geq 0$ which completes the proof.

Proof of Theorem 1.5. Suppose that alternative (a) does not hold. Then from the properties of $C_{e}(\bar{\Omega})$ (see Section 3$)$ there exists a constant $c_{\Lambda}>0$ such that $u_{\Lambda}(x) \geq$ $c_{\Lambda} d(x, \partial \Omega)$. Thus $\Lambda_{1}(\Lambda)$ is well defined and is non-negative. Now by the definition of Λ the principal eigenvalue $\Lambda_{1}(\Lambda)$ cannot be positive and hence the proof of Lemma 4.2 is applicable and which completes the Theorem 1.5.

5. Appendix

Proposition 5.1. The map $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is a C^{2} map.
Proof. Let $u \in \mathcal{U}_{\lambda}$, i.e. there exists some $t_{1}, t_{2}>0$ such that $\psi+t_{1} e \leq u \leq \phi-t_{2} e$ and let $\mathcal{A}(u)=w$. Then $-\Delta(w-\phi)<0$ in Ω and $w-\phi=0$ on $\partial \Omega$, and by Hopf Maximum principle there exists a $\tilde{t}_{2}>0$ for which $w \leq \tilde{t}^{\phi}-\tilde{t}_{2} e$. From our previous discussion (3.3) if we take $\tilde{t}_{1}=\frac{\lambda-\lambda^{\prime}}{\lambda}$ we find $w \geq \psi+\tilde{t}_{1} e$. Thus \mathcal{A} maps \mathcal{U}_{λ} into itself.
Step I. $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is continuous. Let $h \in C_{e}(\bar{\Omega})$ with $\|h\|_{C_{e}(\bar{\Omega})}$ small so that $u+h \in$ \mathcal{U}_{λ} and $\mathcal{A}(u+h)=w_{h}$. Then $\left(w_{h}-w\right)$ satisfies $-\Delta\left(w_{h}-w\right)=\lambda(f(u+h)-f(u))$ in Ω and $w_{h}-w=0$ on $\partial \Omega$. For $p \in\left(1, \frac{1}{\beta}\right)$ using L^{p} estimate and dominated convergence theorem we find

$$
\begin{equation*}
\left\|w_{h}-w\right\|_{W^{2, p}(\Omega)} \leq C\|f(u+h)-f(u)\|_{L^{p}(\Omega)} \rightarrow 0 \quad \text { as }\|h\|_{C_{e}(\bar{\Omega})} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

Now since w_{h} and w belongs to \mathcal{U}_{λ} we have $\left|w_{h}-w\right| \leq C d(x, \partial \Omega)$. Now we can apply Theorem 3.1 and obtain $\left\|w_{h}-w\right\|_{C^{1, \gamma}(\Omega)}$ is bounded. Thanks to Ascoli-Arzela theorem and 5.1 we have $w_{h} \rightarrow w$ in $C_{0}^{1}(\bar{\Omega})$. Finally using the continuity of the embedding $C_{0}^{1}(\bar{\Omega}) \hookrightarrow C_{e}(\bar{\Omega})$ we conclude that $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is continuous.
Step II. The map $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is C^{1}. For a given $u \in \mathcal{U}_{\lambda}$ and $h \in C_{e}(\bar{\Omega})$ consider the solution operator z defined as

$$
\begin{equation*}
-\Delta z=\lambda f^{\prime}(u) h \text { in } \Omega \quad \text { and } \quad u=0 \text { on } \partial \Omega \tag{5.2}
\end{equation*}
$$

Let us denote $\xi_{\lambda} \in C_{0}^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$ be the unique solution of

$$
-\Delta \xi_{\lambda}=\lambda \xi_{\lambda}^{-\beta} \text { in } \Omega \quad \text { and } \quad \xi_{\lambda}=0 \text { on } \partial \Omega
$$

The existence and behaviour of the solution ξ_{λ} near $\partial \Omega$ is studied in [5]. It is well known that $\xi_{\lambda} \sim d(x, \partial \Omega)$ and $d(x, \partial \Omega) \sim e(x)$ and thus $\xi_{\lambda} \sim e(x)$. We can estimate $f^{\prime}(u) h$ in terms of ξ_{λ} as

$$
\left|f^{\prime}(u) h\right| \leq C_{0} . e(x)^{-(\beta+1)}|h(x)| \leq \frac{C_{1}\|h\|_{C_{e}(\bar{\Omega})}}{\xi_{\lambda}^{\beta}}
$$

for some positive constant C_{1}. Thus,

$$
C_{1}\|h\| \Delta \xi_{\lambda} \leq-\Delta z=\lambda f^{\prime}(u) h \leq \lambda C_{1}\|h\| \xi_{\lambda}^{-\beta}=-C_{1}\|h\| \Delta \xi_{\lambda}
$$

By the comparison principle and since $\xi_{\lambda}(x) \sim e(x)$ we have for some $C>0$,

$$
\begin{equation*}
|z(x)| \leq C\|h\|_{C_{e}(\bar{\Omega})} e(x) \tag{5.3}
\end{equation*}
$$

Now as in Step I, let $w_{h}=A(u+h)$ and $w=A(u)$, then using Taylor's theorem

$$
-\Delta\left(w_{h}-w-z\right)=\lambda f^{\prime \prime}(u+\theta h) \frac{h^{2}}{2} \quad \text { for some } \theta(x) \in(0,1)
$$

Since $\left|f^{\prime \prime}(u+\theta h) h^{2}\right| \leq C\|h\|_{C_{e}(\bar{\Omega})}^{2} e(x)^{-\beta}$ we have

$$
\left\|\frac{w_{h}-w-z}{\|h\|_{C_{e}(\bar{\Omega})}}\right\|_{W^{2, p}(\Omega)} \leq C\|h\|_{C_{e}(\bar{\Omega})}
$$

Up to a sub sequence $\left(w_{h}-w-z\right) /\|h\|_{C_{e}(\bar{\Omega})}$ converges to 0 as $\|h\|_{C_{e}(\bar{\Omega})} \rightarrow 0$. It can be shown that $\left|w_{h}-w-z\right| /\|h\|_{C_{e}(\bar{\Omega})} \leq C d(x, \partial \Omega)$ and thus $\left(w_{h}-w-z\right) /\|h\|_{C_{e}(\bar{\Omega})}$
satisfies the assumptions of theorem 3.1. Hence,

$$
\begin{equation*}
\frac{w_{h}-w-z}{\|h\|_{C_{e}(\bar{\Omega})}} \text { is bounded in } C^{1, \gamma}(\bar{\Omega}) \tag{5.4}
\end{equation*}
$$

Now by using Ascoli-Arzela theorem and continuity of the embedding $C_{0}^{1}(\Omega) \hookrightarrow$ $C_{e}(\bar{\Omega})$ we deduce that $\frac{w_{h}-w-z}{\|h\|_{C_{e}(\bar{\Omega})}} \rightarrow 0$ in $C_{e}(\bar{\Omega})$. If we call $\mathcal{A}^{\prime}(u) h=z$ then

$$
\left\|\mathcal{A}(u+h)-\mathcal{A}(u)-\mathcal{A}^{\prime}(u) h\right\|_{C_{e}(\bar{\Omega})}=o(\|h\|)
$$

Now from (5.3) we note that $\mathcal{A}^{\prime}(u): C_{e}(\bar{\Omega}) \rightarrow C_{e}(\bar{\Omega})$ is a bounded linear map and hence the map $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is differentiable. It remains to show that \mathcal{A} is continuously differentiable, i.e. $u \rightarrow \mathcal{A}^{\prime}(u)$ is continuous. Let $\tilde{u} \in C_{e}(\bar{\Omega})$ such that $\|\tilde{u}-u\|<\delta$ and $\mathcal{A}^{\prime}(\tilde{u}) h=\tilde{z}$ for some $h \in C_{e}(\bar{\Omega})$. Using Taylor's theorem there exists some $\theta(x) \in[u, \tilde{u}]$ and

$$
\left|f^{\prime}(\tilde{u})-f^{\prime}(u)\right|=\lambda\left|f^{\prime \prime}(\theta)\right||(\tilde{u}-u) h| \leq \frac{C_{0} e(x)^{2}}{d(x)^{\beta+2}} \delta\|h\|_{C_{e}(\bar{\Omega})} \leq \frac{C_{1} \delta}{\xi_{1}^{\beta}}\|h\|_{C_{e}(\bar{\Omega})}
$$

where the constant C_{1} is independent of u and \tilde{u}. As before estimating $-\Delta(\tilde{z}-$ z) from above and below and using maximum principle we have $|\tilde{z}(x)-z(x)| \leq$ $C \delta\|h\| e(x)$. Now taking supremum over $\|h\|_{C_{e}(\bar{\Omega})} \leq 1$ we have

$$
\left\|\mathcal{A}^{\prime}(\tilde{u})-\mathcal{A}^{\prime}(u)\right\| \leq C\|\tilde{u}-u\|_{C_{e}(\bar{\Omega})}
$$

and thus \mathcal{A} is continuously differentiable.
Step III. The map \mathcal{A} is C^{2}. Now that we have proved $\mathcal{A}: \mathcal{U}_{\lambda} \rightarrow \mathcal{U}_{\lambda}$ is C^{1}, using the same idea we can prove that \mathcal{A} is twice continuously differentiable.In order to avoid the repetition of the same arguments we skip the details of the proof of step III.

From (5.4) of above proposition we know that $\left\|\frac{w_{h}-w-z}{\|h\|}\right\|_{C^{1, \gamma}(\bar{\Omega})}$ is bounded and similarly $\left\|\frac{w_{h}-w}{\|h\|}\right\|_{C^{1, \gamma}}$ is also bounded. So

$$
\begin{aligned}
\left\|\mathcal{A}^{\prime}(u) h\right\|_{C^{1, \gamma}(\bar{\Omega})} & =\|z\|_{C^{1, \gamma}(\bar{\Omega})} \leq\left\|w_{h}-w-z\right\|_{C^{1, \gamma}(\bar{\Omega})}+\left\|w_{h}-w\right\|_{C^{1, \gamma}(\bar{\Omega})} \\
& =\|h\|\left\|\frac{w_{h}-w-z}{\|h\|}\right\|_{C^{1, \gamma}(\bar{\Omega})}+\|h\|\left\|\frac{w_{h}-w}{\|h\|}\right\|_{C^{1, \gamma}(\bar{\Omega})} \\
& \leq M\|h\|_{C_{e}(\bar{\Omega})}
\end{aligned}
$$

which implies $\mathcal{A}^{\prime}(u) \in B L\left(C_{e}(\bar{\Omega}), C^{1, \gamma}(\bar{\Omega})\right)$ and hence $\mathcal{A}^{\prime}(u): C_{e}(\bar{\Omega}) \rightarrow C_{e}(\bar{\Omega})$ is compact.

Corollary 5.2. $\mathcal{A}^{\prime}(u): C_{e}(\bar{\Omega}) \rightarrow C_{e}(\bar{\Omega})$ is continuous linear and compact.
Acknowledgments. This research was supported by INSPIRE faculty fellowship (DST/INSPIRE/04/2015/003221) at the Indian Statistical Institute, Bangalore Centre.

References

[1] H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.
[2] A. Ambrosetti, D. Arcoya, B. Buffoni; Positive solutions for some semi-positone problems via bifurcation theory. Differential Integral Equations 7 (1994), no. 3-4, 655-663.
[3] M. G. Crandall, P. H. Rabinowitz; Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
[4] M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal. 52 (1973), 161-180.
[5] M. G. Crandall, P. H. Rabinowitz, L. Tartar; On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.
[6] Alfonso Castro, Gadam Sudhasree; Uniqueness of stable and unstable positive solutions for semipositone problems. Nonlinear Anal. 22 (1994), no. 4, 425-429.
[7] Alfonso Castro, Gadam, Sudhasree; R. Shivaji; Positive solution curves of semipositone problems with concave nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 5, 921-934.
[8] Alfonso Castro, R. Shivaji; Positive solutions for a concave semipositone Dirichlet problem. Nonlinear Anal. 31 (1998), no. 1-2, 91-98.
[9] Juan Davila, Marcelo Montenegro; Positive versus free boundary solutions to a singular elliptic equation. J. Anal. Math. 90 (2003), 303-335.
[10] R. Dhanya, E. Ko, R. Shivaji; A three solution theorem for singular nonlinear elliptic boundary value problems. J. Math. Anal. Appl. 424 (2015), no. 1, 598-612.
[11] R. Dhanya, J. Giacomoni, K. Saoudi, S. Prashanth; Global bifurcation and local multiplicity results for elliptic equation with singular nonlinearity of super exponential growth in \mathbb{R}^{2}. Adv. Differential Equations 17 (2012), No 3-4, 369-400.
[12] M. Ghergu, V. D. Radulescu; Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford University Press, 2008.
[13] C. Gui, F.-H. Lin; Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 1021-1029.
[14] Habib Maagli, Jacques Giacomoni, Paul Sauvy; Existence of compact support solutions for a quasilinear and singular problem. Differential Integral Equations 25 (2012), no. 7-8, 629-656.
[15] J. Hernández, F. Mancebo, J. M. Vega; On the linearization of some singular nonlinear elliptic problems and applications. Ann. Inst. H. Poincare Anal. Non Lineaire, 19 (2002), 777-813.
[16] J. Hernández, F. Mancebo, J. M. Vega; Positive solutions for singular nonlinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 41-62.
[17] J. I. Díaz, J. Hernández; F. J. Mancebo; Branches of positive and free boundary solutions for some singular quasilinear elliptic problems. J. Math. Anal. Appl. 352 (2009), no. 1, 449-474.
[18] E. K. Lee, R. Shivaji, J. Ye; Subsolution: A journey from positone to infinite semipositone problems. Elec. J. Diff. Eqns., Conf. 17 (2009), 123-131.
[19] Paul Sauvy; Stability of the solutions for a singular and sublinear elliptic problem. Twelfth International Conference Zaragoza-Pau on Mathematics, 195-206, Monogr. Mat. Garca Galdeano, 39, Prensas Univ. Zaragoza, Zaragoza, 2014.
[20] J. Shi, R. Shivaji; Global bifurcations of concave semipositone problems. Evolution equations, pp. 385-398, Lecture Notes in Pure and Appl. Math., Vol. 234, Dekker, New York, 2003.
[21] Junping Shi, Miaoxin Yao; On a singular nonlinear semilinear elliptic problem. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1389-1401.

Rajendran Dhanya
School of Mathematics and Computer Science, Indian Institute of Technology, Goa 403401, India

E-mail address: dhanya.tr@gmail.com

[^0]: 2010 Mathematics Subject Classification. 35J25, 35J61, 35J75.
 Key words and phrases. Semipositone problems; topological methods; bifurcation theory.
 (C) 2018 Texas State University.

 Submitted May 3, 2018. Published November 1, 2018.

