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INITIAL-VALUE PROBLEMS FOR LINEAR
DISTRIBUTED-ORDER DIFFERENTIAL EQUATIONS IN
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Abstract. We solve the Cauchy problem for inhomogeneous distributed-order
equations in a Banach space with a linear bounded operator in the right-hand

side, with respect to the distributed Caputo derivative. First we find the so-

lution by using the unique solvability theorem for the Cauchy problem. Then
the results obtained are applied to the analysis of a distributed-order system

of ordinary differential equations. Then we study an analogous equation, but

with degenerate linear operator at the distributed derivative, which is called a
degenerate equation. The pair of linear operators in the equation is assumed

to be relatively bounded. For the two types of initial-value problems, we ob-

tain the existence and uniqueness of a solution, and derive its form. Abstract
results for the degenerate equations are used in the study of initial-boundary

value problems with distributed order in time equations with polynomials of
self-adjoint elliptic differential operator with respect to the spatial derivative.

1. Introduction

At the end of the previous and the beginning of this century, the interest in
differential equations with distributed fractional derivatives has increased; see for
example the works by Nakhushev [20, 21], Caputo [5, 6], and Pskhu [25, 26]. Such
equations began to appear in various applied problems describing certain physical
or technical processes: in the theory of viscoelasticity [19], in the kinetic theory
[27], and so on (see, e.g., [2, 3, 5, 6]). At the same time, equations with distributed
fractional derivatives began to be investigated from the mathematical point of view:
unique solvability, qualitative behavior of solutions [1, 15], and numerical solutions
of the corresponding boundary-value problems [7, 8]. We note the following works:
Pskhu [25, 26] on the solvability and qualitative properties of both ordinary differen-
tial equations of distributed order, and the diffusion equation of distributed order
in time; Umarov and Gorenflo [31] on the unique solvability of multipoint prob-
lems, including the Cauchy problem, to the equation with a distributed Caputo
derivative in time and with pseudodifferential operators with respect to the space
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variables; and Kochubei [16] on the solvability of initial-boundary value problems
to the multidimensional diffusion equation of distributed order in time.

This article consists of two parts. In the first part we consider the Cauchy
problem for distributed-order equation with Caputo derivative∫ b

a

ω(α)Dα
t z(t)dα = Az(t) + g(t), t ∈ [0, T ). (1.1)

Here m− 1 < b < m ∈ N, 0 ≤ a < b, the operator A is linear and bounded on the
Banach space Z, T > 0, g : [0, T ) → Z. In Section 2 we study the homogeneous
equation, and in Section 3 the inhomogeneous equation. Unique solvability theo-
rems for the Cauchy problem are proved, the form of the solution is obtained. The
deduced general results are applied then to systems of distributed-order ordinary
differential equations.

In the second part of this article, we consider the equation∫ b

a

ω(α)Dα
t Lx(t)dα = Mx(t) + f(t), t ∈ [0, T ) (1.2)

with the degenerate operator L : X → Y, i.e. kerL 6= {0}, and operator M :
DM → Y being (L, p)-bounded linear closed and densely defined in X [29]. Here
m − 1 < b < m ∈ N, 0 ≤ a < b, X and Y are Banach spaces, T > 0, f :[0, T ) →
Y. For two types of initial value problems to equation (1.2), we obtain theorems
for existence and uniqueness of a solution, and derive the form of the solution.
Here we apply the theorem on the Cauchy problem for equation (1.1). Abstract
results for (1.2) are used for the research of initial-boundary value problems unique
solvability for distributed order in time equations with polynomials of self-adjoint
elliptic differential operator with respect to the spatial variables.

This work is a continuation of the paper [28], in which the solvability of (1.1)
with b ≤ 1 with the unique Cauchy condition was studied. The results here develop
the theory of resolving operators families for the distributed-order equations using
the Laplace transform. This is done in the spirit of the operator semigroup the-
ory [14] and its generalizations for integral evolution equations [17, 24], fractional
order evolution equations [4, 18], including degenerate fractional order evolution
equations, i.e. equations with a degenerate operator at the highest order derivative
[9, 10, 11, 12, 13, 22, 23].

2. Cauchy problem for a homogeneous equation

For β > 0, t > 0 denote gβ(t) := tβ−1/Γ(β),

Jβt h(t) :=
∫ t

0

gβ(t− s)h(s)ds =
1

Γ(β)

∫ t

0

(t− s)β−1h(s)ds.

Let m− 1 < α ≤ m ∈ N, Dm
t is the usual m-th order derivative, Dα

t is the Caputo
fractional derivative (see in details, for example, in [4]), i.e.

Dα
t h(t) := Dm

t J
m−α
t

(
h(t)−

m−1∑
k=0

h(k)(0)gk+1(t)
)
.

Let R+ := R+ ∪ {0}, and Z be a Banach space. The Laplace transform of the
function h : R+ → Z is denoted by L[h]. The formula for the Laplace transform of
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the Caputo fractional derivative has the form

L[Dα
t h](λ) = λαL[h](λ)−

m−1∑
k=0

λα−k−1h(k)(0). (2.1)

Denote by L(Z) a Banach space of all linear continuous operators from Z to Z.
For A ∈ L(Z) consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . ,m− 1, (2.2)

to the distributed-order equation∫ b

a

ω(α)Dα
t z(t)dα = Az(t), t ≥ 0, (2.3)

where Dα
t is the Caputo fractional derivative, m − 1 < b ≤ m ∈ N, 0 ≤ a <

b, ω:(a, b) → C. By a solution of problem (2.2), (2.3) we mean a function z ∈
Cm−1(R+; Z), such that there exist

∫ b
a
ω(α)Dα

t z(t)dα ∈ C(R+; Z) and equalities
(2.2) and (2.3) are satisfied.

We denote

γ := ∪3
k=1γk, γ1 := {λ ∈ C : |λ| = r0, arg λ ∈ (−π, π)},
γ2 := {λ ∈ C : arg λ = π, λ ∈ [−r0,−∞)},
γ3 := {λ ∈ C : arg λ = −π, λ ∈ (−∞,−r0]},

W d
c (λ) :=

∫ d

c

ω(α)λαdα, ak := max{a, k},

Zk(t) :=
1

2πi

∫
γ

eλt

λk+1
W b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ, k = 0, 1, . . . ,m− 1.

Denote by E(K, a; Z) the set of functions x : R+ → Z, for which there exist K > 0,
a ≥ 0 such that

‖z(t)‖Z ≤ Keat ∀t ∈ R+ .

Also we will use the denotation

E(Z) := ∪K>0 ∪a≥0 E(K, a; Z).

Theorem 2.1. Let A ∈ L(Z), zk ∈ Z, k = 0, 1, . . . ,m − 1, and for some β > 1
W b
a(λ), W b

k(λ), k = 0, 1, . . . ,m − 1, are holomorphic functions on the set Sβ :=
{λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)}, satisfying the conditions

∃C1 > 0 ∃δ > 0 such that |W b
a(λ)| ≥ C1|λ|m−1+δ,∀λ ∈ Sβ , (2.4)

∃C2 > 0 such that |W k
a (λ)||W b

a(λ)|−1 ≤ C2|λ|k−m+1−δ

∀k ∈ {0, 1, . . . ,m− 1} ∀λ ∈ Sβ ,
(2.5)

with r0 = max{β, (2‖A‖L(Z)/C1)1/δ}, zk ∈ Z, k = 0, 1, . . . ,m−1. Then the function
z(t) =

∑m−1
k=0 Zk(t)zk is a unique solution to (2.2), (2.3) in the space E(Z).

Proof. For λ ∈ γ with the given r0 the inequality |W b
a(λ)| ≥ 2‖A‖L(Z) holds. Then

there exists (W b
a(λ)I −A)−1 ∈ L(Z), and for k = 0, 1, . . . ,m− 1,

‖W b
ak

(λ)
(
W b
a(λ)I −A

)−1 ‖L(Z) ≤
|W b

ak
(λ)|

|W b
a(λ)|

1

1− ‖A‖L(Z)

|W b
a(λ)|

≤ 2(1 + C2). (2.6)
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Indeed, by condition (2.5),

|W b
ak

(λ)|
|W b

a(λ)|
=
∣∣1− W ak

a (λ)
W b
a(λ)

∣∣ ≤ 1 + C2r
ak−m+1−δ
0 ≤ 1 + C2.

Here W ak
a ≡ 0, if k ≤ a. Thus, at t > 0 the integrals Zk(t) converge for k =

0, 1, . . . ,m− 1.
Let R > r0,

ΓR = ∪4
k=1Γk,R,

Γ1,R = γ1, Γ2,R = {λ ∈ C : |λ| = R, arg λ ∈ (−π, π)},
Γ3,R = {λ ∈ C : arg λ = π, λ ∈ [−r0,−R]},

Γ4,R = {λ ∈ C : arg λ = −π, λ ∈ [−R,−r0]},

and let ΓR be the closed loop, oriented counter-clockwise. Consider also the con-
tours

Γ5,R = {λ ∈ C : arg λ = π, λ ∈ (−R,−∞)},
Γ6,R = {λ ∈ C : arg λ = −π, λ ∈ (−∞,−R)}.

Then γ = Γ5,R ∪ Γ6,R ∪ ΓR \ Γ2,R.
For t ≥ 0, k = 0, 1, . . . ,m− 1, l = 0, 1, . . . , k − 1,

Z
(l)
k (t) =

1
2πi

∫
γ

eλt

λk+1−lW
b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ,

Z
(l)
k (0) = 0, by the Cauchy Theorem

1
2πi

∫
ΓR

1
λk+1−lW

b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ = 0,

and by inequality (2.6), we have∥∥ ∫
Γ2,R

1
λk+1−lW

b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ
∥∥
L(Z)

≤ 4π(1 + C2)
R

,

∥∥∫
Γs,R

1
λk+1−lW

b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ
∥∥
L(Z)

≤ 2(1 + C2)
R

, s = 5, 6.

Therefore, the integrals in the two last inequalities tend to zero as R→∞, and

Z
(l)
k (0) = lim

R→∞

1
2πi

(∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

)W b
ak

(λ)
λk+1−l

(
W b
a(λ)I −A

)−1
dλ

= 0.

For t > 0 and k = 0, 1, . . . ,m− 1, we have

Z
(k)
k (t) =

1
2πi

∫
γ

eλt

λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=0

W b
a(λ)−kAk dλ

=
1

2πi

∫
γ

eλt

λ

(
1− W ak

a (λ)
W b
a(λ)

)
dλI +

1
2πi

∫
γ

eλt

λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

= I − 1
2πi

∫
γ

eλt

λ

W ak
a (λ)

W b
a(λ)

dλI +
1

2πi

∫
γ

eλt

λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ.
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For t ∈ [0, 1] and λ ∈ γ, by conditions (2.4) and (2.5) we have∣∣eλt
λ

W ak
a (λ)

W b
a(λ)

∣∣ ≤ C2e
r0

|λ|1+δ
,

∥∥eλt
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk

∥∥
L(Z)

≤
4C−1

1 (1 + C2)er0‖A‖L(Z)

|λ|m+δ
;

therefore, ∣∣ 1
2πi

∫
γ

eλt

λ

W ak
a (λ)

W b
a(λ)

dλ
∣∣ ≤ C2e

r0

rδ0
+
C2e

r0

πδrδ0
,

∥∥ 1
2πi

∫
γ

eλt

λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

∥∥
L(Z)

≤
4C−1

1 (1 + C2)er0‖A‖L(Z)

rm−1+δ
0

+
4C−1

1 (1 + C2)er0‖A‖L(Z)

πδrm−1+δ
0

Consequently, the integrals converge uniformly with respect to t ∈ [0, 1]. By conti-
nuity

Z
(k)
k (0) = I − 1

2πi

∫
γ

1
λ

W ak
a (λ)

W b
a(λ)

dλI +
1

2πi

∫
γ

1
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

= I − lim
R→∞

1
2πi

(∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

) 1
λ

W ak
a (λ)

W b
a(λ)

dλI

+ lim
R→∞

1
2πi

(∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

) 1
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

= I.

By the Cauchy Theorem,

− 1
2πi

∫
ΓR

1
λ

W ak
a (λ)

W b
a(λ)

dλI +
1

2πi

∫
ΓR

1
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ = 0,

and ∣∣ 1
2πi

∫
Γ2,R

1
λ

W ak
a (λ)

W b
a(λ)

dλ
∣∣ ≤ C2

Rδ
,

∣∣ 1
2πi

∫
Γs,R

1
λ

W ak
a (λ)

W b
a(λ)

dλ
∣∣ ≤ C2

2πδRδ
,

∥∥ 1
2πi

∫
Γ2,R

1
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

∥∥
L(Z)

≤
4C−1

1 (1 + C2)‖A‖L(Z)

Rδ
,

∥∥ 1
2πi

∫
Γs,R

1
λ

W b
ak

(λ)
W b
a(λ)

∞∑
k=1

W b
a(λ)−kAk dλ

∥∥
L(Z)

≤
2C−1

1 (1 + C2)‖A‖L(Z)

πδRδ
,

for s = 5, 6.
For t ≥ 0, k = 0, 1, . . . ,m− 1, l = k + 1, k + 2, . . . ,m− 1 we have

Z
(l)
k (t) =

1
2πi

∫
γ

eλtλl−k−1W b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ
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=
1

2πi

∫
γ

eλtλl−k−1
(
W b
a(λ)−W ak

a (λ)
) (
W b
a(λ)I −A

)−1
dλ

=
1

2πi

∫
γ

eλtλl−k−1dλI +
1

2πi

∫
γ

eλtλl−k−1
(
W b
a(λ)I −A

)−1
Adλ

− 1
2πi

∫
γ

eλtλl−k−1W ak
a (λ)

(
W b
a(λ)I −A

)−1
dλ.

Hence, Z(l)
k (0) = 0, since by the Cauchy Theorem,

1
2πi

∫
γ

eλtλl−k−1dλ = 0,

1
2πi

∫
ΓR

eλtλl−k−1
(
W b
a(λ)I −A

)−1
Adλ = 0,

1
2πi

∫
ΓR

eλtλl−k−1W ak
a (λ)

(
W b
a(λ)I −A

)−1
dλ = 0,

and under conditions (2.4) and (2.5),∥∥∫
Γ2,R

λl−k−1
(
W b
a(λ)I −A

)−1
Adλ

∥∥
L(Z)

≤
4πC−1

1 ‖A‖L(Z)

Rδ
,

∥∥∫
Γs,R

λl−k−1
(
W b
a(λ)I −A

)−1
Adλ

∥∥
L(Z)

≤
2C−1

1 ‖A‖L(Z)

δRδ
,

∥∥∫
Γ2,R

λl−k−1W ak
a (λ)

(
W b
a(λ)I −A

)−1
dλ
∥∥
L(Z)

≤ 4πC2

Rδ
,

∥∥∫
Γs,R

λl−k−1W ak
a (λ)

(
W b
a(λ)I −A

)−1
dλ
∥∥
L(Z)

≤ 2C2

δRδ
, s = 5, 6.

Thus, Zk ∈ Cm−1(R+;L(Z)), k = 0, 1, . . . ,m−1, the function z(t) =
∑m−1
k=0 Zk(t)zk

satisfy the Cauchy conditions (2.2).
By construction, and estimate (2.5), we have

‖Zk(t)‖L(Z) ≤
C2 + 1
π

∫
γ

etReλ

|λ|
ds ≤ Kke

r0t,

because
1
π

∫
γ1

etReλ

|λ|
ds ≤ er0t

π

∫ 2π

0

er0t(cosϕ−1) dϕ ≤ 2er0t,

1
π

∫
γk

etReλ

|λ|
ds ≤ er0t

π

∫ −r0
−∞

ex

|x|
dx ≤ C3e

r0t, k = 2, 3, t ≥ 1.

Therefore, we can take

Kk = 2(C2 + 1) + 2C2 max
{ 1
π

∫ −r0
−∞

ex

|x|
dx, max

t∈[0,1]
e−r0t‖Zk(t)‖L(Z)

}
.

Thus, ‖z(t)‖Z ≤ er0t
∑m−1
k=0 Kk‖zk‖Z, i.e. x ∈ E(Z).

Under the condition Reµ > r0 we have the equality

L[x](µ) =
m−1∑
k=0

1
2πi

∫
γ

W b
ak

(λ)
λk+1(µ− λ)

(
W b
a(λ)I −A

)−1
zkdλ.
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By (2.5) these integrals converge and

lim
R→∞

m−1∑
k=0

1
2πi

∫
Γs,R

W b
ak

(λ)
λk+1(µ− λ)

(
W b
a(λ)I −A

)−1
zkdλ = 0, s = 2, 5, 6.

Therefore, by the Cauchy integral formula,

L[x](µ) = lim
R→∞

m−1∑
k=0

1
2πi

∫
ΓR

W b
ak

(λ)
λk+1(µ− λ)

(
W b
a(λ)I −A

)−1
zkdλ

=
m−1∑
k=0

W b
ak

(µ)
µk+1

(
W b
a(µ)I −A

)−1
zk.

Hence, L[x](µ) has a holomorphic extension on {µ ∈ C : |µ| > r0, argµ ∈ (−π, π)},
because the resolvent of the operator A is holomorphic there.

Further, using formula (2.1) for the Laplace transform, we can write

L
[ ∫ b

a

ω(α)Dα
t z(t)dα

]
(µ)

=
m−1∑
k=0

W b
ak

(µ)
µk+1

W b
a(µ)

(
W b
a(µ)I −A

)−1
zk −

m−1∑
k=0

W b
ak

(µ)
µk+1

zk

= A

m−1∑
k=0

W b
ak

(µ)
µk+1

(µ)
(
W b
a(µ)I −A

)−1
zk = AL[x](µ).

Here the commutation of an operator and its resolvent was taken into account.
We can apply the inverse Laplace transform on the both parts of the equality and
obtain equality (2.3) in all continuity points of function x, i.e. for all t ≥ 0. It
was proved, that x ∈ C(R+; Z), hence, by the continuity of the operator A, the
right-hand side of equation (2.3) is continuous on R+, and therefore, the left-hand
side of the equation is continuous also and the function x is a solution of problem
(2.2), (2.3).

If there are two solutions z1, z2 of problem (2.2), (2.3) from the class E(Z), then
their difference y = z1 − z2 ∈ E(Z) is a solution of equation (2.3) and satisfy the
initial conditions y(k)(0) = 0, k = 0, 1, . . . ,m− 1. Applying the Laplace transform
to the both sides of equation (2.3) gives the equality W b

a(λ)L[y](λ) = AL[y](λ).
Therefore, for |λ| > β we have L[y](λ) ≡ 0. It means that y ≡ 0. �

Remark 2.2. Under the conditions of Theorem 2.1, the families of operators

{Zk(t) ∈ L(Z) : t ∈ R+}, k = 0, 1, . . . ,m− 1,

and, therefore, the solution z(t) =
∑m−1
k=0 Zk(t)zk of problem (2.2), (2.3) have

holomorphic extensions to the right half-plane {t ∈ C : Re t > 0}. Indeed, as was
seen in the proof of Theorem 2.1 that the integrals

1
2πi

∫
γ

eλtλl−k−1W b
ak

(λ)
(
W b
a(λ)I −A

)−1
dλ, k = 0, 1, . . . ,m− 1,

with l ∈ N0 := N∪{0}, converge uniformly on arbitrary compact set from the right
half-plane {t ∈ C : Re t > 0}.



8 V. E. FEDOROV, E. M. STRELETSKAYA EJDE-2018/176

Remark 2.3. We can consider equation (2.3) with a < 0, where Dα
t := J−αt for

α < 0 by definition. Then Theorem 2.1 on the unique solution of (2.2), (2.3) is
valid also, and ak = k, k = 0, 1, . . . ,m− 1.

Remark 2.4. It is easy to show, that, for example, the functions ω(α) = αn,
n ∈ N, or ω(α) = cα, c > 0, satisfy conditions of Theorem 2.1.

The following general assertion holds.

Proposition 2.5. Let a function ω : (a, b) → R be bounded, and for some ε ∈
(0, b − a) in the left ε-neighborhood of the point b, it does not change the sign and
there exists c1 > 0 such that for all α ∈ (b − ε, b) we have |ω(α)| ≥ c1. Then
conditions (2.4) and (2.5) with arbitrary δ ∈ (0, b−m+ 1) hold.

Proof. If ω is bounded in some interval (c, d) ⊂ (a, b), then∣∣ ∫ d

c

ω(α)λαdα
∣∣ ≤ |λ|d(d− c) sup

c<α<d
|ω(α)| . (2.7)

Also, for c sufficiently close to b,∣∣ ∫ b

c

ω(α)λαdα
∣∣

=
∣∣ ∫ b

c

ω(α)|λ|αeiα arg λdα
∣∣

=
(∣∣ ∫ b

c

ω(α)|λ|α cos(α arg λ)dα
∣∣2 +

∣∣ ∫ b

c

ω(α)|λ|α sin(α arg λ)dα
∣∣2)1/2

≥ 1√
2

(∣∣ ∫ b

c

ω(α)|λ|α cos(α arg λ)dα
∣∣+
∣∣∣ ∫ b

c

ω(α)|λ|α sin(α arg λ)dα
∣∣)

=
1√
2

∫ b

c

|ω(α)||λ|α(| cos(α arg λ)|+ | sin(α arg λ)|)dα

≥ 1√
2

∫ b

c

|ω(α)||λ|αdα,

because ω(α), cos(α arg λ) and sin(α arg λ) do not change the sign for α from a
sufficiently small left neighborhood of the point b, and

| cos(α arg λ)|+ | sin(α arg λ)| =
√

1 + 2| cos(α arg λ)|| sin(α arg λ)| ≥ 1.

Therefore, for sufficiently small ε1 ∈ (0,min{ε, 2(b−m+ 1)}) and for sufficiently
large |λ|, we have∣∣ ∫ b

a

ω(α)λαdα
∣∣

≥ 1√
2

∫ b

b−ε1
|ω(α)| |λ|αdα− |λ|b−ε1(b− ε1 − a) sup

a<α<b−ε1
|ω(α)|

≥ c1√
2
|λ|b − |λ|b−ε1

ln |λ|
− C1|λ|b−ε1

≥ 2C1|λ|b−ε1/2 − C1|λ|b−ε1 = C1|λ|b−ε1/2.

(2.8)

Denotting δ = b−m+ 1− ε1/2 > 0, the above inequality implies condition (2.4).
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From inequalities (2.4) and (2.7) it follows, that for k > a

|W k
a (λ)||W b

a(λ)|−1 ≤ C−1
1 |λ|k−m+1−δ(m− 1− a) sup

a<α<b
|ω(α)|.

Hence, condition (2.5) is obtained. �

Corollary 2.6. Let ω ∈ C([a, b]; R) and ω(b) 6= 0. Then conditions (2.4), (2.5)
with arbitrary δ ∈ (0, b−m+ 1) hold.

Indeed, all assumptions of Proposition 2.5 hold.

2.1. Example. Consider the problem

∂kv

∂tk
(s, 0) = vk(s), s ∈ Ω, k = 0, 1, . . . ,m− 1, (2.9)∫ b

a

ω(α)Dα
t v(s, t)dα =

∫
Ω

K(s, ξ)Bv(ξ, t)dξ, (s, t) ∈ Ω× R+. (2.10)

Here Ω ⊂ Rd is a bounded region, a < b, 0 < m− 1 < b ≤ m, ω : (a, b)→ R, B is a
(n × n)-matrix, K : Ω × Ω → Rn are given, v(s, t) = (v1(s, t), v2(s, t), . . . , vn(s, t))
is an unknown vector-function.

We take Z = L2(Ω)n, (Aw)(s) =
∫

Ω
K(s, ξ)Bw(ξ)dξ for vector-function w =

(w1, w2, . . . , wn) ∈ L2(Ω)n. Then A ∈ L(L2(Ω)n), and if the function ω satisfies
the conditions of Theorem 2.1, problem (2.9), (2.10) has a unique solution from the
class E(L2(Ω)n).

3. Inhomogeneous equation

A solution of problem (2.2) for the equation∫ b

a

ω(α)Dα
t z(t)dα = Az(t) + g(t), t ∈ [0, T ), (3.1)

where Dα
t is the Caputo fractional derivative, m − 1 < b ≤ m ∈ N, a ∈ [0, b),

ω : (a, b) → C, T > 0, g ∈ C([0, T ]; Z), is called a function z ∈ Cm−1([0, T ); Z),
such that there exists

∫ b
a
ω(α)Dα

t z(t)dα ∈ C([0, T ); Z) and equalities (2.2) and (3.1)
are valid. Denote

Z(t) :=
1

2πi

∫
γ

eλt
(
W b
a(λ)I −A

)−1
dλ. (3.2)

This integral converges at t > 0.

Lemma 3.1. Let A ∈ L(Z), g ∈ C([0, T ); Z), and for some β > 1 W b
a(λ) is

holomorphic function on the set Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)}, satisfying
the condition (2.4), r0 = max{β, (2‖A‖L(Z)/C1)1/δ}. Then the function zg(t) =∫ t

0
Z(t − s)g(s)ds is a unique solution to problem (2.2), (3.1) with zk = 0, k =

0, 1, . . . ,m− 1, from the class E(Z).

Proof. It is easy to show that the integrals

Z(k)(t) :=
1

2πi

∫
γ

λkeλt
(
W b
a(λ)I −A

)−1
dλ, k = 0, 1, . . . ,m− 1,
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converge uniformly with respect to t on every compact set from the half-plane
{t ∈ C : Re t > 0}, therefore, Z(t) can be holomorphically extended onto this half-
plane. A more difficult question is the behavior of this functions at zero. Let us
consider it.

For t ∈ [0, 1] we have ∫
γ1

etReλ

|λ|m−1+δ
ds ≤ 2πr2−m−δ

0 er0 ,∫
γk

etReλ

|λ|m−1+δ
ds ≤

∫ −r0
−∞

dx

|x|m−1+δ
=

r2−m−δ
0

2−m− δ
,

k = 2, 3, for b > 1 and, consequently, m ≥ 2. Hence, integral (3.2) converges
uniformly with respect to t ∈ [0, 1], and there exists the limit

lim
t→0+

Z(t) =
1

2πi

∫
γ

(
W b
a(λ)I −A

)−1
dλ := Z(0).

Analogously for k = 1, 2, . . . ,m− 2 we have the limit

lim
t→0+

Z(k)(t) =
1

2πi

∫
γ

λk
(
W b
a(λ)I −A

)−1
dλ := Z(k)(0).

Moreover,

Z(k)(0) =
1

2πi

∫
γ

λk
(
W b
a(λ)I −A

)−1
dλ

=
1

2πi

(∫
ΓR

+
∫

Γ5,R

+
∫

Γ6,R

−
∫

Γ2,R

)
λk
(
W b
a(λ)I −A

)−1
dλ→ 0

as R→∞ by the Cauchy Theorem and estimates

‖λk
(
W b
a(λ)I −A

)−1 ‖L(Z) ≤
2

|λ|1+δ
, k = 0, 1, . . . ,m− 2

(see the proof of Theorem 2.1). Thus, Z(k)(0) = 0 for k = 0, 1, . . . ,m− 2.
It remains to consider limt→0+ Z

(m−1)(t). For t ∈ [0, 1] we have∫
γ1

etReλ

|λ|δ
ds ≤ 2πr1−δ

0 er0 ,∫
γk

etReλ

|λ|δ
ds ≤

∫ −r0
−∞

etxdx

|x|δ
= tδ−1

∫ +∞

tr0

e−ydy

yδ
≤ Γ(1− δ)tδ−1, k = 2, 3,

Thus, ‖Z(m−1)(t)‖L(Z) = O(tδ−1) as t→ 0+.
Further, for k = 0, 1, . . . ,m− 2 we have

z(k)
g (t) = 0 +

∫ t

0

Z(k)(t− s)g(s)ds,

‖z(m−1)
g (t)‖ ≤ Ctδ → 0 as t→ 0+. Thus, zero initial conditions (2.2) are fulfilled.
Define g(t) = 0 for t ≥ T , then we have the convolution zg = X ∗ g, and

L[zg] = L[X]L[g]. Arguing as in the proof of Theorem 2.1, we obtain L[X](µ) =(
W b
a(µ)I −A

)−1. From condition (2.4) it follows that

‖
(
W b
a(λ)I −A

)−1 ‖L(Z) ≤
2C−1

1

|λ|m−1+δ
, ‖ 1

µ− λ
(
W b
a(λ)I −A

)−1 ‖L(Z) ≤
C

|λ|m+δ
,
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for m+ δ > 1. Hence,

L
[ ∫ b

a

ω(α)Dα
t zgdα

]
(µ) = W b

a(µ)
(
W b
a(µ)I −A

)−1
L[g](µ)

= L[g](µ) +A
(
W b
a(µ)I −A

)−1
L[g](µ).

Acting by the inverse Laplace transform on the both sides of this equality, obtain∫ b

a

ω(α)Dα
t zg(t)dα = g(t) +A(X ∗ g)(t) = g(t) +Azg(t)

due to the continuity of the linear operator A.
The proof of the solution uniqueness reduces in an obvious way to the proof of

uniqueness for the homogeneous equation. �

The next theorem follows from Theorem 2.1 and Lemma 3.1.

Theorem 3.2. Let A ∈ L(Z), g ∈ C([0, T ); Z), zk ∈ Z, k = 0, 1, . . . ,m − 1, and
for some β > 1 W b

a(λ), W b
k(λ), k = 0, 1, . . . ,m − 1, are holomorphic functions on

the set Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)}, satisfying conditions (2.4), (2.5),
r0 = max{β, (2‖A‖L(Z)/C1)1/δ}. Then the function

z(t) =
m−1∑
k=0

Zk(t)zk +
∫ t

0

Z(t− s)g(s)ds

is a unique solution to problem (2.2), (3.1) from the class E(Z).

4. Degenerate distributed-order equation

We present some results from [29] for (L, σ)-bounded operators, which are nec-
essary for further considerations.

Let X, Y be Banach spaces, L(X; Y) be the Banach space of linear continuous
operators, acting from X into Y, Cl(X; Y) be the set of all linear closed densely
defined in the space X operators, acting into Y, L(X; X) := L(X), Cl(X; X) := Cl(X).

Let L ∈ L(X; Y), kerL 6= {0}, M ∈ Cl(X; Y) has a domain DM . Since M is
a closed operator, we can consider DM as the Banach space with the graph norm
of the operator M . We also use the notation ρL(M) := {λ ∈ C : (λL −M)−1 ∈
L(Y; X)}, σL(M) := C\ρL(M), RLλ (M) := (λL−M)−1L, LLλ (M) := L(λL−M)−1.

An operator M is called (L, σ)-bounded, if σL(M) ⊂ {λ ∈ C : |λ| ≤ a} for some
a > 0. In this case there exist projections

P :=
1

2πi

∫
γ

RLλ (M)dλ ∈ L(X), Q :=
1

2πi

∫
γ

LLλ (M)dλ ∈ L(Y),

where γ = {λ ∈ C : |λ| = a+ 1}. Denote by X0 (Y0) the kernel kerP (kerQ), and
by X1 (Y1) the image imP (imQ) of the projection P (Q). Let Mk (Lk) be the
restriction of the operator M (L) on DMk

:= Xk ∩DM (Xk), k = 0, 1.

Theorem 4.1 ([29]). Let an operator M be (L, σ)-bounded. Then
(i) X = X0 ⊕ X1, Y = Y0 ⊕Y1;

(ii) Lk ∈ L(Xk; Yk), k = 0, 1, M0 ∈ Cl(X0; Y0), M1 ∈ L(X1; Y1);
(iii) there exist operators M−1

0 ∈ L(Y0; X0) and L−1
1 ∈ L(Y1; X1).
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Denote G := M−1
0 L0 ∈ L(X0). For p ∈ N0 := N ∪ {0} an operator M is called

(L, p)-bounded, if it is (L, σ)-bounded and Gp 6= 0, Gp+1 = 0.
Let us consider the distributed-order equation∫ b

a

ω(α)Dα
t Lx(t)dα = Mx(t) + f(t), t ∈ [0, T ), (4.1)

where Dα
t is the Caputo fractional derivative, m − 1 < b ≤ m ∈ N, a < b, ω :

(a, b) → R, f ∈ C([0, T ); Y). Equation (4.1) is called degenerate, because it is
supposed that kerL 6= {0}.

A function x:[0, T ) → DM is called a solution of equation (4.1), if Mx ∈
C([0, T ); Y), there exists

∫ b
a
ω(α)Dα

t Lx(t)dα ∈ C([0, T ); Y) and equality (4.1) is
valid. A solution x of (4.1) is called a solution to the Cauchy problem

x(k)(0) = xk, k = 0, 1, . . . ,m− 1, (4.2)

for equation (4.1), if x ∈ Cm−1([0, T ); X) satisfies conditions (4.2).
Let B be the operator, defined as

(Bx)(t) :=
∫ b

a

ω(α)Dα
t x(t)dα (4.3)

on functions x:[0, T )→ X, such that the right-hand side of (4.3) has meaning.

Lemma 4.2. Let H ∈ L(X) is a nilpotent operator of a power not greater than
p ∈ N0, (BH)kh ∈ C([0, T ); X), k = 0, 1, . . . , p. Then there exists a unique solution
of the equation ∫ b

a

ω(α)Dα
t Hw(t)dα = w(t) + h(t), t ∈ [0, T ), (4.4)

and it has the form

w(t) = −
p∑
k=0

[(BH)kh](t). (4.5)

Proof. If w is a solution of (4.4), then w + h + BHh = BHw + BHh = (BH)2w
for t ∈ [0, T ). The last expression is defined, because BHw and BHh is defined
also. Analogously obtain w+h+BHh+(BH)2h = (BH)2w+(BH)2h = (BH)3w.
Continuing these arguments, we obtain

w +
p∑
k=0

(BH)kh = (BH)p+1w = Bp+1Hp+1h ≡ 0,

since Hp+1 = 0. Hence, the solution has form (4.5). Therefore, there exists a
solution of equation (4.4), and it is unique. �

Define operators

Xk(t) :=
1

2πi

∫
γ

eλt

λk+1
W b
ak

(λ)RLW b
a(λ)(M)dλ, ak = max{a, k}, k = 0, . . . ,m− 1,

X(t) :=
1

2πi

∫
γ

eλtRLW b
a(λ)(M)dλ.

From Theorem 4.1 it follows that

RLW b
a(λ)(M) = (W b

a(λ)I − L−1
1 M1)−1P + (W b

a(λ)G− I)−1G(I − P ). (4.6)
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Theorem 4.3. Let p ∈ N0, an operator M be (L, p)-bounded, f ∈ C([0, T ); Y),
(BG)lM−1

0 (I −Q)f ∈ Cm−1([0, T ); X), l = 0, 1, . . . , p, and for some β > 1 W b
a(λ),

W b
k(λ), k = 0, 1, . . . ,m− 1, are holomorphic functions on the set

Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)},

satisfying conditions (2.4), (2.5), r0 = max{β, (2‖L−1
1 M1‖L(X1)/C1)1/δ}, xk ∈ X,

k = 0, 1, . . . ,m− 1, such that

(I − P )xk = −Dk
t |t=0

p∑
l=0

[(BG)lM−1
0 (I −Q)f ](t). (4.7)

Then the function

x(t) =
m−1∑
k=0

Xk(t)xk +
∫ t

0

X(t− s)L−1
1 Qf(s) ds−

p∑
l=0

[(BG)lM−1
0 (I−Q)f ](t) (4.8)

is a unique solution to the Cauchy problem (4.1), (4.2) from the class E(X).

Proof. By Theorem 4.1, problem (4.1), (4.2) can be reduced to the two Cauchy
problems ∫ b

a

ω(α)Dα
t v(t)dα = L−1

1 M1v(t) + L−1
1 Qf(t), t ∈ [0, T ), (4.9)

v(k)(0) = Pxk, k = 0, 1, . . . ,m− 1, (4.10)

and ∫ b

a

ω(α)Dα
t Gw(t)dα = w(t) +M−1

0 (I −Q)f(t), t ∈ [0, T ), (4.11)

w(k)(0) = (I − P )xk, k = 0, 1, . . . ,m− 1, (4.12)

on the subspaces X1 and X0 respectively. Here v(t) := Px(t), w(t) := (I − P )x(t).
Problem (4.9), (4.10) is uniquely solvable by Theorem 3.2, and its solution has the
form

v(t) =
m−1∑
k=0

1
2πi

∫
γ

eλt

λk+1
W b
ak

(λ)(W b
a(λ)I − L−1

1 M1)−1dλPxk

+
∫ t

0

1
2πi

∫
γ

eλ(t−s)(W b
a(λ)I − L−1

1 M1)−1dλL−1
1 Qf(s)ds

=
m−1∑
k=0

Xk(t)Pxk +
∫ t

0

X(t− s)L−1
1 Qf(s)ds

because of equality (4.6). Then (4.11) has the unique solution

w(t) = −
p∑
l=0

[(BG)lM−1
0 (I −Q)f ](t).

It satisfies conditions (4.12), if and only if conditions (4.7) are valid. �

It is obvious, that for the problem

(Px)(k)(0) = xk, k = 0, 1, . . . ,m− 1, (4.13)

the next unique solvability theorem without additional conditions (4.7) is true.
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Note that the definition of equation (4.1) solution implies the inclusion Lx ∈
Cm−1([0, T ); Y), therefore, Px ≡ L−1

1 LPx ≡ L−1
1 QLx ∈ Cm−1([0, T ); X) and con-

ditions (4.13) have the meaning for every solution of (4.1). Thus, a solution of (4.1)
is called a solution of problem (4.1), (4.13), if it satisfies condition (4.13).

Theorem 4.4. Let p ∈ N0, an operator M be (L, p)-bounded, f ∈ C([0, T ); Y),
(BG)lM−1

0 (I − Q)f ∈ C([0, T ); X), l = 0, 1, . . . , p, and for some β > 1 W b
a(λ),

W b
k(λ), k = 0, 1, . . . ,m− 1, are holomorphic functions on the set

Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)},

satisfying conditions (2.4), (2.5), r0 = max{β, (2‖L−1
1 M1‖L(X1)/C1)1/δ}, xk ∈ X1,

k = 0, 1, . . . ,m − 1. Then function (4.8) is a unique solution to problem (4.1),
(4.13) from the class E(X).

5. Applications to boundary-value problems

Let Pn(λ) =
∑n
i=0 ciλ

i, Qn(λ) =
∑n
i=0 diλ

i, ci, di ∈ C, i = 0, 1, . . . , n, cn 6= 0.
Let Ω ⊂ Rd be a bounded region with a smooth boundary ∂Ω, operators pencil
A,B1, B2, . . . , Br be regularly elliptic [30], where

(Au)(s) =
∑
|q|≤2r

aq(s)Dq
su(s), aq ∈ C∞(Ω),

(Blu)(s) =
∑
|q|≤rl

blq (s)Dq
su(s), blq ∈ C∞(∂Ω), l = 1, 2, . . . , r,

Dq
s = Dq1

s1D
q2
s2 . . . D

qd
sd

, Dqi
si

= ∂qi/∂sqi

i , q = (q1, q2, . . . , qd) ∈ Nd0. Define the opera-
tor A1 ∈ Cl(L2(Ω)) with domain DA1 = H2r

{Bl}(Ω) [30] by the equality A1u = Au.
Let A1 be self-adjoint operator and it has a bounded from the right spectrum.
Then the spectrum σ(A1) of the operator A1 is real, discrete and condensed at
−∞. Let 0 /∈ σ(A1), {ϕk : k ∈ N} is an orthonormal in L2(Ω) system of the opera-
tor A1 eigenfunctions, numbered in according to nonincreasing of the corresponding
eigenvalues {λk : k ∈ N}, taking into account their multiplicity.

Consider the initial-boundary value problem

∂ku

∂tk
(s, 0) = uk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω, (5.1)

BlA
ku(s, t) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, (s, t) ∈ ∂Ω× [0, T ), (5.2)∫ b

a

ω(α)Dα
t Pn(A)u(s, t)dα = Qn(A)u(s, t) + f(s, t), (s, t) ∈ Ω× [0, T ), (5.3)

where Dα
t is the Caputo fractional derivative, m − 1 < b ≤ m ∈ N, a ∈ [0, b),

ω : (a, b)→ R, f ∈ Ω× [0, T )→ R. Set

X =
{
u ∈ H2rn(Ω) : BlAku(s) = 0, k = 0, 1, . . . , n− 1,

l = 1, 2, . . . , r, x ∈ ∂Ω},
(5.4)

Y = L2(Ω), L = Pn(A), M = Qn(A). (5.5)

Then L,M ∈ L(X; Y) and problem (5.1), (5.3) is presented in the form (4.1), (4.2).
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Theorem 5.1. [9]. Let the spectrum σ(A1) does not contain zero point and common
roots of the polynomials Pn(λ) and Qn(λ), and denotations (5.4), (5.5) are valid.
Then the operator M is (L, 0)-bounded,

σL(M) = {µ ∈ C : µ = Qn(λk)/Pn(λk), Pn(λk) 6= 0},

X0 = Y0 = span{ϕk : Pn(λk) = 0}, X1 is the closure of span{ϕk : Pn(λk) 6= 0} in
the norm of the space X, Y1 is the closure of the same set in L2(Ω).

Theorem 5.2. Let the spectrum σ(A1) does not contain zero point and common
roots of the polynomials Pn(λ) and Qn(λ), f ∈ Cm−1([0, T );L2(Ω)), and for some
β > 1 W b

a(λ), W b
k(λ), k = 0, 1, . . . ,m − 1, are holomorphic functions on the set

Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)}, satisfying conditions (2.4), (2.5),

r0 = max
{
β,
(

2C−1
1 · sup

Pn(λk)6=0

Qn(λk)
Pn(λk)

)1/δ}
,

uk ∈ X, k = 0, 1, . . . ,m− 1. If Pn(λl) = 0, then

Qn(λl)〈uk, ϕl〉 = −Dk
t |t=0〈f(·, t), ϕl〉, k = 0, 1, . . . ,m− 1. (5.6)

Then there exists a unique solution of problem (5.1))–(5.3) from the class E(X).

Proof. By Theorem 5.1, p = 0; hence, G = 0. Conditions (5.6) mean (4.7) for this
case. It remains to apply Theorem 4.3. Here we use the evident equality

‖L−1
1 M1‖L(X1) = sup

Pn(λk) 6=0

Qn(λk)
Pn(λk)

.

This supremum is finite because the power of Qn not greater than n. �

Theorem 5.1 implies the equalities X0 = kerP = kerL, imL = imL1 = Y1,
therefore, initial condition (4.13) can be represented in the equivalent form

(Lx)(k)(t) = yk = Lxk ∈ X1, k = 0, 1, . . . ,m− 1.

For equation (5.3) they have the form

∂kPn(A)u
∂tk

(s, 0) = uk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω. (5.7)

Theorem 5.3. Let the spectrum σ(A1) do not contain zero point and common
roots of the polynomials Pn(λ) and Qn(λ), f ∈ C([0, T );L2(Ω)), and for some
β > 1 W b

a(λ), W b
k(λ), k = 0, 1, . . . ,m − 1, are holomorphic functions on the set

Sβ := {λ ∈ C : |λ| ≥ β, arg λ ∈ (−π, π)}, satisfying conditions (2.4), (2.5),

r0 = max
{
β,
(

2C−1
1 · sup

Pn(λk)6=0

Qn(λk)
Pn(λk)

)1/δ}
,

uk ∈ X, k = 0, 1, . . . ,m− 1. If Pm(λl) = 0, then

〈uk, ϕl〉 = 0, k = 0, 1, . . . ,m− 1. (5.8)

Then there exists a unique solution of problem (5.2), (5.3), (5.7) from the class
E(X).

Proof. Conditions (5.8) mean that uk ∈ X1, k = 0, 1, . . . ,m − 1. Theorem 4.4
implies the required statement. �
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Remark 5.4. If Pn(λk) 6= 0 for all k ∈ N, then conditions (5.1) equivalent to (5.7),
and the unique solvability of the corresponding initial-boundary value problems
follows from Theorem 3.2.

Let n = 1, P1(λ) = a − λ, Q1(λ) = bλ + c, Au = ∆u, r = 1, B1 = I, f ≡ 0.
Then problem (5.1)–(5.3) has the form∫ b

a

ω(α)Dα
t (a−∆)u(s, t)dα = b∆u(s, t) + cu(s, t), (s, t) ∈ Ω× R+,

u(s, t) = 0, (s, t) ∈ ∂Ω× R+,

∂ku

∂tk
(s, 0) = uk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω.

Conditions (5.7) become

∂k(a−∆)u
∂tk

(s, 0) = uk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω.
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