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Abstract. We consider a fractional model describing phase transition in fer-
romagnetic materials. This model includes the three-dimensional evolution

of both thermodynamic and electromagnetic properties of the ferromagnetic

material. We first prove existence of a global weak solution by using Faedo-
Galerkin method. Then we establish uniqueness for the considered model.

1. Introduction

Modeling of many phenomena mostly rely on fractional calculus, and it has be-
come a valuable tool in engineering applications, technological development, and
industrial sciences for the description of the complex dynamics [2]. In this arti-
cle, we are interested in a fractional version of a model arising in the theory of
paramagnetic-ferromagnetic transition. Our investigation has its starting point in
the paper [4] where the authors propose a three-dimensional evolutive model and
establish the existence and uniqueness of weak solutions. The calculations com-
bine phenomenological constitutive equations for magnetization vector m and the
absolute temperature θ. To describe the model equations, we consider a rigid
ferromagnetic conductor occupying a domain Ω ⊂ R3 with boundary ∂Ω and unit
outward normal n. According to Berti et al. [4], the system governing the evolution
of the ferromagnetic material reads

γ∂tm = ν∆m− θc
(
|m|2 − 1

)
m− θm + H = 0, in Q

c1∂t(ln θ) + c2∂tθ −m · ∂tm = k0∆(ln θ) + k1∆θ + r̂, in Q,
(1.1)

where Q = (0, T )× Ω, T > 0, γ, ν, c1, c2, k0, k1 are positive constants and θc is a
certain temperature called Curie temperature. Here r̂ is a known function of x, t.
For simplicity we assume that r̂ = 0.

We shall neglect the displacement current ∂tE. This is a customary assumption
in describing ferromagnetic phenomena. As a consequence, the magnetic field H
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that appears in the Maxwell’s equations verifies

µ∂tH + ∂tm +
1
σ

curl curl H = 0 in Q,

div(µH + m) = 0 in Q,

(µH + m) · n = 0, curl H× n = 0, on (0, T )× ∂Ω,

(1.2)

where σ is the conductivity and µ is the magnetic permeability.
Global existence and uniqueness for (1.1)-(1.2) are proved in [4] and some limiting

problems for thin films are obtained in [11].
In this investigation we shall consider a fractional version of (1.1) where we

replace the Laplacian operator by a fractional one of order α for the magnetization
and β for the temperature, α, β ∈ (0, 1). We also assume that c1 = k0 = 0.
This assumption means that the heat conductivity and specific heat depend on the
absolute temperature according to the laws: k(θ) = k1θ and c(θ) = c2

2 θ
2. Let us

mention that a great variety of assumptions about heat conductivity and specific
heat is depicted, see for instance [3]. We consider the spatial domain Ω = [0, 2π]d

where d ≥ 1 with periodic boundary conditions. The model equations read

γ∂tm + νΛ2αm + θc
(
|m|2 − 1

)
m + θm−H = 0,

c∂tθ + kΛ2βθ −m · ∂tm = 0,

µ∂tH + ∂tm +
1
σ

curl curl H = 0.

(1.3)

For the initial data let

m(0, x) = m(x), θ(0, x) = θ(x), H(0, x) = H(x), (1.4)

be given functions in Ω.
The motivation behind our work is that fractional order calculus can represent

systems with high-order dynamics and complex nonlinear phenomena using few
coefficients, since the arbitrary order of the derivatives provides an additional degree
of freedom to fit a specific behavior. Another important characteristic is that
fractional order derivatives depend not only on local conditions but also on the
entire history of the function. This nonlocal character is often useful when the
system has a long-term “memory” and any evaluation point depends on the past
values of the function. On the other hand, the freedom in the definition of fractional
derivatives allows us to incorporate different types of information. At the same
time, the fractional derivatives with noninteger exponents stress which algebraic
scale properties are relevant to the data analysis. Inability of classical, integer order
derivative models in explaining complex phenomena (especially in elastodynamics,
material science, electrochemistry, chemical physics and rheology), propelled further
research in field and demonstrated strength of fractional calculus in solving practical
problems, in particular, any reduction in the order of initial differential equation
produces a significant reduction in computation time. A non-exhaustive list of
works that support the mentioned modern development of fractional calculus and
its applications are for example in [6, 7].

The rest of this article is organized as follows. In the next section, we recall some
definitions and properties of fractional laplacian. We also define the weak solution
of the model (1.3). We prove in Section 3 a global existence result for the considered
model by using Faedo-Galerkin method. Compared with classical system, the model
with fractional Laplacian exhibits some less of regularity and lack of compactness.
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The proof combines some compactness techniques in the framework of fractional
Sobolev spaces and the available energy estimates are used in order to pass to the
limit in the approximating models. In Section 4, we show that the weak solution
of (1.3) is unique. The last section provides future directions for this work.

2. Preliminaries

We now review the notation in this paper. Let Ω = [0, 2π]d denote the periodic
box with period 2π in all the directions, and Zd := Z× · · · × Z by d-times denote
the dual lattice associated to Ω. The Fourier transform for tempered distributions
defined on the whole space Rd may be carried out to S ′(Ω) with very few changes.

Indeed, f ∈ S ′(Ω) can be decomposed into Fourier series

f(x) = (F−1f̂)(x) :=
∑
ξ∈Zd

f̂(ξ)eiξ·x

with
f̂(ξ) =

1
(2π)d

∫
Ω

e−iξ·yf(y) dy.

The square root of the Laplacian (−∆)1/2 will be denoted by Λ and obviously

Λf(ξ) = F−1(|ξ|f̂(ξ)).

More generally, Λsf for s ∈ R can be identified with the Fourier transform

Λsf(ξ) = F−1(|ξ|sf̂(ξ)).

Let Lp denote the space of all the pth integrable functions f normed by

‖f‖Lp =
(∫

Ω

|f(x)|p dx
)1/p

, ‖f‖L∞ = ess supx∈Ω |f(x)|.

Finally, for any s ∈ R, we define the homogeneous Sobolev space Ḣs of all tempered
distribution f such that ‖f‖Ḣs is finite, where ‖f‖Ḣs is defined via the Fourier
transform

‖f‖Ḣs = ‖Λsf‖L2 =
( ∑
ξ∈Zd
|ξ|2s|f̂(ξ)|2

)1/2

.

For general 1 ≤ p ≤ ∞ and s ∈ R, the space Ḣs,p(Ω) consists of all f which can
be written in the form f = Λ−sg for some g ∈ Lp(Ω) and the Ḣs,p-norm of f is
defined by

‖f‖Ḣs,p = ‖F−1(|ξ|sf̂(ξ))‖Lp .
Instead of the homogeneous Sobolev spaces, one can define the inhomogeneous
counterparts via the operator J = (I − ∆)1/2. We define, for any s ∈ R, the
inhomogeneous Sobolev space Hs of any tempered distribution f on Ω such that

‖f‖Hs = ‖J sf‖L2 =
( ∑
ξ∈Zd

(1 + |ξ|2)s|f̂(ξ)|2
)1/2

< +∞.

The inhomogeneous Sobolev space Hs,p can be defined similarly for p ∈ [1,+∞]
and we omit the details. For more details for the functional settings, the readers
are referred to [10].

Throughout this article, for k ∈ N∗, Lk(Ω) = (Lk(Ω))3 and Hk(Ω) = (Hk(Ω))3

are the usual Hilbert-type Lebesgue and Sobolev spaces, respectively. For k = 2,
the norm in L2(Ω) is denoted by ‖ · ‖. The space Ḣα(Ω) denotes the homogenous
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Sobolev-Slobodetskii space and Hα(Ω) denotes the inhomogenous one. Let us now
give the definition of weak solution for (1.3).

Definition 2.1. Let α, β ∈ (0, 1), m0 ∈ Hα(Ω), θ0 ∈ L2(Ω), and H0 ∈ L2(Ω). We
say that (m, θ,H) is a weak solution to (1.3)-(1.4) if

• For all T > 0, (m, θ,H) satisfies

m ∈ L∞(0, T,Hα(Ω)), ∂tm ∈ L2(Q),

θ ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,Hβ(Ω)),

H ∈ L∞(0, T,L2(Ω)).

• For all Ψ ∈ C∞(Q)

γ

∫
Q

∂tm ·Ψ dxdt+ ν

∫
Q

Λαm · ΛαΨ dxdt+
∫
Q

θc(|m|2 − 1)m ·Ψ dx dt

+
∫
Q

θm ·Ψ dxdt−
∫
Q

H ·Ψ dx dt = 0,
(2.1)

• For all ψ ∈ C∞(Q)

c

∫
Q

θ∂tψ dxdt− k
∫
Q

Λβθ Λβψ dx dt+
∫
Q

m · ∂tm ψ dxdt+ c

∫
Ω

θ0ψ(0, ·) dx = 0,

(2.2)
• For all Ψ ∈ C∞(Q),

µ

∫
Q

H · ∂tΨ dx dt+
∫
Q

m · ∂tΨ dxdt− 1
σ

∫
Q

curl H · curl Ψ dxdt

+ µ

∫
Ω

H0 ·Ψ(0, ·) dx+
∫

Ω

m0 ·Ψ(0, ·) dx = 0 .
(2.3)

• For all t > 0,

E(t)+γ

∫ t

0

∫
Ω

|∂tm|2 dx dt+k

∫ t

0

∫
Ω

|Λβθ|2 dxdt+
1
σ

∫ t

0

∫
Ω

| curl H|2 dxdt = E(0),

(2.4)
where

E(t) =
1
2

(
ν

∫
Ω

|Λαm|2 dx+
θc
2

∫
Ω

(|m|2 − 1)2 dx+ c

∫
Ω

|θ|2 dx+ µ

∫
Ω

|H|2 dx
)
.

3. Existence of global weak solutions

This section we construct global weak solutions to (1.3)-(1.4) via Faedo-Galerkin
method, by proceeding as in [1, 12]. Let {ϕi}i∈N be the eigenfunctions for the
eigenvalue problem

Λ2αϕi = λiϕi, i = 1, 2, . . . (3.1)
under periodic boundary conditions with {λi}i∈N being the corresponding eigenval-
ues. Then {ϕi}i∈N constitutes an orthonormal basis for L2(Ω) and an orthogonal
basis in Hα(Ω) for α ∈ R, and the inner product in Hα(Ω) can be expressed as

〈ϕi, ϕj〉α = δijλ
α/2
i λ

α/2
j

where δij is the Kronecker symbol. for positive real α, Hα can be characterized as

Hα =
{
v ∈ L2,

∞∑
i=1

λαi (v, ϕi)2 <∞
}
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Similarly, we consider {φi}i∈N the eigenfunctions for the eigenvalue problem

Λ2βφi = κiφi, i = 1, 2, . . . (3.2)

under periodic boundary conditions with {κi}i∈N being the corresponding eigenval-
ues.

Now consider the approximating solutions (mN , θN ,HN ) of the form

mN (t, x) =
N∑
i=1

ai(t)ϕi(x),

θN (t, x) =
N∑
i=1

bi(t)φi(x),

HN (t, x) =
N∑
i=1

ci(t)ϕi(x),

where ai(t), bi(t) and ci(t) are all three-dimensional vector valued functions of t,
and are chosen such that for 1 ≤ i ≤ N it holds

γ

∫
Ω

∂tmNϕi dx+ ν

∫
Ω

Λ2αmNϕi dx+
∫

Ω

θc(|mN |2 − 1)mNϕi dx

+
∫

Ω

θNmNϕi dx−
∫

Ω

HNϕi dx = 0,
(3.3)

c2

∫
Ω

∂tθ
Nφi dx+ k

∫
Ω

Λ2βθNφi dx−
∫

Ω

mN · ∂tmNφi dx−
∫

Ω

r̂φi dx = 0, (3.4)

µ

∫
Ω

∂tHNϕi dx+
∫

Ω

∂tmNϕi dx+
1
σ

∫
Ω

curl curl HNϕi dx = 0. (3.5)

The initial conditions are∫
Ω

mN (0, x)ϕi dx =
∫

Ω

m0(x)ϕi dx,∫
Ω

θN (0, x)φi dx =
∫

Ω

θ0(x)φi dx,∫
Ω

HN (0, x)ϕi dx =
∫

Ω

H0(x)ϕi dx,

(3.6)

for all 1 ≤ i ≤ N .
The existence of local (in time) solutions (aiN , biN , ciN ) for 1 ≤ i ≤ N to (3.3)-

(3.6) follows from the standard Picard’s theorem, which can be found in a general
ODE textbook. To take the limit N → ∞, we need to make sure that all the
functions are defined at least in a common interval [0, T ], and this is a consequence
of Lemma 3.1 below.

3.1. A priori estimates. Define

EN (t) =
1
2

(
ν

∫
Ω

|ΛαmN |2 dx+
θc
2

∫
Ω

(|mN |2−1)2 dx+c
∫

Ω

|θN |2 dx+µ
∫

Ω

|HN |2 dx
)
.

Lemma 3.1. Let T > 0, m0 ∈ Hα(Ω), θ0 ∈ L2(Ω) and H0 ∈ L2(Ω). Then for
the solutions (mN , θN ,HN ) to the approximating system (3.3)-(3.6), the following
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estimates hold for all t ∈ (0, T ),

EN (t) + γ

∫ t

0

∫
Ω

|∂tmN |2 dxdt+ k

∫ t

0

∫
Ω

|ΛβθN |2 dx dt

+
1
σ

∫ t

0

∫
Ω

| curl HN |2 dx dt = EN (0),
(3.7)

γ

∫
Ω

|ΛαmN |2 dx+ ν

∫ t

0

∫
Ω

|Λ2αmN |2 dx dt

≤ C
∫ t

0

[
‖mN‖2Hα(Ω)

(
1 + ‖mN‖4Hα(Ω) + ‖θ‖2Hβ(Ω)

)
+
∫

Ω

|HN |2 dx
]

dt,
(3.8)

‖∂tHN‖L2(0,T,H−1(Ω)) ≤ C, (3.9)

where C is a positive constant independent of N .

Proof. We multiply (3.3), (3.4) and (3.5) by ∂tai, bi and ci, respectively, and add
for i = 1, . . . , N the resulting equations. We obtain

1
2

d
dt

[
ν

∫
Ω

|ΛαmN |2 dx+
θc
2

∫
Ω

(|mN |2 − 1)2 dx+ c

∫
Ω

|θN |2 dx

+ µ

∫
Ω

|HN |2 dx
]

+ γ

∫
Ω

|∂tmN |2 dx+ k

∫
Ω

|ΛβθN |2 dx

+
1
σ

∫
Ω

| curl HN |2 dx = 0.

(3.10)

Integrating (3.10) from 0 to t, we obtain (3.7).
Now, we test (3.3) by Λ2αm and using Young’s inequality, we obtain

γ

2
d
dt

∫
Ω

|ΛαmN |2 dx+
ν

2

∫
Ω

|Λ2αmN |2 dx

≤ 1
2ν

∫
Ω

∣∣∣− θc(|mN |2 − 1)mN − θNmN + HN
∣∣∣2 dx

Therefore,
γ

2
d
dt

∫
Ω

|ΛαmN |2 dx+
ν

2

∫
Ω

|Λ2αmN |2 dx

≤ C
∫

Ω

[
(|mN |4 + 1)|mN |2 + |θN |2|mN |2 + |HN |2

]
dx.

Now, for the term
∫

Ω
(|mN |4 + 1)|mN |2 dx, thanks to the Sobolev embedding

Hα(Ω) ↪→ L6(Ω) for α ≥ d
3 , we have∫

Ω

(|mN |4 + 1)|mN |2 dx =
∫

Ω

|mN |2 dx+
∫

Ω

|mN |6 dx

≤ ‖mN‖2Hα(Ω) + C‖mN‖6Hα(Ω)

= C‖mN‖2Hα(Ω)(1 + ‖mN‖4Hα(Ω)).

On the other hand, using the fact that Hβ(Ω) ↪→ L4(Ω) for β ≥ d
4 , we obtain∫

Ω

|θN |2|mN |2 dx ≤ ‖θN‖2L4(Ω)‖m
N‖2L4(Ω) ≤ C‖θ

N‖2Hβ(Ω)‖m
N‖2Hα(Ω).

Then (3.10) implies (3.8).
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Now, let Φ ∈ L2(0, T,H1(Ω)), from (3.5) and (3.7), we have∣∣ ∫
Q

∂tHN ·Φ dxdt
∣∣ ≤ 1

µ
‖∂tmN‖L2(Q)‖Φ‖L2(Q) +

1
µσ
‖ curl HN‖L2(Q)‖ curl Φ‖L2(Q)

≤ C‖Φ‖L2(0,T,H1(Ω))

where C is a constant independent of N . The proof is complete. �

Lemma 3.2. Let (mN , θN ,HN ) be solutions for the approximating system (3.3)-
(3.6) then the following estimates hold

‖mN (t1, ·)−mN (t2, ·)‖L2(Ω) ≤ C|t1 − t2|1/2,

‖HN (t1, ·)−HN (t2, ·)‖H−1(Ω) ≤ C|t1 − t2|1/2,
(3.11)

where C is a constant independent of N .

Proof. By Young and Hölder inequalities we have

‖mN (t1, ·)−mN (t2, ·)‖L2(Ω) =
∥∥∥ ∫ t1

t2

∂tmN dt
∥∥∥

L2(Ω)

≤
∫ t1

t2

‖∂tmN‖L2(Ω) dt

≤ |t1 − t2|1/2
(∫

Q

|∂tmN |2 dx dt
)1/2

≤ C|t1 − t2|1/2.

By Lemma 3.1, we deduce that (∂tHN )N is bounded in L2(0, T,H−1(Ω)). Then

‖HN (t1, ·)−HN (t2, ·)‖H−1(Ω) =
∥∥∥∫ t1

t2

∂tHN dt
∥∥∥

H−1(Ω)

≤
∫ t1

t2

‖∂tHN‖H−1(Ω) dt

≤ |t1 − t2|1/2
(∫ T

0

‖∂tHN‖2H−1(Ω) dt
)1/2

≤ C|t1 − t2|1/2,

where the constant C is independent of N . The proof is complete. �

3.2. Compactness argument and convergence. In the following, we will take
N → ∞ to obtain a global weak solutions the problem (1.3)-(1.4). Before doing
so, we give a compactness lemma first whose proof can be found in Lions [8], hence
omitted.

Lemma 3.3. Let B0, B,B1 be three Banach spaces such that B0 ↪→ B ↪→ B1, where
the injections are continuous and B0, B1 are reflexive, and the injection B0 ↪→ B
is compact. Denote

W =
{
v ∈ Lp0(0, T, B0) :

dv
dt
∈ Lp1(0, T, B1)

}
,

where T is finite and 1 < p0, p1 <∞. Then W equipped with the norm

‖v‖W = ‖v‖Lp0 (0,T,B0) +
∥∥dv

dt

∥∥
Lp1 (0,T,B1)
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is a Banach space and the embedding W ↪→ Lp0(0, T, B) is compact. When p0 =∞,
1 < p1 ≤ ∞, the embedding W ↪→ C([0, T ], B) is compact.

Now, let Ψ, ψ ∈ C∞(Q) with Ψ(T, ·) = ψ(T, ·) = 0. Taking scalar product of
(3.3), (3.5) with Ψ and (3.4) with ψ, summing up for i = 1, 2, . . . , N , integrating
from over [0, T ] and using integration by parts formula, we obtain the following
approximating equalities

γ

∫
Q

∂tmN ·Ψ dxdt+ ν

∫
Q

ΛαmN · ΛαΨ dxdt+
∫
Q

θc(|mN |2 − 1)mN ·Ψ dxdt

+
∫
Q

θNmN ·Ψ dxdt−
∫
Q

HN ·Ψ dx dt = 0,

c

∫
Q

θN∂tψ dxdt− k
∫
Q

ΛβθNΛβψ dxdt+
∫
Q

mN · ∂tmN ψ dxdt

+ c

∫
Ω

θN (0, ·)ψ(0, ·) dx = 0,

µ

∫
Q

HN · ∂tΨ dxdt−
∫
Q

∂tmN ·Ψ dxdt− 1
σ

∫
Q

curl HN · curl Ψ dxdt

+ µ

∫
Ω

HN (0, ·) ·Ψ(0, ·) dx = 0,

Applying the compactness Lemma 3.3, we have the following compactness results.
There is some (m, θ,H) such that up to a subsequence

∂tmN ⇀ ∂tm weakly in L2(Q),

mN ⇀ m weakly in Lp(0, T,Hα(Ω)), 1 < p <∞,
mN →m strongly in C([0, T ],Hρ(Ω)) and a.e. for 0 ≤ ρ < α,

θN ⇀ θ weakly in L2(0, T,Hβ(Ω)),

HN ⇀ H weak-? in L∞(0, T,L2(Ω)),

curl HN ⇀ curl H weakly in L2(0, T,L2(Ω)).

These compactness results enable us to prove the convergence of the above equali-
ties. Indeed, it suffices to consider the convergence of the nonlinear terms. We will
prove that∫

Q

(|mN |2 − 1)mN ·Ψ dx dt→
∫
Q

(|mN |2 − 1)mN ·Ψ dxdt, as N →∞. (3.12)

Firstly, since (|mN |2− 1) is bounded in L∞(0, T, L2(Ω)), by (3.7) we have |mN |2−
1 ⇀ χ weakly in L2(0, T, L2(Ω)). On the other hand, mN → m strongly in
L2(0, T,L2(Ω)) and a.e. which implies that χ = |m|2− 1. Then (|mN |2− 1)mN ⇀
(|m|2 − 1)m weakly in L1(0, T,L1(Ω)), therefore (3.12) is proved. Since mN →m
strongly in L2(0, T,L2(Ω)) and θN ⇀ θ weakly in L2(0, T,L2(Ω)), we now that
θNmN ⇀ θm weakly in L1(Q). Then∫

Q

θNmN ·Ψ dx dt→
∫
Q

θNmN ·Ψ dxdt, as N →∞.
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We have that mN → m strongly in L2(0, T,L2(Ω)) and ∂tmN ⇀ ∂tm weakly in
L2(0, T,L2(Ω)). Then∫

Q

mN · ∂tmNψ dxdt→
∫
Q

m · ∂tmψ dxdt, as N →∞.

Since the other terms are linear, their convergence is obvious. We have proved the
following global existence result.

Theorem 3.4. Let α, β ∈ (0, 1) such that d ≤ min(3α, 4β), m0 ∈ Hα(Ω), θ0 ∈
L2(Ω), and H0 ∈ L2(Ω). For all T > 0, there exist a weak solution (m, θ,H) to
the problem (1.3)-(1.4) in the sense of Definition 2.1. Furthermore, the solution
satisfies

m ∈ L∞(0, T,Hα(Ω)) ∩ C0, 12 (0, T,L2(Ω)), ∂tm ∈ L2(Q),

θ ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,Hβ(Ω)),

H ∈ L∞(0, T,L2(Ω)) ∩ C0, 12 (0, T,H−1(Ω)).

4. Uniqueness of the weak solution

To prove uniqueness of weak solution to (1.3), let (mi, θi,Hi), be two weak
solutions corresponding to the data m0i, θ0i and H0i, i = 1, 2 respectively. We
introduce the differences

m = m1 −m2, θ = θ1 − θ2, H = H1 −H2.

Then (m, θ,H) satisfies the following system in the weak sense

γ∂tm + νΛ2αm + θc(|m1|2 − 1)m1 − θc(|m2|2 − 1)m2

+ θ1m1 − θ2m2 −H = 0,

c2∂tθ + kΛ2βθ −m1 · ∂tm1 + m2 · ∂tm2 = 0,

µ∂tH + ∂tm +
1
σ

curl curl H = 0,

(4.1)

with initial data

m(0, x) = m01(x)−m02(x) = m0(x),

θ(0, x) = θ01(x)− θ02(x) = θ0(x),

H(0, x) = H01(x)−H02(x) = H0(x).

Integrate the second and the last equations of (4.1) over (0, t), we obtain, respec-
tively,

cθ + k

∫ t

0

Λ2βθ ds =
1
2

(|m1|2 − |m2|2)− 1
2

(|m01|2 − |m02|2) + cθ0, (4.2)

µH + m +
1
σ

∫ t

0

curl curl H ds = µH0 + m0, (4.3)

Multiplying the first equation of (4.1) by m and (4.3) by H, integrating over Ω and
adding the resulting equations, we obtain

1
2

d
dt

[
γ‖m‖2 +

1
σ
‖
∫ t

0

curl H ds‖2
]

+ ν‖Λαm‖2 + µ‖H‖2 := I1 + I2, (4.4)
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where

I1 =
∫

Ω

[
θc(|m2|2 − 1)m2 − θc(|m1|2 − 1)m1 + θ2m2 − θ1m1

]
·m dx,

I2 =
∫

Ω

(µH0 + m0) ·H dx.

Multiplying now (4.2) by θ, integrating over Ω, we obtain

c

∫
Ω

|θ|2 dx+
k

2
d
dt
‖
∫ t

0

Λβθ ds‖2 := I3, (4.5)

where

I3 =
∫

Ω

[1
2

(|m1|2 − |m2|2)− 1
2

(|m01|2 − |m02|2) + cθ0

]
θ dx.

• Estimate on I1: Firstly, we rewrite

I1 =
∫

Ω

[
θc(1− |m1|2)− θ1

]
|m|2 dx−

∫
Ω

θc[(m1 + m2) ·m]m2 ·m dx

−
∫

Ω

θm2 ·m dx = I11 + I12 + I13,

with

I11 =
∫

Ω

[
θc(1− |m1|2)− θ1

]
|m|2 dx,

I12 = −
∫

Ω

θc[(m1 + m2) ·m]m2 ·m dx,

I13 = −
∫

Ω

θm2 ·m dx.

Next, we bound separately each term. Using the fact that, Hβ(Ω) ↪→ L4(Ω) for
β ≥ d/4, and H2α(Ω) ↪→ L∞(Ω) for α > d/4, we have

|I11| ≤ θc(1 + ‖m2‖2∞)‖m‖2 + ‖θ1‖L4(Ω)‖m‖L4(Ω)‖m‖
≤ θc(1 + ‖m2‖2H2α(Ω))‖m‖

2 + C‖θ1‖Hβ(Ω)‖m‖Hα(Ω)‖m‖

≤ C
[
(1 + ‖m2‖2H2α(Ω))‖m‖

2 + ‖θ1‖Hβ(Ω)‖m‖Hα(Ω)‖m‖
]
.

Furthermore

|I12| ≤ θc‖m1 + m2‖∞‖m2‖∞‖m‖2

≤ 2θc(‖m1‖2∞ + ‖m2‖2∞)‖m‖2

≤ C(‖m1‖2H2α(Ω) + ‖m2‖2H2α(Ω))‖m‖
2

and
|I13| ≤ ‖m2‖∞‖θ‖‖m‖ ≤ C‖m2‖H2α(Ω)‖θ‖‖m‖.

Then by Young’s inequality, we obtain

|I1| ≤ C
[
(1 + ‖m1‖2H2α(Ω) + ‖m2‖2H2α(Ω))‖m‖

2 + ‖θ1‖Hβ(Ω)‖m‖Hα(Ω)‖m‖

+ ‖m2‖H2α(Ω)‖θ‖‖m‖
]

≤ ε‖m‖2Hα(Ω) + ε‖θ‖2 + Cε
(
1 + ‖m1‖2H2α(Ω) + ‖m2‖2H2α(Ω) + ‖θ1‖2Hβ(Ω)

)
‖m‖2

for ε > 0.
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• Estimate on I2: Young’s inequality implies that

|I2| ≤ ‖µH0 + m0‖‖H‖
≤ (µ‖H0‖+ ‖m0‖)‖H‖

≤ µ

2
‖H‖2 + C(‖H0‖2 + ‖m0‖2).

• Estimate on I3: We rewrite

I3 =
∫

Ω

[1
2

(m1 + m2) ·m− 1
2

(m01 + m02) ·m0 + cθ0

]
θ dx.

Then

|I3| ≤
[1
2

(‖m1‖∞ + ‖m2‖∞)‖m‖+
1
2

(‖m01‖∞ + ‖m02‖∞)‖m0‖+ c‖θ0‖
]
‖θ‖

≤ c

2
‖θ‖2 + C

[
(‖m1‖2H2α(Ω) + ‖m2‖2H2α(Ω))‖m‖

2 + ‖m0‖2 + ‖θ0‖2
]

Adding (4.4) and (4.5), choosing ε such that ε < min(ν, c2 ), we obtain

1
2

d
dt

[
γ‖m‖2 +

1
σ

∥∥∥∫ t

0

curl H ds
∥∥∥2

+ k
∥∥∥∫ t

0

Λβθ ds
∥∥∥2]

+ (ν − ε)‖Λαm‖2

+ (
c

2
− ε)‖θ‖2 +

µ

2
‖H‖2

≤ C
(
‖m0‖2 + ‖θ0‖2 + ‖H0‖2

)
+ F (t)‖m‖2

(4.6)

where F ∈ L1(0, T ). Using Gronwall Lemma, there exists C(T ) such that

‖m‖2 ≤ C(T )
(
‖m0‖2 + ‖θ0‖2 + ‖H0‖2

)
. (4.7)

Integrating (4.6) over (0, T ) and using (4.7), we obtain∫ T

0

(
‖m‖2Hα(Ω) + ‖θ‖2 + ‖H‖2

)
dt ≤ CT

(
‖m0‖2 + ‖θ0‖2 + ‖H0‖2

)
.

We have proved the following uniqueness result.

Theorem 4.1. Let (m1, θ1,H1) and (m2, θ2,H2) be two solutions of problem (1.3)-
(1.4), with initial data (m01, θ01,H01), (m02, θ02,H02) ∈ Hα(Ω)× L2(Ω)× L2(Ω).
Then, for each T > 0, there exists a positive constant CT such that∫ T

0

(‖m1 −m2‖2Hα(Ω) + ‖θ1 − θ2‖+ ‖H1 −H2‖) dt

≤ CT (‖m01 −m02‖2Hα(Ω) + ‖θ01 − θ02‖+ ‖H01 −H02‖).

In particular, the solution of problem (1.3)-(1.4) is unique.

5. Concluding remarks

In this paper, global existence and uniqueness of weak solution to a fractional
model describing phase transition in ferromagnets are proved. The model couples
thermodynamic and electromagnetic properties of the ferromagnetic material. Due
to nonlocal nonlinearities in the model, special structures of the equations and
some calculus inequalities of fractional order are exploited to get the convergence
of the approximating solutions. There are a number of directions which are worth
pursuing based on the developments presented here, we briefly mention some of
them. We have assumed that c1 = k0 = 0 and we would like to extend our results
to a more general assumptions on heat conductivity and specific heat as depicted in
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[3]. Also, an interesting direction of future research is to design numerical scheme
both for the model (1.1) and the fractional model studied in this paper. This
will be helpful to give a strategy for efficient computer implementation which may
address a comparative analysis of the models with integer and non-integer order
derivatives. We finally note that these numerical issues may also give some help
for studying periodic perforated media for which effective thermo-electromagnetic
properties can be obtained by using the theory of periodic homogenization.
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Univ. My Ismäıl, FST Errachidia, M2I Laboratory, MAMCS Group, P.O. Box 509, Bouta-

lamine 52000 Errachidia, Morocco
E-mail address: m.tilioua@fste.umi.ac.ma


	1. Introduction
	2. Preliminaries
	3. Existence of global weak solutions
	3.1. A priori estimates
	3.2. Compactness argument and convergence

	4. Uniqueness of the weak solution
	5. Concluding remarks
	Acknowledgements

	References

