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WELL-POSEDNESS, REGULARITY, AND ASYMPTOTIC
BEHAVIOR OF CONTINUOUS AND DISCRETE SOLUTIONS OF
LINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

WITH TIME-DEPENDENT ORDER

EDUARDO CUESTA, RODRIGO PONCE

Abstract. We study the well-posedness of abstract time evolution fractional

integro-differential equations of variable order u(t) = u0 + ∂−α(t)Au(t) + f(t).
Also we study the asymptotic behavior as t → +∞, and the regularity of so-

lutions. Moreover, we present the asymptotic behavior of the discrete solution

provided by a numerical method based on convolution quadratures, inherited
from the behavior of the continuous solution. In this equation A plays the

role of a linear operator of sectorial type. Several definitions proposed in the

literature for the fractional integral of variable order are discussed, and the
differences between the solutions provided for each of them are illustrated

numerically. The definition we chose for this work is based on the Laplace

transform, and we discuss the reasons for this choice.

1. Introduction

In the previous decades, fractional calculus has become a very active field of
research in the framework of evolution phenomena because many of these phenom-
ena, classically described by means of evolution equations involving integer order
derivatives and/or integrals, have turned out to be better suited if non integer inte-
grals/derivatives are introduced (see [17, 22, 25, 27, 35, 48] and references therein).
The prototype linear fractional equation with constant order for evolution phenom-
ena can be written in integral form as

u(x, t) = u0(x) +
∫ t

0

(t− s)α−1

Γ(α)
(Au)(x, s) ds+ f(x, t), t > 0, x ∈ Ω, (1.1)

where Ω ⊂ Rm is the spatial domain, A is a closed linear operator acting on u(x, t) in
a convenient functional set, and the integral term stands for the fractional integral
in the sense of Riemann-Liouville with order of integration (or viscosity parameter)
α ∈ R, 1 < α < 2.

More recently, fractional models involving non constant order of integration (vis-
cosity function, α = α(t) or α = α(x, t)) have received special attention as a natural
extension of those with constant order [1, 3, 10, 11, 24, 26, 31, 38, 45, 46, 47, 49].
The main reason is that practical applications modeling has demonstrated that the
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freedom to choose a variable order of integration/derivation instead of the con-
stant one allows us a finer tuning in mathematical modeling. In other words, with
variable order of integration more accurate modeling can be achieved. This fact
applies over a large variety of applications: control theory [18, 23, 36], mechanical
engineering [12], image processing [14], remote sensing [50], physical applications
[5, 6], and some others [4, 40, 43, 44]. But also theoretical properties of such kind of
equations attracted the interest of researchers [2, 27], in this way it is interesting to
show how these properties differ from the ones satisfied by the fractional equations
with constant order.

One can accept that for linear scalar equations of type (1.1), i.e. for A stand-
ing for a constant, some properties, as for instance the existence and uniqueness
of solution, can be easily proven. However, these properties are in general not
straightforwardly extended to abstract formulations of these equations as the one
considered in the present work. Nonetheless there exists a extensive literature re-
lated to non local equations in time, in particular related to Volterra equations and
the well-posedness, but to our knowledge, there are not general results establishing
appropriate conditions on the viscosity function α(t) to ensure the well-posedness
of that equations within a framework of general operators setting. That is why we
devote this work to the study of some relevant properties of fractional equations of
variable order.

To be more precise, the first contribution of this work is to establish condi-
tions, as weak as possible, for the viscosity functions α(t) in order to guarantee
the well-posedness of linear abstract evolution equations of fractional type with
time dependent order in a very general functional setting as it is the framework of
complex Banach spaces. Once these conditions are stated we show the regularity
exhibited by the solution as well as the asymptotic behavior as the time goes to
infinity. These results are accompanied by the study of the asymptotic behavior of
the numerical solution provided by backward Euler based convolution quadrature
method, which is inherited from the asymptotic behavior of the continuous solu-
tion, and it is accompanied as well by several numerical experiments illustrating the
theoretical results. Notice that the viscosity functions α(t) can be assumed to be
depending on spatial variables, however in the present framework this dependence
is meaningless.

This paper is organized as follows. Section 2 is devoted to present a preliminary
discussion on some of definitions existing in the literature for the fractional integrals
with time dependent order, and to motivate our choice from all those mentioned. In
Section 3 we establish the conditions under which we can ensure the well-posedness
of initial value problems of fractional type with time dependent order, and we
prove the well-posedness under such assumptions. In Sections 4 and 5 we show the
regularity of the analytic solution at time level t = 0, and the asymptotic behavior
as time goes to infinity respectively. In Section 6 we set a time discretization based
on the backward Euler convolution quadrature and we show how the asymptotic
behavior as the number of steps goes to infinity is inherited from the asymptotic
behavior of the analytic solution. Finally, in Section 7 we illustrate numerically how
the results of the fractional integration significantly depends on the definition we
choose, and moreover we illustrate the behavior of the solutions of initial boundary
value problems of fractional type with time dependent order depending on the
choice of α(t).
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2. Background on fractional integrals with time dependent order

The study of fractional integration with order varying in time α(t) > 0, t ≥ 0,
can be addressed in different manners depending on the definition one adopts.

Assume that the order of integration/derivation ranges between 1 and 2, i.e.
1 < α < 2. A natural generalization of the Riemann-Liouville definition

∂−αg(t) :=
∫ t

0

(t− s)α−1

Γ(α)
g(s) ds, t > 0, (2.1)

seems to be the one directly obtained by replacing in (2.1) the constant order α by
a function α(t). In fact, for α:(0,+∞)→ (1, 2), this definition reads

∂−α(t)g(t) :=
∫ t

0

(t− s)α(t−s)−1

Γ(α(t− s))
g(s) ds, t > 0. (2.2)

Definition (2.2) stands for a convolution integral (k ∗ g)(t), where the convolution
kernel is given by

k(t) =
tα(t)−1

Γ(α(t))
, t > 0. (2.3)

However, in classical operational calculus, the numerical solution of equations in-
volving convolution terms, e.g. the equation (2.2), requires the evaluation of the
Laplace transform K of the convolution kernel k, namely K = Lk, instead of k.
In that case, the analysis of (2.2) in terms of the Laplace transform seems to be,
in general, difficult if not unaffordable, since an explicit expression of the Laplace
transform of k, is in general not explicitly reachable.

Other definitions can be found in the literature, see for example [23, 46],

∂−α(t)g(t) :=
1

Γ(α(t))

∫ t

0

(t− s)α(s)−1g(s) ds, t > 0, (2.4)

or, with a more general formulation [37],

∂−α(·,·)g(t) :=
∫ t

0

(t− s)α(t,s)−1

Γ(α(t, s))
g(s) ds, t > 0. (2.5)

Other definitions can be proposed from the definitions above.
Note that the analysis of fractional integrations of variable order according defi-

nitions (2.4) and (2.5) neither looks like a straightforward matter since these equa-
tions have not convolution structure, excepting might be (2.5) with a convenient
choice of α(·, ·).

The definition of fractional integral with time dependent order we will adopt in
the present work was basically proposed in [49], and the main feature is that it
is given in terms of the Laplace transform of the convolution kernel. In fact, let
α̃(z) be the Laplace transform of α(t), then the fractional integral of order α(t) is
defined as the convolution integral

∂−α(t)g(t) :=
∫ t

0

k(t− s)g(s) ds, t > 0, (2.6)

where

k(t) := (L−1K)(t), t > 0, with K(z) :=
1

zzα̃(z)
, z ∈ D(K) ⊂ C. (2.7)

We will discuss the domain of definition for K, D(K), or, equivalently, the domain
of definition of the function α̃(z).
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Note that the definition of fractional integral of variable order according (2.6)-
(2.7) has been already used in practical instances, in models related to image pro-
cessing [14] where only K (the Laplace transform of k) was necessary, i.e. k was
not explicitly required.

Note also that definition (2.6)-(2.7) is consistent with (2.1) in the sense that, if
the viscosity function α(t) is constant, i.e. α(t) =const., then the convolution kernel
turns out to be the one in (2.1)

k(t) =
tα−1

Γ(α)
, t > 0.

Certainly the main advantage of definition (2.6)-(2.7) versus definitions of type
(2.2), (2.4), or (2.5) (the last one depending on the choice of α), comes out when
one addresses the solvability of an abstract integral equation of type

u(t) = u0 +
∫ t

0

k(t− s)(Au)(s) ds, t > 0, (2.8)

where A stands for a linear operator in an abstract functional setting X, A : D(A) ⊂
X → X, e.g. A standing for the Laplacian operator ∆ in Rn.

In the following sections, we address the solvability of fractional integral equa-
tions (2.8) of time dependent order in the sense of definition (2.6)-(2.7). Also we
prove some properties of the the solution.

3. Well-posedness of fractional initial value problems

Let X be a complex Banach space, and let α(t) be a function α:(0,+∞)→ (1, 2).
Consider the abstract integral equation of fractional type of variable order

u(t) = u0 + ∂−α(t)(Au)(t) = u0 +
∫ t

0

k(t− s)(Au)(s) ds, t > 0, (3.1)

where A:D(A) ⊂ X → X is a linear and closed operator of sectorial type in X,
u0 ∈ X is the initial data, and k is a convolution kernel defined as in (2.6)–(2.7),
for a given complex function α̃(z) defined in certain domain D ⊂ C to be discussed
below.

Recall that a linear and closed operator A is of sectorial type, or θ-sectorial
[21, 39] in X, if there exist 0 < θ < π/2, ω ∈ R, and M > 0 such that

‖(zI −A)−1‖X→X ≤
M

|z − ω|
, for z /∈ ω+ + Sθ, (3.2)

where I stands for the identity operator in X, ω+ = max{ω, 0}, and

ω+ + Sθ := {ω+ + ξ : ξ ∈ C, | arg(−ξ)| < θ} . (3.3)

Henceforth, for simplicity of notation, and if not confusing, for B ∈ L(X), we will
write ‖B‖ instead of ‖B‖X→X .

For the simplicity of the notation as well, hereafter we will denote

g(z) := zα̃(z), gR(z) := Re g(z), gI(z) := Imag g(z), h(z) = zg(z),

for z ∈ D ⊂ C. Therefore the Laplace transform of k can be written as

K(z) =
1

h(z)
.
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Assume that there exist constants Dα,m1,m2, ε, R > 0, 0 < ε∗ < 1, and 0 <
θ < π/2, satisfying the following assumptions:

(A1) The function α(t) admits Laplace transform α̃(z) in the complex domain
Re z ≥ Dα.

(A2) The real part of g(z), gR(z), is bounded by

1 < m1 ≤ gR(z) ≤ m2 < 2, and
m2π

2
< ε∗(π − θ).

(it is expected that ε∗ ≈ 1)
(A3) The imaginary part of g(z), gI(z), is bounded, and it holds, for Im z ≤ 0,

that
| log |z| gI(z)| < (1− ε∗)(π − θ).

(A4) The operator A is θ-sectorial for some ω ∈ R, ω < Dα, with θ satisfying

0 < θ < π − m2π

2
−max

ρ≥R

log(ρ)
ρε

,

where R is assumed to be large enough.
Note that, the closer m2 is to 2, the more restricted is θ (closer to π/2 is). On

the contrary, the closer is θ to π/2, the closer are m1 and m2 to 1, as expected in
view of behavior in the case α(t) =const.

Examples of functions α(t) satisfying (A1)–(A3) are:

c sin t
2

+
3
2
,

c cos t
2

+
3
2
, ce−t + 1, . . . , with 0 < c < 1,

and piece-wise constant functions conveniently defined.
More examples of θ-sectorial operators are the Laplacian operator ∆ in Rn,

fractional powers of the Laplacian ∆β (β > 0), or in finite dimensional operators
such as matrices ∆h ∈ MM×M (R), in particular the ones coming out from most
classical discretizations of ∆.

Before stating the existence and uniqueness result, we look for a convenient
representation of the time evolution operator associated with the solution of (3.1).
In fact, since by Assumption (A1) the function α(t) admits Laplace transform, we
can write (3.1) in the frequency domain as

U(z) =
u0

z
+K(z)AU(z), z /∈ ω+ + Sθ,

where U(z) stands for the Laplace transform of the solution u(t) of (3.1), and K is
the Laplace transform of k. Therefore, according the notation stated above, U(z)
reads in terms of the resolvent of A as

U(z) =
1
z

(I −K(z)A)−1u0 =
h(z)
z

(h(z)I −A)−1u0 . (3.4)

The well-posedness of (3.1) requires the existence of a bounded evolution operator
E(t) such that the generalized solution may be written as

u(t) = E(t)u0, t > 0. (3.5)

Let us show that E(t) exists and, by the inversion formula of the Laplace transform,
and (A1)–(A4), the evolution operator admits the expression

E(t) =
1

2πi

∫
Γ

etz
h(z)
z

(h(z)I −A)−1 dz, t > 0, (3.6)
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where Γ is a convenient complex path connecting −∞i and +∞i with increasing
imaginary part (i.e. positively oriented), and surrounding the sector ω+ + Sθ.

Therefore, the key point is to find one of such complex paths providing a con-
vergent integral in (3.6). In this regard define the complex paths (see Figure 1)

Γ1 : γ1(ρ) := ω+ + a+ ρe±i(π−θ), 0 ≤ ρ ≤ ρ0,

Γ2 : γ2(ρ) := ρe±iϕ, ρ ≥ ρ1,

where

ρ0 =
ω+ + a

cos(θ)(1− tan(θ)
tan(π−ϕ) )

, ρ1 = |z0| =
ω+ + a

cos(π − ϕ)( tan(π−ϕ)
tan(θ) − 1)

, (3.7)

z0 and z̄0 are the intersection points of Γ1 and Γ2, i.e. z0 = ω++a+ρ0ei(π−θ) = ρ1eiϕ,
a is positive constant (we will see below the role a plays), and ± means that we
are considering both parts of the paths, the one located in the upper half-complex
plane joint with the symmetric one. The angle ϕ satisfies

m2
π

2
< ϕ ≤ ε∗(π − θ) < π − θ,

and without loss of generality we can set ϕ = ε∗(π−θ). Notice that ϕ exists thanks
to Assumption (A4).

Figure 1. Complex paths Γ1 and Γ2

Now define the continuous complex path positively oriented Γ consisting of the
union of Γ1/m2

1 , and Γ1/m2
2 , where Γ1/m2

j is defined as (γj(ρ))1/m2 , for j = 1, 2,
and show that the integral (3.6) along Γ is convergent. This will prove that the
evolution operator E(t) is well-defined.
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Consider first Γ1/m2
1 . The following discussion will focus only on the part of

Γ1/m2
1 lying in the upper half-complex plane Im z ≥ 0, and the same applies for

Γ1/m2
2 . In the lower half-complex plane Im z ≤ 0 the proof follows easily.

We have to prove that if z ∈ Γ1/m2
1 , then h(z) /∈ ω+ + Sθ. To this end, we set

z ∈ Γ1/m2
1 , and denote

ξ = |ξ|eiη = ω+ + a+ ρei(π−θ), for certain ρ > 0, and 0 ≤ η ≤ ϕ,
such that z = ξ1/m2 . Then, there is η̃ such that

h(z) = |h(z)|eiη̃,

and there is also τ ≥ 0 such that

z̃ = |z̃|eiη̃ = ω+ + τei(π−θ).

belongs to the boundary of ω+ + Sθ, and has the same argument as h(z). It is
straightforward to prove that

|z̃| = ω+ sin(π − θ)
sin(π − θ − η̃)

,

|h(z)| =
( (ω+ + a) sin(π − θ)

sin(π − θ − η)

)gR(z)/m2

e−ηgI(z)/m2 ,

η̃ =
1
m2

(
gI(z) log

( (ω+ + a) sin(π − θ)
sin(π − θ − η)

)
+ ηgR(z)

)
.

Hence, the proof reduces to show that

|h(z)| > |z̃|, z ∈ Γ1/m2
1 . (3.8)

Here we discuss several cases. First, if ω+ = 0, then inequality (3.8) obviously
holds. On the other hand, if ω+ > 0 and gI = 0, then η̃ = ηgR(z)/m2 and therefore
inequality (3.8) reduces to

ω+ sin(π − θ)
sin
(
π − θ − η gR(z)

m2

) < ( (ω+ + a) sin(π − θ)
sin(π − θ − η)

)gR(z)/m2

.

In that case, gR(z) = m1 = m2 leads to α(t) constant, and the last inequality
straightforwardly holds. However, without additional assumptions, it is easy to
find a naive function gR(z) (non constant, e.g. with η = 0) for which this equality
does not satisfy. Therefore, in the general case (i.e. with gI(z) not necessarily
0) with ω+ > 0 additional assumptions are required, e.g. assumptions of type
gI(z)/m2 being small enough joint with ω+ < 1. Since additional assumptions for
ω+ > 0 look like very unrealistic, now and hereafter we will assume that ω+ = 0,
i.e. ω ≤ 0.

Consider now Γ1/m2
2 , and z ∈ Γ1/m2

2 . Therefore z = (ρeiϕ)1/m2 , for certain ρ ≥
ρ1. In that case we have to prove that Arg(h(z)) < π−θ, but this is straightforward
in view of inequality

|Arg(h(z))| ≤ | log |z| gI(z)|+
ϕ

m2
gR(z),

and Assumption (A3). In fact

| log |z| gI(z)|+
ϕ

m2
gR(z) < (1− ε∗)(π − θ) + ε∗(π − θ) = π − θ,

and therefore h(z) /∈ Sθ.
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On the other hand, by Assumption (A2),

Arg z =
ϕ

m2
=
ε∗(π − θ)

m2
>
π

2
,

and therefore Γ1/m2
2 falls inside the half-complex plane Re z < 0.

In conclusion, we are now in a position to prove the following theorem where,
under Assumptions (A1)–(A4), we prove that the integral (3.6) is convergent, and
equivalently Problem (3.1) is well-posed.

Theorem 3.1. Let α(t) be a function belonging to L1(0,+∞) satisfying (A1)–(A3).
Assume also that the operator A satisfies (A4). Then problem (3.1) is well-posed.

Proof. The proof reduces to state that the integral in (3.6) is convergent for which
we consider the positively oriented complex path Γ consisting of the union of Γ1/m2

1

and Γ1/m2
2 defined above. Therefore we can write

E(t) =
2∑
j=1

Ij , where Ij =
1

2πi

∫
Γ

1/m2
j

etz
h(z)
z

(h(z)I −A)−1 dz, j = 1, 2.

Now we prove that I1 and I2 are bounded. First of all, for 0 < t ≤ T , and
regarding the properties of Γ1/m2

1 stated above, we have

‖I1‖ =
∥∥ 1

2πi

∫
Γ

1/m2
1

etz
h(z)
z

(h(z)I −A)−1 dz
∥∥

≤ 1
2π

∫
Γ

1/m2
1

|etz|
∣∣h(z)
z

∣∣‖(h(z)I −A)−1‖ |dz|

≤ M

2π

∫
Γ

1/m2
1

∣∣etz
z

∣∣|dz|
≤ MeaT/m2

2π

∫
Γ

1/m2
1

1
|z|
|dz|

≤ MeaT/m2ρ0

πa sin(ϕ)m2
.

(3.9)

On the other hand, for 0 < t ≤ T , and regarding the properties of Γ1/m2
2 stated

above, we obtain

‖I2‖ =
∥∥ 1

2πi

∫
Γ

1/m2
2

etzzg(z)−1(zg(z)I −A)−1 dz
∥∥

≤ M

2π

∫
Γ

1/m2
2

∣∣etz
z

∣∣|dz|
≤ M

2π

∫
Γ

1/m2
2

et|z| cos(ϕ/m2)

|z|
|dz|.

(3.10)

Therefore, since cos(ϕ/m2) < 0 by Assumption (A2), the integral (3.10) is con-
vergent, and leads to the boundedness of I2, and consequently joint with (3.2) the
boundedness of E(t), for 0 < t ≤ T .

In conclusion, the generalized solution of (3.1) exists even if u0 merely belongs
to X, i.e. even if u0 is not in D(A), and moreover admits an unique representation
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in terms of the evolution operator (3.6). Therefore, the problem (3.1) is well-
posed. �

Remark 3.2. If u0 ∈ D(A), then since A commutes with the associated resolvent,
proceeding as in Theorem 3.1, it can be proved that

‖Au(t)‖ =
∥∥ 1

2πi

∫
Γ

ezt
h(z)
z

(h(z)I −A)−1Au0 dz
∥∥

≤ 1
2π

∥∥∫
Γ

ezt
h(z)
z

(h(z)I −A)−1 dz
∥∥ ‖Au0‖

≤ C‖Au0‖.

Therefore u(t) ∈ D(A), for t > 0, and (3.5) is a solution of (3.1).

Remark 3.3. We have shown that the evolution operator E(t), t > 0, associated
with (3.1) admits an integral representation (3.6) defined along a suitable complex
path. However the path we set Γ cannot be strictly placed in the half-complex
plane Re z < 0, since the integrand does not admit holomorphic extension to the
real line Re z ≤ 0 (Imag z = 0). Therefore, no exponential decay will be obtained
as one could expect having in mind the theory of classical C0-semigroups.

4. Continuous solution: Regularity at t = 0

The regularity at t = 0+ has been already studied for α(t) =const. in [13]. In
this section we extend the study to the case of α depending on time, i.e. α(t)
instead of α.

Let δ be a positive non-zero constant, and define the set of functions

Fδ :=
{
f :(0, T ]→ X : measurable, sup

0<t≤T
‖tδf(t)‖ < +∞

}
, (4.1)

equipped with the norm

|||f |||δ := sup
0<t≤T

‖tδf(t)‖, f ∈ Fδ. (4.2)

Theorem 4.1. Let u(t) be the solution of (3.1) under Assumptions (A1)–(A4).
If u0 ∈ D(A), then the derivative u′(t), is bounded for 0 < t ≤ T , and u′(t) =
O(tm1−1) as t→ 0+.

Proof. We first notice that from the resolvent identity (3.4) it follows that the
operator A commutes with the evolution operator, that is, E(t)Aξ = AE(t)ξ, for
all ξ ∈ D(A).

Let Γ be again the complex path defined in Section 2. So, given ξ ∈ D(A) we
can write

u(t) = E(t)ξ =
1

2πi

∫
Γ

ezt
h(z)
z

(h(z)I −A)−1ξ dz

=
1

2πi

∫
Γ

ezt
( ξ
z

+
1
z

(h(z)I −A)−1Aξ
)

dz

= ξ +
1

2πi

∫
Γ

ezt
1
z

(h(z)I −A)−1Aξ dz,

for t > 0. Note that above equality has been reached by using that
h(z)
z

(h(z)I −A)−1ξ =
(h(z)

z
+A−A

)
(h(z)I −A)−1ξ = ξ +

1
z

(h(z)−A)−1Aξ.



10 E. CUESTA, R. PONCE EJDE-2018/173

Therefore, denoting the derivative of E(t) with respect to t as E′(t), we have

u′(t) = E′(t)ξ =
1

2πi

∫
Γ

ezt(h(z)−A)−1Aξ dz.

For the convenience, in the definition of Γ, we consider the parameter a as a function
of time; in fact a takes the value 1/tm2 . So we have

u′(t) =
2∑
j=1

Ij , where Ij =
1

2πi

∫
Γ

1/m2
j

ezt(h(z)I −A)−1Aξ dz,

and where each individual integral will be studied separately. Note that, by the
definition of Γ, we have that h(Γ) ⊂ C \ {ω+ + Sθ}, and therefore, for j = 1, 2, the
choice of Γ allows us to apply the sectorial property (3.2)–(3.3) of A.

We consider two separated cases, with the same notation as in Theorem 3.1:
ω = 0, and ω < 0. Hereafter in this proof we assume that C > 0 is a generic
positive constant independent of t.

We first set ω = 0. Note that, by Assumption (A3) there exist cm, CM > 0 such
that

cm ≤ e−Arg(z)gI(z) ≤ CM . (4.3)

If z ∈ Γ1/m2
1 , then z = (1/tm2 +ρei(π−θ))1/m2 , 0 ≤ ρ ≤ ρ0. In that case, and having

in mind that t→ 0+, we have

|ezt| ≤ e(1/tm2 )1/m2 t = e, (4.4)

and there exists C > 0 such that

|h(z)| = |z|gR(z)e−Arg(z)gI(z)

=
( 1
tm2

+ ρei(π−θ)
)gR(z)/m2

e−Arg(z)gI(z)

≥
( 1
tm2 sin(θ)

)m1/m2

cm ≥
cmC

tm1
.

(4.5)

On the other hand,

length(Γ1/m2
1 ) ≤ C

( 1/tm2

cos(θ)
(
1− tan(θ)

tan(π−ϕ)

))1/m2

. (4.6)

Therefore, regarding (4.4)–(4.6) we have

‖I1‖ ≤
M

2π

∫
Γ

1/m2
1

∣∣ ezt

h(z)

∣∣|dz|
≤ Metm1

2πcm sin(θ)m1/m2

∫
Γ

1/m2
1

|dz|

=
Metm1

2πcm sin(θ)m1/m2
operatornamelength(Γ1/m2

1 )

≤ MeCtm1−1

πcm sin(θ)m1/m2
.
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If z ∈ Γ1/m2
2 , then z = (ρeiϕ)1/m2 , ρ ≥ ρ1, where ρ1 was computed in (3.7). In

that case, there exists C > 0 such that

|h(z)| = |z|gR(z)e−Arg(z)gI(z) ≥ cmρgR(z)/m2
1

=
cm(1/t)gR(z)(

cos(π − ϕ)
( tan(π−ϕ)

tan(θ) − 1
))gR(z)/m2

≥ C

tm1
.

(4.7)

On the other hand,

|dz| = ρ1/m2−1

m2
dρ. (4.8)

Therefore, by (4.7), and (4.8) we have

‖I2‖ ≤
M

2π

∫
Γ

1/m2
2

∣∣ ezt

h(z)

∣∣|dz|
≤ CM

2π

∫ +∞

ρ1

eρ
1/m2 cos(ϕ/m2) t

m1ρ1/m2−1

m2
dρ (ν = ρ1/m2)

≤ CMtm1

2π

∫ +∞

ρ
1/m2
1

eν cos(ϕ/m2) dν

≤ CMtm1

2π
ecos(ϕ/m2)/t

| cos(ϕ/m2)|
≤ Ctm1−1.

The statement for ω = 0 is now straightforward.
If ω < 0, then we have

‖u′(t)‖ ≤ M

2π

∫
Γ

∣∣ ezt

h(z)− ω
∣∣|dz|‖Aξ‖,

In this case, the bound

|h(z)− ω| ≥ |h(z)| − |ω| =
∣∣∣ 1
tm2

+ ρei(π−θ)
∣∣∣gR(z)/m2

e−Arg(z)gI(z) − |ω|

≥ cm sin(θ)m1/m2

tm1
− |ω|,

and the same process as for ω = 0, leads to the bound

‖u′(t)‖ ≤ Ctm1−1

cm sin(θ)m1/m2 − tm1 |ω|
,

and the proof is complete. �

As occurs in classical abstract parabolic ordinary differential equations, no reg-
ularity in time is expected for no regular initial data u0. In fact, for u0 merely
belonging to X, we have next the Corollaries.

Corollary 4.2. Let u(t) be the solution of (3.1) satisfying (A1)–(A4). If u0 belongs
to X, then u′ belongs to F1.
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Proof. Since the proof follows the one of Theorem 4.1, we just sketch it. Once
again, let Γ be the path defined in Section 3. Then, we can write

u′(t) = E′(t)ξ =
1

2πi

∫
Γ

ezth(z)(h(z)−A)−1ξ dz, t > 0.

On the other hand, sectorial property (A4) of A, now with ω = 0, and the change
of variable ν = tz lead to

‖u′(t)‖ ≤ M

2π

∫
Γ

|etz|dz =
M

2πt

∫
Γ∗
|eν |dν, t > 0,

where the complex path Γ∗ results from the change of variable ν = tz. The bound-
edness of the last integral is straightforward. Proceeding similarly for ω < 0 we
complete the proof. �

The proof of the next corollary follows similar steps as that of Theorem 4.1, thus
we omit it.

Corollary 4.3. Let u(t) be the solution of (3.1) satisfying (A1)–(A4). If u0 ∈
D(A), then u′′ ∈ F2−m1 .

5. Continuous solution: Asymptotic behavior

In this section we study the asymptotic behavior in norm of the solution of (3.1)
as t approaches +∞, through the associated evolution operator E(t). We remark
that the study when α(t) is constant can be found in [13].

Theorem 5.1. Let E(t) be the evolution operator (3.6) associated with problem
(3.1) satisfying (A1)–(A4). Then, there exists a constant C > 0 independent of t
such that

‖E(t)‖ ≤ CM

1 + |ω|tm1
, as t→ +∞. (5.1)

Notice that, in view of Theorem 5.1, the asymptotic behavior of the solution u(t)
of (3.1) is independent of the initial value, i.e. this holds for u0 merely belonging
to X.

Proof. Let E(t) be the evolution operator (3.6),

E(t) =
1

2πi

∫
Γ

ezt
h(z)
z

(h(z)I −A)−1 dz, t > 0,

where Γ is a suitable path connecting −i∞ and +i∞ positively oriented. In fact for
the convenience of the proof we choose again Γ as the union of Γ1/m2

1 and Γ1/m2
2

defined in Section 3, and again with a depending on time as 1/tm2 .
In Section 3 we proved that E(t) is bounded, for t > 0, and now we get a finer

bound. To this end, we write

E(t) =
2∑
j=1

Ij(t), t > 0, where Ij(t) =
1

2πi

∫
Γ

1/m2
j

ezt
h(z)
z

(h(z)I −A)−1 dz,

for j = 1, 2. Consider t > 0 large enough, and study separately I1(t) and I2(t).
Along this proof C > 0 will denote a generic constant independent of t.

First part. Consider I1(t), and z ∈ Γ1/m2
1 . By the definition of Γ1/m2

1 ,

z =
( 1
tm2

+ ρei(π−θ)
)1/m2

, for some 0 ≤ ρ ≤ ρ0,
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where ρ0 was computed in (3.7).
Note that |ezt| ≤ e, for z ∈ Γ1/m2

1 . Therefore, if ω = 0, then there exists C > 0
such that parametrizing Γ1/m2

1 we have

‖I1(t)‖ ≤ CMe
2π

∫
Γ

1/m2
1

1
|z|
|dz| ≤ CMe tm2

π sin(θ)

∫ ρ0

0

dρ

=
CMe

π sin(θ) cos(θ)
(
1− tan(θ)

tan(π−ϕ)

) , (5.2)

and therefore, I1(t) is bounded, for t > 0.
If ω < 0, then

‖I1(t)‖ ≤ M

2π

∫
Γ

1/m2
1

|h(z)| |ezt|
|z| |h(z)− ω|

|dz|.

For z ∈ Γ1/m2
1 there exists C > 0 such that |z| ≤ C/t, and by (4.3),

|h(z)| = |z|gR(z)e−Arg(z)gI(z) ≤ CM
(C
t

)gR(z) ≤ CCM
tm1

. (5.3)

Moreover, there exists C > 0 such that

|z| ≥
( 1
tm2

sin(θ)
)1/m2

=⇒ 1
|z|
≤ Ct. (5.4)

Also, we have
1

|h(z)− ω|
≤ 1

sin(θ)
tm2

1 + |ω|tm2
, for all z ∈ Γ1/m2

1 . (5.5)

Finally, since∫
Γ

1/m2
1

|dz| = length(Γ1/m2
1 ) ≤ C

( 1/tm2

cos(θ)
(
1− tan(θ)

tan(π−ϕ)

))1/m2

≤ C

t
, (5.6)

for some C > 0, bounds (5.3)–(5.6) lead us to

‖I1(t)‖ ≤ CM

|ω|tm1
, as t→ +∞,

and by the boundedness of E(t) we have

‖I1(t)‖ ≤ CM

1 + |ω|tm1
, as t→ +∞. (5.7)

Second part. Consider now I2(t), and z ∈ Γ1/m2
2 . By the definition of Γ1/m2

2 ,
z = (ρeiϕ)1/m2 for some ρ ≥ ρ1. First of all observe that the choice of Γ, and more
precisely the choice of ϕ, implies an exponential decay of |ezt| over Γ1/m2

2 . In this
case we have to split the analysis into two parts: |z| ≤ R, and |z| ≥ R, for R > 0
large enough. Denote Γ1/m2

2,l = Γ1/m2
2 ∩{z ∈ C : |z| ≤ R}, and Γ1/m2

2,u = Γ1/m2
2 ∩{z ∈

C : |z| ≥ R}.
Consider first ω = 0, then

‖I2(t)‖ ≤ M

2π

∫
Γ

1/m2
2

∣∣ezt
z

∣∣|dz|
=
M

2π

(∫
Γ

1/m2
2,l

∣∣ezt
z

∣∣|dz|+ ∫
Γ

1/m2
2,u

∣∣ezt
z

∣∣|dz|)
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=
M

2π
(I2,l(t) + I2,u(t)).

On the one hand, parametrizing Γ1/m2
2,l along the interval ρ1 ≤ ρ ≤ Rm2 , we have

I2,l(t) =
1
m2

∫ Rm2

ρ1

exp(cos(ϕ/m2)tρ1/m2)| 1
m2
ρ1/m2−1eiϕ/m2 |

|(ρeiϕ)1/m2 |
dρ

=
1
m2

∫ Rm2

ρ1

exp(cos(ϕ/m2)tρ1/m2)
ρ

dρ

≤
∫ tR

tρ
1/m2
1

exp(cos(ϕ/m2)µ)
µ

dµ (tρ1/m2 = µ)

≤
∫ +∞

tρ
1/m2
1

exp(cos(ϕ/m2)µ)
µ

dµ ≤ C.

(5.8)

Notice that bound C in (5.8) does not depend on t because the integral lower limit
tρ

1/m2
1 does not.
Moreover, parametrizing Γ1/m2

2,u along the interval ρ ≥ Rm2 we have

I2,u(t) ≤ 1
m2

∫ +∞

Rm2

exp(cos(ϕ/m2)tρ1/m2)
ρ

dρ

=
∫ +∞

tR

exp(cos(ϕ/m2)µ)
µ

dρ (tρ1/m2 = µ)

≤ exp(cos(ϕ/m2)tR)
− cos(ϕ/m2)tR

.

(5.9)

Observe that, for ω = 0, (5.9) shows an exponential decay, more than needed to
state the estimate (5.1) for ω = 0. Therefore the bounds (5.8) and (5.9) lead to the
statement of theorem.

Now, we consider ω < 0. As in the case ω = 0, we can write

‖I2(t)‖ ≤ M

2π

(∫
Γ

1/m2
2,l

|h(z)| |ezt|
|z| |h(z)− ω|

|dz|+
∫

Γ
1/m2
2,u

|h(z)| |ezt|
|z| |h(z)− ω|

|dz|
)

=
M

2π
(I2,l(t) + I2,u(t)).

At this point, it is straightforward to show that for z ∈ Γ1/m2
2 ,

|h(z)− ω| ≥ |ω| sin(θ), (5.10)

and again
|h(z)| = |z|gR(z)e−Arg(z)gI(z) ≤ CMρgR(z)/m2 . (5.11)

Therefore, with some abuse of the notation, we have

I2,l(t) ≤
C

m2|ω| sin(θ)

∫ Rm2

ρ1

ρgR(z)/m2−1 exp(cos(ϕ/m2)tρ1/m2) dρ

≤ C

|ω| sin(θ)

∫ +∞

0

µgR(z)−m2 exp(cos(ϕ/m2)tµ)µm2−1 dµ (ρ1/m2 = µ)

≤ C

|ω| sin(θ)

∫ 1

0

µm1−1 exp(cos(ϕ/m2)tµ) dµ
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+
1

|ω| sin(θ)

∫ +∞

1

µm2−1 exp(cos(ϕ/m2)tµ) dµ

≤ C

|ω| sin(θ)

( 1
(cos(ϕ/m2))m1tm1

+
1

(cos(ϕ/m2))m2tm2

)
.

Since we are assuming that t� 0, we conclude that there exists C > 0 such that

I2,l(t) ≤
C

|ω|tm1
. (5.12)

Finally, admitting again some abuse of notation, the parametrization of Γ1/m2
2

and (5.10) leads to

I2,u(t) ≤
∫ +∞

Rm2

exp(cos(ϕ/m2)tρ1/m2)
ρgR(z)/m2

ρ1/m2

1
|h(z)− ω|

ρ1/m2−1

m2
dρ

≤ 1
|ω| sin(θ)m2

∫ +∞

Rm2

exp(cos(ϕ/m2)tρ1/m2) dρ

=
1

|ω| sin(θ)tm2

∫ +∞

tR

exp(cos(ϕ/m2)µ)µm2−1 dµ (tρ1/m2 = µ)

=
Γ(m2 − 1)

|ω| sin(θ)tm2 cos(ϕ/m2)m2
.

(5.13)

Note that a different bound, finer than (5.13), could be achieved, however the
asymptotic behavior for ω < 0 is restricted by (5.7); therefore the statement of
theorem is satisfied and the proof is complete. �

Remark 5.2. By the uniqueness of the Laplace transform, the evolution operator
E(t) defined in (3.6) satisfies the equation

E(t)ξ = ξ +
∫ t

0

k(t− s)AE(s)ξ ds, (5.14)

for all ξ ∈ X. This means that the family of bounded operators {E(t)}t≥0 is a
resolvent family. These families of operators were introduced by Da Prato and
Ianelli in [41, Definition 1], as an extension of the notion of C0-semigroups to
solve integro–differential equations. For general kernels k in (5.14) and under the
1-regularity of k (see Definition in [42, Chapter 1, Section 3]) it was proved that
limt→+∞ ‖E(t)‖ = 0, see [29]. However, the results in [29] show that if k is 1-regular,
then ‖E(t)‖ ≤ C

t whereas the Theorem 5.1 above provides a better description of
the behavior of ‖E(t)‖ as t→ +∞.

6. Discrete solution: Definition and asymptotic behavior

The time discretization of (3.1) has been addressed in the literature by several
means, numerical inverse Laplace transform [30], collocation methods [7], Adomian
decomposition methods [19, 20], among others.

In this work we focus on the convolution quadrature based methods whose con-
vergence and stability have been deeply studied [15, 16], even within the wide
framework described in this work for (3.1), and not only but also in the more
general context of Volterra equations [8, 9].
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6.1. Convolution quadratures. Let g : (0,+∞) → X be a function belonging
to L1((0,+∞), X), N ∈ N, T > 0, τ = T/N , and denote tn = nτ , for 0 ≤ n ≤ N .
In this section we briefly recall how convolution quadratures formulate [32], in fact∫ tn

0

k(tn − s)g(s) ds ≈
n∑
j=0

kn−jgj , 0 ≤ n ≤ N,

for certain weights kn defined below, and where gn = g(tn), for 0 ≤ n ≤ N .
First of all if k : (0,+∞) → R is a convolution kernel admitting Laplace trans-

form K (e.g. the ones we are considering in this paper) the inversion formula for
the Laplace transform ensures the existence of a complex path Γ connecting −i∞
and +i∞ positively oriented, such that∫ tn

0

k(tn − s)g(s) ds =
∫ tn

0

( 1
2πi

∫
Γ

eλ(tn−s)K(λ) dλ
)
g(s) ds

=
1

2πi

∫
Γ

K(λ)
(∫ tn

0

eλ(tn−s)g(s) ds
)

dλ

=
1

2πi

∫
Γ

K(λ)yλ(tn) dλ,

where yλ(t) is the solution of the initial value problem

y′(t) = λy(t) + g(t), t > 0, with y(0) = 0. (6.1)

Now, we set the numerical solution {yn}n≥0 of (6.1), provided by a multistep linear
method of m steps

m∑
j=0

αjyn+j−m = τ

m∑
j=0

βj(λyn+j−m + gn+j−m), (6.2)

where yn stands for the approximation to y(tn), for n ≥ 0.
These methods admit a compact formulation in terms of generating functions.

In fact, if

P (ξ) = α0ξ
m + α1ξ

m−1 + . . .+ αmξ
0, Q(ξ) = β0ξ

m + β1ξ
m−1 + . . .+ βmξ

0,

Y (ξ) =
+∞∑
j=0

yjξ
j and G(ξ) =

+∞∑
j=0

gjξ
j ,

then the numerical method (6.2) can be compactly written

P (ξ)Y (ξ) = τQ(ξ)(λY (ξ) +G(ξ)),

or equivalently

Y (ξ) =
(σ(ξ)

τ
− λ
)−1

G(ξ), (6.3)

where σ(ξ) stands for the characteristic function corresponding to the multistep
linear method, i.e. σ(ξ) = P (ξ)/Q(ξ). Note that all formal series are valid for
|ξ| ≤ r, 0 < r < 1. Therefore, if [·]n denotes de n-th term of the formal series inside
the brackets, then we have∫ tn

0

k(tn − s)g(s) ds ≈
[ 1

2πi

∫
Γ

K(λ)
(σ(ξ)

τ
− λ
)−1

G(ξ) dλ
]
n

= [L(ξ)G(ξ)]n,
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where L(ξ) stands for the integral term

L(ξ) =
1

2πi

∫
Γ

K(λ)
(σ(ξ)

τ
− λ
)−1

dλ.

Moreover, by Cauchy’s formula it is straightforward that

L(ξ) = K
(σ(ξ)
τ

)
. (6.4)

Therefore, (6.1), (6.3), and (6.4) lead to the formulation in terms of formal series
of a multistep linear method based convolution quadrature, for the discretization
of (3.1),

U(ξ) =
ξ

1− ξ
u0 +K

(σ(ξ)
τ

)
AU(ξ), (6.5)

where U(ξ) =
∑+∞
j=0 ujξ

j , and uj stands for the approximation to the analytic
solution u(t) at time level tj . Therefore, according the notation of Section 3 we can
write

U(ξ) =
ξ

1− ξ

(
I −K

(σ(ξ)
τ

)
A
)−1

u0

=
ξ

1− ξ
h
(σ(ξ)
τ

)(
h
(σ(ξ)
τ

)
I −A

)−1

u0.

(6.6)

Notice that the function
ξ

1− ξ
h
(σ(ξ)
τ

)(
h
(σ(ξ)
τ

)
I −A

)−1

,

is holomorphic in |ξ| ≤ r (even if ω > 0, in that case for τ > 0 small enough). The
Cauchy formula along the complex path S(ν) = reνi, for −π < ν ≤ π, allows us to
write

un = Dnu0, (6.7)
where

Dn :=
1

2πi

∫
S

1
(1− ξ)ξn

h
(σ(ξ)
τ

)(
h
(σ(ξ)
τ

)
I −A

)−1

dz. (6.8)

Now, applying these ideas to (3.1), we choose as multistep linear method the
backward Euler method whose characteristic function reads σ(ξ) = 1 − ξ. In that
case, the change of variable z = (1− ξ)/τ , and a convenient path deformation lead
to the following expression of the discrete evolution operator Dn

Dn =
1

2πi

∫
Γ

h(z)
z

rn(τz) (h(z)I −A)−1 dz, (6.9)

where rn(z) = 1/(1− z)n, n ≥ 1.

6.2. Asymptotic behavior. The convergence, and stability of the method (6.9),
and results related to the representation of the numerical solution have been already
studied in [8, 9, 16]. In this section we extend the asymptotic behavior of the discrete
solution studied for α(t) constant [13, 28] to α(t) varying in time.

Theorem 6.1. Let α(t):(0,+∞)→ (1, 2) a function belonging to L1(0,+∞), sat-
isfying (A1)–(A3), and let A be an operator satisfying (A4). Assume that ω ≤ 0.
Then there exists a constant C > 0 independent of n and τ such that the numerical
solution (6.7) and (6.9) satisfies

‖un‖ ≤
CM

1 + |ω|tm1
n
, as n→ +∞.
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Proof. First of all, we notice that, by the representation given in [8, 16] where
the backward Euler based convolution quadrature is also considered, and under
Assumption (A4), the discrete evolution operator (6.9) admits the following repre-
sentation in terms of the continuous evolution operator (3.6),

Dn =
∫ +∞

0

E(s)ρn(s) ds, n ≥ 1, (6.10)

where ρn(t) is the measure given by

ρn(t) :=
e−t/τ

τ(n− 1)
( t
τ

)n−1
, n ≥ 0 .

Note that
∫ +∞

0
ρn(s) ds = 1. Therefore, the numerical solution inherits some prop-

erties of the continuous one through this representation. In fact, since E(t) is
bounded as we stated in Section 3, the discrete evolution operator Dn is bounded
as well, and therefore the numerical solution is bounded independently of the reg-
ularity of u0.

On the other hand, consider the representation (6.9) of Dn with the complex
path Γ defined in Section 3. Therefore we can write

Dn =
2∑
j=1

Inj , where Inj :=
1

2πi

∫
Γ

1/m2
j

h(z)
z

rn(τz) (h(z)I −A)−1 dz, j = 1, 2.

Now we prove that both integrals, In1 and In2 , satisfy the statement of the Theorem.
Now and hereafter we assume that τ is small enough in each instance of the proof.

Since the proof follows that of Theorem 5.1, we only present the key points.

First part. Consider first In1 , and z ∈ Γ1/m2
1 . Therefore

z =
( 1
tm2
n

+ ρei(π−θ)
)1/m2

, for some 0 ≤ ρ ≤ ρ0.

One straightforwardly has that |1−τz| ≥ 1−1/n, for z ∈ Γ1/m2
1 and n large enough,

and therefore
|rn(τz)| = 1

|1− τz|n
≤ C, for z ∈ Γ1/m2

1 . (6.11)

If ω = 0, then there exists C > 0 such that, as in (5.2)

‖In1 ‖ ≤
CM

2π

∫
Γ

1/m2
1

1
|z|
|dz| ≤ CMtm2

n

π sin(θ)

∫ ρ0

0

dρ =
CM

π sin(θ) cos(θ)
(
1− tan(θ)

tan(π−ϕ)

) ,
and the boundedness of In1 is proven.

If ω < 0, then applying (5.3)–(5.6) there exists C > 0 such that

‖In1 ‖ ≤
M

2π

∫
Γ

1/m2
1

|h(z)| |rn(τz)|
|z| |h(z)− ω|

|dz| ≤ CM

1 + |ω|tm1
n
, n ≥ 1, (n large enough).

Second part. Consider now In2 , and z ∈ Γ1/m2
2 . Denote as in Theorem 5.1, Γ1/m2

2,l ,

and Γ1/m2
2,u . First, we observe that, by the choice of Γ, and more precisely of ϕ,

there exists η > 0 such that, for ξ = |ξ|eiϕ, it holds 1/|1 − ξ| ≤ eη cos(ϕ)|ξ|, and
hence we easily have

|rn(τz)| =
∣∣ 1
(1− τz)n

∣∣ ≤ exp
(
η cos(ϕ/m2)ρ1/m2tn

)
, (6.12)
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for n ≥ 1 and ρ ≥ ρ1. At this point it is important to notice that by the choice of
ϕ, | exp(η cos(ϕ/m2)ρ1/m2tn)| decays exponentially over Γ1/m2

2 , as n→ +∞.
If ω = 0, then

‖In2 ‖ ≤
M

2π

∫
Γ

1/m2
2

∣∣rn(τz)
z

∣∣|dz|
=
M

2π

(∫
Γ

1/m2
2,l

∣∣rn(τz)
z

∣∣|dz|+ ∫
Γ

1/m2
2,u

∣∣rn(τz)
z

∣∣|dz|)
=
M

2π
(In2,l + In2,u).

On the one hand, parametrizing Γ1/m2
2,l along the interval ρ1 ≤ ρ ≤ Rm2 , regarding

(6.12), and following the steps of the estimation in (5.8), we obtain the boundedness
of In2,l, i.e. there exists C > 0 such that

In2,l ≤ C. (6.13)

Moreover, parametrizing Γ1/m2
2,u along the interval ρ ≥ Rm2 we have

In2,u ≤
∫ +∞

Rm2

∣∣ 1
m2
ρ1/m2−1eiϕ/m2

∣∣
|1− τ(ρeiϕ)1/m2 |n|(ρeiϕ)1/m2 |

dρ

≤ 1
m2

∫ +∞

Rm2

1
ρ|τ(ρeiϕ)1/m2 |n

dρ =
1

(τR)n
,

(6.14)

which is bounded if R is large enough, in fact if τR ≥ C for some C > 1. The
bounds (6.13) and (6.14) lead to the statement of theorem for ω = 0.

Now, we set ω < 0. As in the case ω = 0, we can estimate ‖In2 ‖ as

‖In2 ‖ ≤
M

2π

(∫
Γ

1/m2
2,l

|h(z)| |rn(τz)|
|z| |h(z)− ω|

|dz|+
∫

Γ
1/m2
2,u

|h(z)| |rn(τz)|
|z| |h(z)− ω|

|dz|
)

=
M

2π
(In2,l + In2,u).

In view of (5.10) and (5.11) it is easy to show that there exists C > 0, for z ∈ Γ1/m2
2 ,

I2,l ≤
C

|ω|tm1
n

as n→ +∞. (6.15)

Finally, and admitting again some abuse of the notation, we have

In2,u ≤
∫ +∞

Rm2

ρgR(z)/m2

ρ1/m2

1∣∣1− τ(ρeiϕ)1/m2
∣∣n 1
|h(z)− ω|

ρ1/m2−1

m2
dρ

≤ C

|ω| sin(θ)m2

∫ +∞

Rm2

1
(τρ1/m2)n

dρ

=
C

|ω| sin(θ)τm2

∫ +∞

τR

1
µn−m2+1

dµ (µ = τρ1/m2)

=
CRm2

|ω| sin(θ)(n−m2)(τR)n
.

Assuming again that τR ≥ C > 1, the bound (6.15) is valid for In2,u as well, and
the proof is complete. �
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Remark 6.2. Note that the numerical solution inherits the asymptotic behavior of
the continuous one, in fact in case ω = 0 the numerical solution is merely bounded,
and if ω < 0 the numerical solution decays as 1/tm1

n , for any u0 ∈ X (i.e. not
necessarily belonging to D(A)),

7. Numerical experiments

We devote this section to illustrate numerically some of theoretical aspects dis-
cussed in previous sections.

7.1. On the different definitions of fractional integrals of variable order.
In this sub-section we consider the three definitions we discussed in Section 2 for
the fractional integral equations of time dependent order, recall

Def.1: ∂−α(t)g(t) :=
∫ t

0
(t−s)α(t−s)−1

Γ(α(t−s)) g(s) ds, t > 0.

Def.2: ∂−α(t)g(t) := 1
Γ(α(t))

∫ t
0
(t− s)α(s)−1g(s) ds, t > 0.

Def.3: ∂−α(t)g(t) :=
∫ t

0
k(t − s)g(s) ds, t > 0, where k(t) := (L−1K)(t), and

K(z) := 1
zzα̃(z) .

We also consider several choices for the viscosity function α(t):

α1(t) = 0.4 sin(t) + 1.5, (α̃(z) = 0.4/(z2 + 1) + 1.5/z). (7.1)

α2(t) = 0.4 cos(t) + 1.5 (α̃(z) = 0.4z/(z2 + 1) + 1.5/z). (7.2)

α3(t) = 0.1e−t + 1 (α̃(z) = 0.1/(z + 1) + 1/z). (7.3)

In Figures 1–4 we show the results of the fractional integration with variable order
according the definitions Def.1–Def.3, with the viscosity functions (7.1)–(7.3), and
applied to the function g(t) = t2. The numerical results in Figures 1–4 has been
obtained by means of the trapezoidal rule for Def.1 and Def.2, and the backward
Euler based convolution quadrature [16] for Def.3. For all of them the final time is
T = 10, the number of time steps is N = 1000, and therefore the time step size is
h = 0.01.

Figures 1–4 are organized as follows. For each figure, the first row shows the
results of integrating g(t) according the three definitions Def.1 – Def.3, and the
second row shows the differences between the results reached with these definitions.
Finally, Figure 2 shows the results of integrating with integer and constant order
α(t) = 1, and Figures 2–4 show the result of using the viscosity functions α1(t),
α2(t), and α3(t) respectively.

Regarding Figures 2–5 we must point out several facts:
• The integer integration (α(t) = 1, Figure 1) matches perfectly with the

expected results. To be more precise, since trapezoidal rule is exact for
polynomials up to degree 2 (g(t) = t2) Def. 1 and Def. 2 coincide, in
other words the difference between them vanishes (first column second row,
Figure 1). On the other hand, the differences between the results provided
by Def.1 and Def.2, and the results provided by Def.3 are within the order of
the backward Euler convolution quadrature (see Thm. 2.2 [34] with p = 1,
β = 3, and η = 1), i.e. differences are O(1) (second row, first and second
column Figure 2).

• The qualitative behavior of the integration differs depending on the defi-
nition but also on the viscosity function α(t), it keeps clearer if Def.2 and
Def.3 are compared. In fact, observe that profile provided by Def.1 seems
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to be less affected by the choice of α(t) (first column, first row Figures 2–4),
however the profiles provided by Def.2 and Def.3 are more oscillatory for
α1(t), that for α2(t) and α3(t) (second and third column, first row Figures
2–3).

Figure 2. Integer integration of order 1 of g(t) = t2.

Figure 3. Fractional integration of g(t) = t2 with α1(t) =
0.4 sin(t) + 3/2.

7.2. Initial and boundary value problem. We devote this sub-section to il-
lustrate numerically the behavior of the solution of (2.6)–(2.7) when a non scalar
equation is considered. Consider the integral initial-boundary value problem

u(x, t) = u0(x) +
∫ t

0

k(t− s)(∆u)(x, s) ds, 0 ≤ t ≤ T, x ∈ [a, b], (7.4)

where ∆ stands for the one dimensional Laplacian in an interval [a, b] with homoge-
neous Dirichlet/Newmann boundary conditions, u0 stands for the initial data, and
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Figure 4. Fractional integration of g(t) = t2 with α2(t) =
0.4 cos(t) + 3/2.

Figure 5. Fractional integration of g(t) = t2 with α3(t) =
0.1e−t + 1.

k is a given convolution kernel defined as in (2.7). To illustrate numerically our
results we consider here the viscosity functions α1(t), α3(t), (7.1) and (7.3) respec-
tively, and to compare to the constant order fractional equations we also consider
α0(t) = α constant. Notice that (7.4) fits in the abstract framework stated for
(3.1).

Since differences in the behavior of 2-D models cannot be accurately observed
in a printed version i.e. merely by showing some selected frames, we restrict our
attention to 1-D examples. In the context of 2-D models we refer the readers e.g. to
[14] where image processing problems have been addressed by considering piecewise
constant viscosity functions, always within the framework of (3.1).



EJDE-2018/173FRACTIONAL DIFFERENTIAL EQUATIONS WITH TIME DEPENDENT ORDER23

First of all we discretize the operator ∆ over an uniform spatial mesh of size
h > 0, xm = a + mh with h = (b − a)/M . To this end we set a second-order
difference scheme whose formulation leads to the system of integral equations

u(t) = u0 +
∫ t

0

k(t− s)(∆hu)(s) ds, 0 ≤ t ≤ T, (7.5)

where the vector u0 stands for the restriction of u0 to the spatial mesh, and
∆h stands for the three–diagonal matrix corresponding to the mentioned differ-
ence scheme for the Laplacian, including homogeneous Dirichlet/Newmann discrete
boundary conditions.

Notice that the sectorial property of ∆ is inherited by ∆h, therefore the semi-
discrete problem (7.5) fits in sectorial framework of (3.1) as well.

The time discretization is carried out by means of the backward Euler based
convolution quadrature method described in Section 6.1. The fully discrete problem
now reads

un = u0 +
n∑
j=1

qn−j∆huj , 1 ≤ n ≤ N, (7.6)

where the vector un of size (M + 1)2 × 1 represents the approximation to the
analytical solution u(·, tn) restricted to the spatial mesh, with tn = nτ , for 0 ≤ n ≤
N and the step size τ = T/N > 0. Let us highlight that each convolution weight
qj , for j ≥ 0, is the j-th coefficient of the expansion provided when evaluating
the Laplace transform of k in σ(ξ)/τ according (6.4), and all of them have been
computed by means of Fast Fourier Transform techniques [33].

Since the issues related to the convergence and stability have been precisely
studied in [8, 9], in this section we will focus on showing the different behaviors of
the solutions depending on the choice of α(t). In fact in Figure 5 we consider three
initial data (first column) on the spatial intervals [0, 1], [0, π] and [0,

√
π] respectively,

and homogeneous Dirichlet boundary conditions. The time discretization is carried
out with the final time T = 5, and N = 500, and the spatial mesh is xm = mh
with h = (b− a)/M and M = 200, on the respective intervals, and for each initial
data. The results shown in columns 2–4 of Figure 5 stand for the evolution of
u(x, t) at time levels n = 100, 200, and 500, for each initial data. All results are
compared with the results achieved with constant order of integration, in fact we
have considered α0(t) = α0 with α0 = 1.9.

In Figure 6 we repeat the first experiment of Figures 5, but changing the bound-
ary conditions now with homogeneous Newmann boundary conditions.

In view of experiments in Figures 5 and 6, we highlight the following:
• In all cases the solutions decay, as t tends to +∞, even for α3(t) (last

row, Figures 5) whose decay turns out to be slower and cannot be clearly
observed for T = 5. However in this case, for longer time e.g. T = 20, it
can be numerically observed that the solution decays to 0 as well.
• The behavior of solutions strongly depend on the viscosity functions α(t),

in fact the oscillatory behavior, or the decay as t→ +∞.

Conclusions. In this paper we state conditions rather undemanding for the well-
posedness of fractional integral equations of variable order in time, with special
regard to the conditions for viscosity functions beyond the conditions stated in the
literature for general Volterra equations.
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Figure 6. α0(t) = 1.9, α1(t) = 0.4 sin(t) + 1.5, and α3(t) =
0.9e−t + 1. Boundary conditions: Dirichlet homogeneous.
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Figure 7. α0(t) = 1.9, α1(t) = 0.4 sin(t) + 1.5, and α3(t) =
0.9e−t + 1. Boundary conditions: Newmann homogeneous.

The numerical results confirmed that different choices of the viscosity function
and/or the choice of the definition of fractional integral lead to solutions with very
different profiles.

Finally, if a source term f(t) is introduced in the equation (3.1), and since most
parts of the proofs are carried out in terms of the continuous and discrete evolution
operators, then no additional and relevant difficulties are expected to extend most
of results to the non homogeneous problem.
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