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Abstract. In this article, we consider the multiple solutions for the nonho-

mogeneous Choquard equations

−∆u+ u =
“ 1

|x|α
∗ |u|p

”
|u|p−2u+ h(x), x ∈ RN ,

and

−∆u =
“ 1

|x|α
∗ |u|2

∗
α

”
|u|2
∗
α−2u+ h(x), x ∈ RN ,

where N ≥ 3, 0 < α < N , 2 − α
N

< p < 2∗α = 2N−α
N−2

. Under suitable

assumptions on h, we obtain at least two solutions on the subcritical case
2− α

N
< p < 2∗α and on the critical case p = 2∗α.

1. Introduction and main results

In this article, we consider the nonhomogeneous Choquard equation

−∆u+ u =
( 1
|x|α

∗ |u|p
)
|u|p−2u+ h(x), x ∈ RN , (1.1)

where N ≥ 3, 0 < α < N and 2− α
N < p ≤ 2∗α = 2N−α

N−2 .
A special case of (1.1) is the Choquard equation

−∆u+ u =
( 1
|x|α

∗ |u|2
)
u, x ∈ RN ,

which was proposed by Choquard in 1976, can be described as an approximation
to Hartree-Fock theory of a one-component plasma [22, 23]. It was also proposed
by Moroz, Penrose and Tod [26] as a model for the self-gravitational collapse of a
quantum mechanical wave function. In this context, Choquard equation is usually
called the nonlinear Schrödinger-Newton equation. For more details on the physical
aspects of the problem we refer the readers to [11, 12, 13, 14, 24, 26, 30] and the
references therein.

Recently, the nonlinear Choquard equations has been widely studied. When
h ≡ 0, the existence and multiplicity results of system (1.1) have been discussed in
many papers. Take for instance, Lieb [22] proved the existence and uniqueness of
the ground state to (1.1) by using symmetric decreasing rearrangement inequalities.
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Later, Lions [24] showed the existence of infinitely many radially symmetric solu-
tions to (1.1). Gao and Yang [18] established some existence results for the Brezis-
Nirenberg type problem for the nonlinear Choquard equation with critical exponent.
Further results for related problems may be found in [1, 2, 3, 4, 15, 19, 25, 27, 29]
and the references therein.

Next, we consider the nonhomogeneous case, that is h 6≡ 0. In [35], Xie, Xiao
and Wang proved the following Choquard equation

−∆u+ V (x)u =
( 1
|x|α

∗ |u|p
)
|u|p−2u+ h(x), x ∈ RN ,

had two nontrivial solutions if 2− α
N < p < 2N−α

N−2 satisfies the compactness condi-
tion:

(A1) V ∈ C(RN ,R+) is coercive, that is lim|x|→+∞ V (x) = +∞.
Zhang, Xu and Zhang [37] also considered the bound and ground states for nonho-
mogeneous Choquard equations under the condition

(A2) infRN V > 0, and there exists a constant r > 0 such that, for any M > 0,
meas{x ∈ RN , |x− y| ≤ r, V (x) ≤M} → 0 as |y| → ∞, where meas stands
for the Lebesgue measure.

Under condition(A1) or (A2), they define a new Hilbert space

E :=
{
u ∈ H1(RN ) :

∫
RN
|∇u|2 + V (x)u2dx <∞

}
with the inner product

〈u, v〉E =
∫

RN
(∇u · ∇v + V (x)uv)dx

and the norm ‖u‖E = 〈u, u〉1/2. Obviously, the embedding E ↪→ Ls(RN ) is contin-
uous, for any s ∈ [2, 2∗]. Consequently, for each s ∈ [2, 2∗], there exists a constant
ds > 0 such that

|u|s ≤ ds‖u‖E , ∀u ∈ E. (1.2)

Furthermore, it follows from condition(A1) (or (A2)) that the embedding E ↪→
Ls(RN ) are compact for any s ∈ [2, 2∗)(See [5]). Other related results about non-
homogeneous equations can be found in [9, 10, 16, 17, 21, 31, 32, 33, 34, 36] and
the references therein.

Motivated by the works above, in this paper we study the existence of multiple
solutions to the nonhomogenous Choquard equation with the critical exponent

−∆u =
( 1
|x|α

∗ |u|2
∗
α

)
|u|2

∗
α−2u+ h(x), x ∈ RN (1.3)

and the subcritical exponent

−∆u+ u =
( 1
|x|α

∗ |u|p
)
|u|p−2u+ h(x), x ∈ RN , (1.4)

where N ≥ 3, 0 < α < N and 2− α
N < p < 2∗α.

Before giving our main results, we give some notation. Let H1(RN ) be the usual
Sobolev space endowed with the standard scalar and norm

(u, v) =
∫

RN
(∇u∇v + uv) dx, ‖u‖2 =

∫
RN

(|∇u|2 + |u|2)dx.
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D1,2(RN ) is the completion of C∞0 (RN ) with respect to the norm

‖u‖2D := ‖u‖2D1,2(RN ) =
∫

RN
|∇u|2 dx.

The norm on Ls = Ls(RN ) with 1 < s <∞ is given by |u|ss =
∫

RN |u|
sdx.

We use the following assumptions:
(A3) ‖h‖H−1 < C2∗α

S2∗α/(2(2∗α−1))H,L, where H−1 is the dual space of D1,2(RN ),
SH,L is the best constant defined by

SH,L = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|

2dx

(
∫

RN
∫

RN
|u(x)|2∗α |u(y)|2∗α

|x−y|α dx dy)
N−2
2N−α

and

C2∗α
=

2(2∗α − 1)

(2 · 2∗α − 1)
2·2∗α−1
2·2∗α−2

;

(A4) h ∈ L
2Np

2N(p−1)+α (RN ), h(x) ≥ 0 and h 6≡ 0;
(A5) |h| 2Np

2N(p−1)+α
< ε = ε(N, p, α, d 2Np

2N−α
), where ε is a positive constant, d 2Np

2N−α

is defined in Lemma 4.1 below.
To our best knowledge, in the nonhomogeneous case, this is the first result in-

volving critical exponent, so that we think this type of problem is worth to consider.
We mentioned here that the basic idea of this paper follows from that of [34]. Our
main results read as follows:

Theorem 1.1. Assume h 6≡ 0 and (A3) hold. Then (1.3) has at least two solutions.
One of which is a local minimum solution with the ground state energy, and the other
one has the energy which is strictly bigger than the least energy. If additionally, we
assume h > 0 holds, then the two solutions are positive.

Theorem 1.2. Assume h 6≡ 0, (A4) and (A5) hold. Then (1.4) has a local mini-
mum solution with the ground state energy. If additionally, if h > 0, then (1.4) has
at least two positive solutions.

Remark 1.3. There is a standard method for obtaining two solutions of a nonho-
mogeneous system. Usually it is not difficult to obtain a negative local minimum
and a positive mountain-pass value of the energy functional. But because of the
lack of the compactness of the embedding H1(RN ) ↪→ Lp(RN ), p ∈ (2, 2∗), the
Palais-Smale condition no longer holds. Especially, many authors avoid the lack of
compactness by some coercive assumptions on the potential or by restricting the
problem to the radially symmetric subspace of H1(RN ). But in this paper, these
methods are not adopted. To overcome this difficulty, we use the Brezis-Nirenberg
method [7, 8], which preserve the compactness except some fixed bad energy level.
And then by estimating the asymptotic behavior of the local minimum solution, we
obtain the second solution.

Throughout this paper, the letters C0, d, ci, i = 1, 2, 3 . . . will be used to denote
various positive constants which may vary from line to line and are not essential
to the problem. We denote by ⇀ weak convergence and by → strong convergence.
Also if we take a subsequence of a sequence {un}, we shall denote it again {un}.
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This article is organized as follows. In Section 2, we introduce the variational
setting for the problem and give some related preliminaries. In Section 3, we manage
to give the existence of the solutions for the critical case. In Section 4, we give the
proof of Theorem 1.2.

2. Variational setting and compactness condition

First we give the well-known Hardy-Littlewood-Sobolev inequality.

Lemma 2.1 (Hardy-Littlewood-Sobolev inequality [23]). Assume f ∈ Lp(RN ) and
g ∈ Lq(RN ). Then∫

RN

∫
RN

|f(x)||g(y)|
|x− y|α

dx dy ≤ C(p, q, α)|f |p|g|q, (2.1)

where 1 < p, q <∞, 0 < α < N , 1
p + 1

q + α
N = 2.

If p = q = 2∗α, then

C(p, q, α) = C(N,α) = πα/2
Γ(N−α2 )

Γ(N − α
2 )

{Γ(N2 )
Γ(N)

} α
N−1

.

The equality in (2.1) holds if and only if f is a constant times g and

g(x) =
A1

(C + |x− a|2)(2N−α)/2

for some A1 ∈ C, 0 6= C ∈ R and a ∈ RN .

By the Hardy-Littlewood-Sobolev inequality, the integral

B(u) =
∫

RN

∫
RN

|u(x)|p|u(y)|q

|x− y|α
dx dy

is well defined if |u|p ∈ Ls(RN ) for some s > 1 satisfying

2
s

+
α

N
= 2.

Therefore, for u ∈ H1(RN ), by Sobolev embedding Theorem, we know that

2 ≤ sp ≤ 2N
N − 2

;

that is
2N − α
N

≤ p ≤ 2N − α
N − 2

.

Thus, 2N−α
N is called the lower critical exponent and 2∗α = 2N−α

N−2 is the upper
critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.

For all u ∈ D1,2(RN), by the Hardy-Littlewood-Sobolev inequality, we have(∫
RN

∫
RN

|u(x)|2∗α |u(y)|2∗α
|x− y|α

dx dy
) N−2

2N−α ≤ C(N,α)
N−2
2N−α |u|22∗ ,

C(N,α) is defined in Lemma 2.1. We use SH,L to denote best constant defined in
(A3).
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Lemma 2.2 ([18]). The constant SH,L defined in (A3) is achieved if and only if

U(x) = C
( b

b2 + |x− a|2
)N−2/2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,+∞) are parameters. We can
also obtain

SH,L =
S

C(N,α)N−2/2N−α ,

where S is the best Sobolev constant. In particular, let

U(x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2

2

be a minimizer for S, S is the best Sobolev constant, then

W (x) = S
(N−α)(2−N)
4(N−α+2) C(N,α)

2−N
2(N−α+2)U(x)

is the unique minimizer for SH,L and satisfies

−∆u =
∫

RN

|u(y)|2∗α
|x− y|α

dy|u|2
∗
α−2u in RN .

Moreover,

‖W‖D =
∫

RN

|W (x)|2∗α |W (y)|2∗α
|x− y|α

dx dy = S
2N−α
N−α+2
H,L .

To prove the problem by variational methods, we define the energy functional
associated with (1.3) by

I(u) =
1
2

∫
RN
|∇u|2 dx− 1

2 · 2∗α

∫
RN

∫
RN

|u(x)|2∗α |u(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)u dx,

(2.2)
for u ∈ D1,2(RN ).

By the Hardy-Littlewood-Sobolev inequality, we know that I ∈ C1(D1,2(RN ),R)
and

〈I ′(u), v〉 =
∫

RN
|∇u||∇v| dx−

∫
RN

∫
RN

|u(x)|2∗α |u(y)|2∗α−2u(y)v(y)
|x− y|α

dx dy

−
∫

RN
h(x)v dx

(2.3)

for all v ∈ C∞0 (RN ). And so u is a weak solution of (1.3) if and only if u is a critical
point of function I. We will constrain the functional I on the Nehari manifold

Λ = {u ∈ D1,2(RN ), 〈I ′(u), u〉 = 0}.
Denote Φ(u) = 〈I ′(u), u〉, so we know that

〈I ′(u), u〉 = ‖u‖2D −
∫

RN

∫
RN

|u(x)|2∗α |u(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)u dx,

and

〈Φ′(u), u〉 = 2‖u‖2D − 2 · 2∗α
∫

RN

∫
RN

|u(x)|2∗α |u(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)u dx.

Notice that, when u0 is a local minimum solution of I, it holds

〈I ′(u0), u0〉 = 0, 〈Φ′(u0), u0〉 ≥ 0,
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which leads us to consider the following manifolds:

Λ = {u ∈ D1,2(RN ) : 〈I ′(u), u〉 = 0},
Λ+ = {u ∈ Λ : 〈Φ′(u), u〉 > 0},
Λ− = {u ∈ Λ : 〈Φ′(u), u〉 < 0},
Λ0 = {u ∈ Λ : 〈Φ′(u), u〉 = 0}.

Obviously, only Λ0 contains the element 0. Furthermore, it is easy to see that
Λ0 ∪ Λ+ and Λ0 ∪ Λ− are both closed subsets of D1,2(RN ).

To simplify calculations, for u ∈ D1,2(RN ), we denote

A = A(u) = ‖u‖2D,

B = B(u) =
∫

RN

∫
RN

|u(x)|2∗α |u(y)|2∗α
|x− y|α

dx dy,

C = C(u) =
∫

RN
h(x)u dx.

Define the fibering map

ϕu(t) = I(tu) =
A

2
t2 − B

2 · 2∗α
t2·2

∗
α − Ct, t > 0. (2.4)

Therefore,
ϕ′u(t) = At−Bt2·2

∗
α−1 − C,

ϕ′′u(t) = A− (2 · 2∗α − 1)Bt2·2
∗
α−2.

(2.5)

Obviously, tu ∈ Λ with t > 0 if and only if ϕ′u(t) = 0. By the sign of ϕ′′u(t), the
stationary points of ϕu(t) can be classified into three types, namely local minimum,
local maximum and turning point. Moreover, the set Λ is a natural constraint for
the functional I. This is means that if the infimum is attained by u ∈ Λ, then u
is a solution of (1.3). However, in our case, the global maximum point of ϕu(t)
is not unique. This leads us to partition the set Λ according to the critical points
of ϕu(t). This kind of idea was first introduced by Tarantello in [34]. Later,
many mathematicians apply this idea to study other problems; for instance, see
[6, 31, 37, 36] and the references therein. Now we give some properties of Λ± and
Λ0.

Lemma 2.3. (i) Assume that h 6≡ 0 for u ∈ D1,2(RN )\{0}, there is a unique
t− = t−(u) > 0 such that t−u ∈ Λ−. If additionally we assume

∫
RN hu dx > 0, then

there exists a unique 0 < t+ = t+(u) < t− satisfying t+u ∈ Λ+. Moreover,

I(t−u) = max
t≥0

I(tu) for
∫

RN
hu dx ≤ 0;

I(t−u) = max
t≥t+

I(tu), I(t+u) = min
0≤t≤t−

I(tu) for
∫

RN
hu dx > 0.

Proof. Define ϕu(t) = A
2 t

2− B
2·2∗α

t2·2
∗
α −Ct for all t > 0. In the case

∫
RN hu dx ≤ 0,

there is a unique t− > 0 such that ϕ′u(t−) = 0 and ϕ′′u(t−) < 0. So that

〈I ′(t−u), t−u〉 = 0,

‖t−u‖2D − (2 · 2∗α − 1)B(u)(t−)2∗α−2 < 0.

Thus, t−u ∈ Λ− and I(t−u) = maxt≥0 I(tu).
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In the case
∫

RN hu dx > 0, for t0 = t0(u) =
[

A
(2·2∗α−1)B

] 1
2·2∗α−2 > 0, we have

max
t≥0

ϕ′u(t) ≥ At0 −Bt
2·2∗α−1
0 − C

=
[ ‖u‖2D

(2 · 2∗α − 1)B

] 1
2·2∗α−2 · 2 · 2∗α − 2

2 · 2∗α − 1
‖u‖2D −

∫
RN

hu dx

≥ S2∗α/2(2∗α−1)
H,L

2(2∗α − 1)
(2 · 2∗α − 1)2·2∗α−1/2(2∗α−1)

‖u‖D − ‖h‖H−1‖u‖D

= S
2∗α/2(2∗α−1)
H,L C∗2α‖u‖D − ‖h‖H−1‖u‖D > 0.

From ϕ′u(0) = −C < 0 and ϕ′u(t) → −∞ as t → +∞, we know that there exist
unique 0 < t+ < t0 < t− such that ϕ′u(t−) = ϕ′u(t+) = 0, ϕ′′u(t−) < 0 < ϕ′′u(t+).
Equivalently, t+u ∈ Λ+ and t−u ∈ Λ−. Moreover, since d

dtI(tu) = ϕ′u(t), we can
easily see that I(t−u) = maxt≥t+ I(tu) and I(t+u) = min0≤t≤t− I(tu). The proof
is complete. �

Lemma 2.4. Assume h 6≡ 0 and (A3) hold. Then
(i) Λ0 = {0}.

(ii) Λ± 6= ∅ and Λ− is closed.

Proof. (i) To prove Λ0 = {0}, we need to prove that, for u ∈ D1,2(RN ) \ {0}, ϕu(t)
has no critical point that is a turning point. Set ‖u‖D = 1, define

κ(t) = At−Bt2·2
∗
α−1. (2.6)

Then ϕ′u(t) = κ(t)−C, κ′′(t) = −B(2·2∗α−1)(2·2∗α−2)t2·2
∗
α−3 < 0 for t > 0. So κ(t) is

strictly concave. If κ′(t0) = 0, t0 = ( 1
(2·2∗α−1)B )1/(2·2∗α−2) > 0, for 2∗α > 2− α

N > 1.
Moreover, limt→0+ κ(t) = 0, limt→+∞ κ(t) = −∞ and κ(t) > 0 for t > 0 small.
Therefore, we have that κ(t) has a unique global maximum point t0 and

κ(t0) =
2(2∗α − 1)
2 · 2∗α − 1

( 1
(2 · 2∗α − 1)B

)1/(2·2∗α−2)

:= κ0.

By (2.4) and (2.5), we infer that if 0 < C < κ0, the equation ϕ′u(t) = 0 has
exactly two points t1, t2 satisfying t1 < t0 < t2. If C ≤ 0, the equation ϕ′u(t) = 0
has one roots t3 > t0. Since ϕ′′u(t) = A − (2 · 2∗α − 1)Bt2·2

∗
α−2, it follows that

ϕ′′u(t1) > 0, ϕ′′u(t2) < 0 and ϕ′′u(t3) < 0. It follows that t1u ∈ Λ+, t2u ∈ Λ− if
0 < C < κ0 and t3u ∈ Λ− if C ≤ 0. Since {u ∈ D1,2(RN ) : ‖u‖D = 1, 0 < C < κ0}
and {u ∈ D1,2(RN ) : ‖u‖D = 1, C ≤ 0} are nonempty, we can infer that Λ± are
nonempty. This implies Λ0 = {0}.

It is suffices to prove κ0 > C. By (A3), Lemma 2.3 and the definition of SH,L
we have

κ0 − C = k(t0)− C = At0 −Bt
2·2∗α−1
0 − C

= t0[1− t2·2
∗
α−2

0 B]−
∫

RN
hu dx

≥ S2∗α/2(2∗α−1)
H,L

2(2∗α − 1)
(2 · 2∗α − 1)2·2∗α−1/2(2∗α−1)

− ‖h‖H−1 > 0.

(ii) Let u ∈ Λ−, denote ũ = u
‖u‖D , then ‖ũ‖D = 1. By (i), we know that C(ũ) <

κ0 = 2(2∗α−1)
2·2∗α−1

(
1

(2·2∗α−1)B

)1/2(2∗α−1)

with B := B(ũ). Furthermore, if 0 < C(ũ) < κ0,
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the equation ϕ′ũ(t) = 0 has exactly two roots t̃1, t̃2 satisfying 0 < t̃1 < t0 < t̃2 such
that t̃1ũ ∈ Λ+, t̃2ũ ∈ Λ−. Then t̃2ũ = u and so ‖u‖D = t̃2 > t0. If C ≤ 0, the
equation ϕ′ũ(t) = 0 has exactly one roots t̃3 > t0. Then t̃3ũ = u ∈ Λ− and so
‖u‖D = t̃3 > t0. In other words,

‖u‖D > t0 > 0, u ∈ Λ−.

So there exists τ > 0 such that

‖u‖D > τ > 0, ∀u ∈ Λ−. (2.7)

Therefore, 0 /∈ cl(Λ−), where cl(Λ−) is the closure of Λ−. On the other hand, by
(i),

cl(Λ−) ⊂ Λ− ∪ Λ0 = Λ− ∪ {0}.
Hence, cl(Λ−) = Λ− and Λ− is closed. The proof is complete. �

Lemma 2.5. Under assumption (A3), for u ∈ Λ \ {0}, there exists ε > 0 and a
differential function t = t(w) > 0, w ∈ D1,2(RN ), ‖w‖ < ε such that

(1) t(0) = 1;
(2) t(w)(u− w) ∈ Λ, for all w ∈ Bε(0);

(3) 〈t′(0), w〉 =
2

R
RN ∇u∇w dx−2·2∗α

R
RN

R
RN
|u(y)|2

∗
α |u(x)|2

∗
α−2

u(x)w(x)
|x−y|α dx dy−

R
RN hw dx

‖u‖2D−(2·2∗α−1)B(u)
.

Proof. We define F : R×D1,2 → R by

F (t, w) = t‖u− w‖2D − t2·2
∗
α−1

∫
RN

∫
RN

|(u− w)(x)|2∗α |(u− w)(y)|2∗α
|x− y|α

dx dy

−
∫

RN
h(u− w).

Obviously, F (1, 0) = 0, F ′t (1, 0) = ϕ′′u(1) 6= 0. According to the implicit function
theorem at point (1, 0), we get that there exist ε = ε(u) > 0 and differentiable
function t : Bε(0) → R+ such that: (1) t(0) = 1; (2) t(w)(u − w) ∈ Λ, for all

w ∈ Bε(0); and (3) 〈t′(0), w〉 = − 〈
∂F
∂w |(1,0),w〉
∂F
∂t |(1,0)

. The proof is complete. �

3. Local minimum solution

Now we can define

c0 = inf
u∈Λ

I(u), c1 = inf
u∈Λ−

I(u), c+ = inf
u∈Λ+

I(u).

Proposition 3.1. Under assumption (A3), equation (1.3) has a local minimum
solution with the least energy c0 = infΛ I(u).

Proof. Firstly, we will show that ‖u‖D is bounded from both above and below. For
any u ∈ Λ,

I(u) =
1
2
‖u‖2D −

1
2 · 2∗α

B(u)− C(u)

=
(1

2
− 1

2 · 2∗α

)
‖u‖2D −

(
1− 1

2 · 2∗α

)∫
RN

hu dx

≥ 2∗α − 1
2 · 2∗α

‖u‖2D −
2 · 2∗α − 1

2 · 2∗α
‖h‖H−1‖u‖D

≥ − (2∗α − 1)2

8 · 2∗α(2∗α − 1)
‖h‖2H−1 .

(3.1)
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Thus,

c0 ≥ −
(2 · 2∗α − 1)2

8 · 2∗α(2∗α − 1)
‖h‖2H−1 .

By the proof of Lemma 2.4, we have that if u ∈ D1,2(RN ) and ‖u‖D = 1, then

0 < C < κ0 =
2(2∗α − 1)
2 · 2∗α − 1

( 1
(2 · 2∗α − 1)B

)1/2(2∗α−1)

.

So that equation ϕ′u(t) = 0 has a positive solution t1 satisfying 0 < t1 < t0 and t1u ∈
Λ+. Since ϕ′u(t) = t−Bt2∗α−1−C, we know that limt→0 ϕ

′
u(t) = −C < 0, ϕ′′u(t) > 0

for all t ∈ (0, t0). From ϕ′u(t1) = 0 we have that ϕu(t1) < limt→0+ ϕu(t) = 0 and
ϕu(t1) = I(t1u) ≥ c+. Thus c+ < 0 and c0 = infΛ I(u) ≤ infΛ+ I(u) = c+ < 0.

By using the Ekeland’s variational principle on Λ, we get a minimizing sequence
{un} ⊂ Λ which satisfies

I(un) < c0 +
1
n
,

I(w) ≥ I(un)− 1
n
‖u− w‖D, w ∈ Λ.

(3.2)

Since {un} ⊂ Λ, it follows that ‖un‖2D = B(un) + C(un). Furthermore, we infer
from (3.2) that

c0 +
1
n
≥ I(un) =

(1
2
− 1

2 · 2∗α

)
‖un‖2D −

(
1− 1

2 · 2∗α

)∫
RN

h(x)un dx

≥
(1

2
− 1

2 · 2∗α

)
‖un‖2D −

(
1− 1

2 · 2∗α

)
‖h‖H−1‖un‖D.

(3.3)

We know that {un} is bounded. We claim that infn ‖un‖D ≥ σ > 0, which σ is a
positive constant. Indeed, if not, by (3.3), I(un) would converge to zero. We can
infer that c0 ≥ 0 which is contradict with c0 < 0. So we have

σ ≤ ‖un‖D ≤ δ. (3.4)

Secondly, we claim that, for a subsequence of {un} (still denoted by {un}),
‖∇I(un)‖D → 0 as n → ∞. In fact, if the claim were false, we could assume
‖∇I(un)‖D ≥ c > 0 for n large enough. Consequently, according to Lemma 2.5,
for un there exist εn and differentiable tn satisfying

tn(0) = 1, tn(w)(un − w) ∈ Λ, ‖w‖D < εn

and

〈t′n(0), w〉

=
2
∫

RN ∇un∇w dx− 2 · 2∗α
∫

RN
∫

RN
|un(y)|2

∗
α |un(x)|2

∗
α−2un(x)w(x)

|x−y|α dx dy −
∫

RN hw dx

‖un‖2D − (2 · 2∗α − 1)B(un)
.

We choose wn = δn∇I(un)/‖∇I(un)‖D, vn = tn(wn)(un −wn), where 0 < δn < εn
is sufficiently small satisfying δn → 0, tn(wn)→ 1 as n→∞ and∣∣I(vn)− I(un)− 〈I ′(un), vn − un〉

∣∣
‖un − vn‖D

<
1
n
,∣∣tn(wn)− 1− 〈t′n(0), wn〉

∣∣
‖wn‖D

< 1.
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From (3.2), that vn ∈ Λ and the above, we deduce

1
n
‖vn − un‖D ≥ I(un)− I(vn) ≥ 〈I ′(un), un − vn〉 −

1
n
‖un − vn‖D.

Thus, we have
2
n
‖tn(wn)(un − wn)− un‖D

≥ (1− tn(wn))〈I ′(un), un〉+ tn(wn)δn〈I ′(un),
∇I(un)
‖∇I(un)‖D

〉,

and
2
n

[
(|〈t′n(0), wn〉|+ ‖wn‖D)‖un‖D + tn(wn)‖wn‖D

]
≥ tn(wn)δn‖∇I(un)‖D.

Dividing by δn > 0 on both left and right hand of the above inequality, we obtain

2
n

[
(|〈t′n(0),

∇I(un)
‖∇I(un)‖D

〉|+ 1)‖un‖D + tn(wn)
]
≥ tn(wn)‖∇I(un)‖D. (3.5)

Now, if there exists λ > 0 such that∣∣‖un‖2D − (2 · 2∗α − 1)B(un)
∣∣ ≥ λ ,

we can get the claim. In fact,∣∣∣〈t′n(0), hn〉
∣∣∣

=
∣∣∣∫RN (2∇un∇hn − hnun)dx− 2 · 2∗α

∫
RN
∫

RN
|un(y)|2

∗
α |un(x)|2

∗
α−2un(x)hn(x)

|x−y|α dx dy

‖un‖2D − (2 · 2∗α − 1)B(un)

∣∣∣
≤ C

λ
.

Here, hn = ∇I(un)
‖∇I(un)‖D and we have used the uniformly boundedness of ‖un‖D.

Consequently, as n→∞,
2
n

[
(|〈t′n(0), hn〉|+ 1)‖un‖D + tn(wn)

]
→ 0.

So that, by passing to the limit as n → ∞ in (3.5), we get a contradiction which
implies the claim is true.

To show the existence of positive lower bound of
∣∣∣‖un‖2D− (2 · 2∗α− 1)B(un)

∣∣∣, we
argue indirectly and assume

‖un‖2D − (2 · 2∗α − 1)B(un) = o(1), n→∞.

Here, {un} is a subsequence still denoted by the original symbol. Combining this
and (3.3), similarly to the proof of Lemma 2.4(i), we can easily get a contradiction.

So that we conclude that, for a subsequence which we still denote by {un},

I(un)→ c0, ‖∇I(un)‖D → 0,

as n → ∞. By (3.3) we know that {un} is bounded in D1,2(RN ), and the weak
limit of {un} which we denote by u0 is a weak solution of system (1.3). Obviously,
u0 ∈ Λ and

c0 ≤ I(u0) =
1
2
‖u0‖2D −

1
2 · 2∗α

B(u0)− C(u0)
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=
(1

2
− 1

2 · 2∗α

)
‖u0‖2D −

(
1− 1

2 · 2∗α

)
C(u0)

≤ lim inf I(un) = c0.

Therefore, u0 is a least energy solution.
Now, we only need to show that u0 is a local minimum solution. We apply

Lemma 2.3 to u0 and |u0|. Since

d

dt
I(tu0) = ϕ′u0

(t) > 0, t ∈ (t+(u0), t−(u0)),

we know that u0 ∈ Λ+. Otherwise, u0 ∈ Λ− and c0 ≤ I(t+(u0)u0) < I(u0) = c0
which is a contradiction. By Lemma 2.3 and u0 ∈ Λ+ we know that

1 = t+(u0) < t0(u0) =
[ ‖u0‖2D

(2 · 2∗α − 1)B(u0)

]1/(2·2∗α−2)

.

Therefore

1 <
[ ‖u0 − w‖2D

(2 · 2∗α − 1)B(u0 − w)

]1/(2·2∗α−2)

, ‖w‖D < ε,

for ε small enough. Applying Lemma 2.5, we get a t(w) > 0 such that t(w)(u0−w) ∈
Λ for ‖w‖ < ε small. Moreover, it holds t(w)→ 1 as w → 0. Thus we can assume
that, for ‖w‖ < ε sufficiently small,

t(w) <
[ ‖u0 − w‖2D

(2 · 2∗α − 1)B(u0 − w)

]1/(2·2∗α−2)

, t(w)(u0 − w) ∈ Λ+.

Then by Lemma 2.3, we conclude that

I(u0) ≤ I(t(w)(u0 − w)) ≤ I(t(u0 − w)) (3.6)

for 0 < t < [ ‖u0−w‖2D
(2·2∗α−1)B(u0−w) ]1/(2·2

∗
α−2). Taking t = 1 in (3.6) we have

I(u0) ≤ I(u0 − w), ‖w‖D < ε,

which means u0 is a local minimum solution.
Additionally, if we assume that h > 0,

ϕ′|u0|(t) < ϕ′u0
(t) < 0, t ∈ [0, 1).

Hence, t+(|u0|) ≥ 1 and consequently,

c0 ≤ I(t+(|u0|)|u0|) ≤ I(|u0|) ≤ I(u0) = c0.

Therefore, t+(|u0|) = 1 and
∫

RN h(x)|u0| dx =
∫

RN h(x)u0 dx, which yields u0 ≥ 0.
Then by the maximum principle, we know u0 > 0. The proof is complete. �

We remark that since c0 < 0, any solution u0 of system (1.3) with the least
energy c0 satisfies

c0 = I(u0) =
1
2
‖u0‖2D −

1
2 · 2∗α

B(u0)−
∫

RN
h(x)u0dx

=
(1

2
− 1

2 · 2∗α

)
‖u0‖2D −

(
1− 1

2 · 2∗α

)∫
RN

h(x)u0 dx < 0.

Thus,
∫

RN h(x)u0dx > 0 and consequently, u0 ∈ Λ+.
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Proposition 3.2. Assume N ≥ 3, 0 < α < N and (A3). If {un} is a (PS)c
sequence of I with

c < c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L , (3.7)

then {un} has a convergent subsequence.

Proof. Obviously, ‖un‖D is bounded. In fact

c+ ‖un‖D ≥ I(un)− 1
2 · 2∗α

〈I ′(un), un〉

=
1
2
‖un‖2D −

1
2 · 2∗α

B(un)− C(un)

− 1
2 · 2∗α

‖un‖2D +
1

2 · 2∗α
B(un) +

1
2 · 2∗α

C(un)

≥ 1
2

(1− 1
2∗α

)‖un‖2D − (1− 1
2 · 2∗α

)‖h‖H−1‖un‖D.

Thus, there exists w ∈ D1,2(RN ) which satisfies un ⇀ w weakly in D1,2(RN ) and
solves (1.3). Therefore, w 6= 0 and I(w) ≥ c0. Let un − w = vn, by Brezis-Lieb
lemma [7] and [18, Lemmas 2.1 and 2.2], we deduce that

‖un‖2D = ‖vn‖2D + ‖w‖2D + o(1), n→∞,

and∫
RN

∫
RN

|un(x)|2∗α |un(y)|2∗α
|x− y|α

dx dy

=
∫

RN

∫
RN

|vn(x)|2∗α |vn(y)|2∗α
|x− y|α

dx dy +
∫

RN

∫
RN

|w(x)|2∗α |w(y)|2∗α
|x− y|α

dx dy + on(1)

as n→∞. So we obtain

c← I(un)

=
1
2
‖un‖2D −

1
2 · 2∗α

∫
RN

∫
RN

|un(x)|2∗α |un(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)un dx

=
1
2
‖vn‖2D −

1
2 · 2∗α

∫
RN

∫
RN

|vn(x)|2∗α |vn(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)vn dx

+
1
2
‖w‖2D −

1
2 · 2∗α

∫
RN

∫
RN

|w(x)|2∗α |w(y)|2∗α
|x− y|α

dx dy −
∫

RN
h(x)w dx+ on(1)

= I(w) +
1
2
‖vn‖2D −

1
2 · 2∗α

B(vn) + on(1).

As a result, for n large we have
1
2
‖vn‖2D −

1
2 · 2∗α

B(vn) + on(1) <
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L . (3.8)

On the other hand,

o(1) = 〈I ′(un), un〉 = 〈I ′(w), w〉+ ‖vn‖2D −B(vn) + o(1),

which implies
‖vn‖2D −B(vn) = o(1). (3.9)
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If we can show that {vn} has subsequence converging strong to 0, we have the result.
Therefore, arguing indirectly, we assume ‖vn‖D ≥ c > 0 for n large. According to
(3.9), the definition of SH,L and 2∗α

2∗α−1 = 2N−α
N+2−α , we have

‖vn‖2D = B(vn) + o(1) ≤
‖vn‖

2·2∗α
D

S
2∗α
H,L

and
1
2
N + 2− α

2N − α
S

2N−α
N+2−α
H,L =

1
2

2∗α − 1
2∗α

S
2N−α
N+2−α
H,L

≤ 1
2

2∗α − 1
2∗α

‖vn‖2D

=
1
2
‖vn‖2D −

1
2

1
2∗α
B(vn) + on(1)

<
N + 2− α
2(2N − α)

S
2N−α
N+2−α
H,L ,

which is a contradiction. The proof is complete. �

Remark 3.3. To find the second solution of (1.3), the only we need to show is that

c0 < c1 = inf
Λ−

I(u) < c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L .

By the continuity of I and Lemma 2.2, we know that there exists δ > 0 such
that

I(u0 + tW ) < c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L , 0 ≤ t < δ,

where u0 is the positive local minimum solution we get in Proposition 3.1. For
t ≥ δ, a directly computation shows us

I(u0 + tW ) =
1
2
‖u0 + tW‖2D −

1
2 · 2∗α

B(u0 + tW )−
∫

RN
h(u0 + tW )dx

=
1
2
‖u0‖2D + t

∫
RN
∇u0∇W dx+

t2

2
‖W‖2D −

1
2 · 2∗α

B(u0)

+
1

2 · 2∗α
[B(u0) +B(tW )−B(u0 + tW )]− 1

2 · 2∗α
B(tW )

−
∫

RN
hu0dx−

∫
RN

htW dx

= I(u0) +
t2

2
[‖W‖2D −

t2(2∗α−1)

2 · 2∗α
B(W )] +

1
2 · 2∗α

[B(u0) +B(tW )

−B(u0 + tW ) + 2 · 2∗α
∫

RN

∫
RN

|u0(x)|2∗α |u0(y)|2∗α−2u0(y)
|x− y|α

dx dy]

< c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L .

Here, we use that 〈I ′(u0), tW 〉 = 0 and W is a minimizer of SH,L.

Proof of Theorem 1.1. Firstly, we show that

c0 < c1 = inf
Λ−

I(u) < c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L .
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We observe that for every u ∈ D1,2(RN ) with ‖u‖D = 1, there exists a unique
t−(u) > 0 such that (see Lemma 2.3)

t−(u)u ∈ Λ−.

Similar to Lemma 2.5, we know that t−(u) is a continuous function of u. And
consequently the manifold Λ− disconnects D1,2(RN ) in exactly two connected com-
ponents U1 and U2, where

U1 =
{
u ∈ D1,2(RN ) : u = 0 or ‖u‖D < t−

( u

‖u‖D
)}
,

U2 =
{
u ∈ D1,2(RN ) : ‖u‖D > t−

( u

‖u‖D
)}
.

Obviously, D1,2(RN ) = Λ− ∪ U1 ∪ U2. In particular, u0 ∈ Λ+ ⊂ U1. Since

t−
( u0 + tW

‖u0 + tW‖D

) u0 + tW

‖u0 + tW‖D
∈ Λ,

we have

0 < t−
( u0 + tW

‖u0 + tW‖D

)
< C0

uniformly for t ∈ R.
On the other hand, there exists t̃ > 0 such that

‖u0 + tW‖D ≥ t‖W‖D − ‖u0‖D ≥ C0, t ≥ t̃.

So that we can fix a t0 > 0 such that ‖u0 + t0W‖D > t−( u0+t0W
‖u0+t0W‖D ). Thus,

u0 + t0W ∈ U2. Combining this and the fact u0 ∈ U1, we know that

u0 + t1W ∈ Λ−,

for some 0 < t1 < t0. Consequently, by Remark 3.3, we have

c1 = inf
Λ−

I(u) ≤ max
0≤t≤t0

I(u0 + tW ) < c0 +
N + 2− α
4N − 2α

S
2N−α
N+2−α
H,L .

Next, we show that c1 is a critical value of I and satisfies c1 > c0. Similarly
to the proof of Proposition 3.1, we apply Ekeland’s variational principle and get a
minimizing sequence {un} ⊂ Λ− such that

I(un) < c1 +
1
n

;

I(w) ≥ I(un)− 1
n
‖u− w‖D, w ∈ Λ−.

So that

c1 + 1 > I(un) =
1
2
‖un‖2D −

1
2 · 2∗α

B(un)−
∫

RN
h(x)un dx

≥
(1

2
− 1

2 · 2∗α

)
‖un‖2D −

(
1− 1

2 · 2∗α

)
‖h‖H−1‖un‖D,

which implies ‖un‖ has a upper bound. Moreover, from {un} ⊂ Λ−, we know that

‖un‖2D ≤ (2 · 2∗α − 1)
‖un‖

2∗α
D

S
2∗α
H,L

.
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Thus, ‖un‖D has a uniform positive lower bound. Then, analogously to the proof
of Proposition 3.1, we know that

I(un)→ c1, I ′(un)→ 0 in H−1.

By Proposition 3.1 and c1 < c0 + N+2−α
4N−2α S

2N−α
N+2−α
H,L , we can conclude that there exists

a subsequence of {un} such that un → u1 strongly in D1,2(RN ). Therefore u1 is a
critical point of I and I(u1) = c1. Noting that Λ− is closed, we have u1 ∈ Λ−. To
show c1 > c0, arguing indirectly, we assume c1 = c0. Thus by Remark 3.3 we have∫

RN
h(x)u1dx > 0 and u1 ∈ Λ+,

which leads to a contradiction.
Finally, we consider the case h > 0. Applying Lemma 2.3 to u1 and |u1|, we

know that there exist a t−(|u1|) such that

t−(|u1|)|u1| ∈ Λ−.

Moreover,

t−(|u1|) ≥ t0(|u1|) = t0(u1) =
[ A(u1)

(2∗α − 1)B(u1)

] 1
2∗α−2

Thus in both cases
∫

RN h(x)u dx > 0 and
∫

RN h(x)u dx ≤ 0, we can deduce that

c1 = I(u1) ≥ I(t−(u1)u1) ≥ I(t−(|u1|)|u1|) = t0(u1) ≥ c1.
Therefore,

∫
RN h(x)u1dx =

∫
RN h(x)|u1|dx, which implies u1 ≥ 0. According to the

maximum principle we get u1 > 0. The proof is complete. �

4. Proof of Theorem 1.2

We define the energy functional associated with

−∆u+ u =
( 1
|x|α

∗ |u|p
)
|u|p−2u+ h(x), x ∈ RN , (4.1)

where N ≥ 3, 0 < α < N and 2− α
N < p < 2∗α, by

J(u) =
1
2

∫
RN
|∇u|2+u2dx− 1

2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy−

∫
RN

h(x)u dx, (4.2)

for u ∈ H1(RN ). By the Hardy-Littlewood-Sobolev inequality of Lemma 2.1, we
know that J ∈ C1(H1(RN ),R) and

〈J ′(u), v〉 =
∫

RN
(|∇u||∇v|+ uv)dx−

∫
RN

∫
RN

|u(x)|p|u(y)|p−2u(y)v(y)
|x− y|α

dx dy

−
∫

RN
h(x)v dx.

We will constrain the functional J on the Nehari manifold

N = {u ∈ H1(RN ), 〈J ′(u), u〉 = 0}. (4.3)

Denote Ψ(u) = 〈J ′(u), u〉, so we know that

〈J ′(u), u〉 = ‖u‖2 −
∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy −

∫
RN

h(x)u dx,

〈Ψ′(u), u〉 = 2‖u‖2 − 2p
∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy −

∫
RN

h(x)u dx.
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Note that, when u0 is a local minimum solution of J , it holds

〈J ′(u), u〉 = 0, 〈Ψ′(u), u〉 ≥ 0,

which leads us to consider the following manifolds:

N = {u ∈ H1(RN ) : 〈J ′(u), u〉 = 0},
N+ = {u ∈ N : 〈Ψ′(u), u〉 > 0},
N− = {u ∈ N : 〈Ψ′(u), u〉 < 0},
N 0 = {u ∈ N : 〈Ψ′(u), u〉 = 0}.

Moreover, we define

j0 = inf
N
J(u); j1 = inf

N−
J(u); j+ = inf

N+
J(u).

Obviously, only N 0 contains the element 0. It is easy to see that N 0 ∪ N+ and
N 0 ∪N− are both closed subsets of H1(RN ).

To simplify the calculation, for u ∈ H1(RN ), we denote

Ã = Ã(u) = ‖u‖2,

B̃ = B̃(u) =
∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy,

C̃ = C̃(u) =
∫

RN
h(x)u dx.

Define the fibering map

ψ(t) = ψu(t) := J(tu) =
Ã

2
t2 − B̃

2p
t2p − C̃t, t > 0. (4.4)

Therefore,
ψ′(t) = Ãt− B̃t2p−1 − C̃,

ψ′′(t) = Ã− (2p− 1)B̃t2p−2.
(4.5)

Obviously, tu ∈ N with t > 0 if and only if ψ′(t) = 0. By the sign of ψ′′(t), the
stationary points of ψ(t) can be classified into three types, namely local minimum,
local maximum and turning point. Moreover, the set N is a natural constraint for
the functional J . This is means that if the infimum is attained by u ∈ N , then u
is a solution of (1.4). However, in our case, the global maximum point of ψ(t) is
not unique. This leads us to partition the set N according to the critical points of
ψ(t). Now we give some properties of N± and N 0.

Lemma 4.1. (i) Assume that h 6≡ 0 for u ∈ H1(RN )\{0}, there is a unique
t̃− = t̃−(u) > 0 such that t̃−u ∈ N−. If additionally we assume

∫
RN hu dx > 0 and

(A5), then there exists ε = ε(N, p, α, d 2Np
2N−α

) and a unique 0 < t̃+ = t̃+(u) < t̃−

satisfying t̃+u ∈ N+. Moreover,

J(t̃−u) = max
t≥0

J(tu) for
∫

RN
hu dx ≤ 0;

J(t̃−u) = max
t≥t̃+

J(tu), J(t̃+u) = min
0≤t≤t̃−

J(tu) for
∫

RN
hu dx > 0.
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Proof. Define ψ(t) = Ã
2 t

2 − B̃
2·p t

2p − C̃t, for all t > 0. In the case
∫

RN hu dx ≤ 0,
there is a unique t̃− > 0 such that ψ′(t̃−) = 0 and ψ′′(t̃−) < 0. So that

〈J ′(t̃−u), t̃−u〉 = 0;

‖t̃−u‖2 − (2p− 1)B̃(u)(t̃−)2p−2 < 0.

Thus, t̃−u ∈ N− and J(t̃−u) = maxt≥0 J(tu).

In the case
∫

RN hu dx > 0, for ‖u‖ = 1, t̃0 = t̃0(u) =
[

1
(2p−1)B̃

] 1
2p−2 > 0 and

(A5), we have

max
t≥0

ψ′(t) ≥ t0 − B̃t2p−1
0 − C̃

=
[ 1

(2p− 1)B̃

] 1
2p−2 · 2p− 2

2p− 1
−
∫

RN
hu dx

≥
[ 2p− 2

(2p− 1)2p−1/(2p−2)B
1/2p−2
0

− |h| 2Np
2N(p−1)+α

d 2Np
2N−α

]
> 0.

Here

ε(N, p, α, d 2Np
2N−α

) =
2p− 2

(2p− 1)2p−1/(2p−2)B
1/2p−2
0 d 2Np

2N−α

,

B0 = sup
‖u‖=1

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy.

From ψ′(0) = −C̃ < 0 and ψ′(t) → −∞ as t → +∞, we know that there exist
unique 0 < t̃+ < t̃0 < t̃− such that ψ′(t̃−) = ψ′(t̃+) = 0, ψ′′(t̃−) < 0 < ψ′′(t̃+).
Equivalently, t̃+u ∈ N+ and t̃−u ∈ N−.

Moreover, since d
dtJ(tu) = ψ′(t), we can easily see that J(t̃−u) = maxt≥t̃+ J(tu)

and J(t̃+u) = min0≤t≤t̃− J(tu). The proof is complete. �

Lemma 4.2. Assume t h 6≡ 0, (A4) and (A5) hold. Then
(i) N 0 = {0};

(ii) N± 6= ∅,N− is closed.

Proof. (i) To prove N 0 = {0}, we need to prove that, for u ∈ H1(RN ) \ {0}, ϕ̃(t)
has no critical point that is a turning point. Set ‖u‖ = 1, define

k(t) = Ãt− B̃t2p−1. (4.6)

Then ψ′(t) = k(t) − C̃, k′′(t) = −B̃(2p − 1)(2p − 2)t2p−3 < 0 for t > 0. So k(t)
is strictly concave. If k′′(t̃0) = 0, t̃0 = ( Ã

(2p−1)B̃
)1/(2p−2) > 0, for p > 2 − α

N > 1.
Moreover, limt→0+ k(t) = 0, limt→+∞ k(t) = −∞ and k(t) > 0 for t > 0 small.
Therefore, k(t) has a unique global maximum points t0 and

k(t0) =
2Ã(2p− 1)

2p− 1

( Ã

(2p− 1)B̃

)1/(2p−2)

:= k0.

By (4.4) and (4.5), we infer that if 0 < C̃ < k0, the equation ψ′(t) = 0 has exactly
two points t̃1, t̃2 satisfying t̃1 < t̃0 < t̃2. If C̃ ≤ 0, the equation ψ′(t) = 0 has one
root t̃3 > t̃0. Since ψ′′(t) = Ã−(2p−1)B̃t2p−2, it follows that ψ′′(t̃1) > 0, ψ′′(t̃2) < 0
and ψ′′(t̃3) < 0. It follows that t̃1u ∈ N+, t̃2u ∈ N− if 0 < C̃ < k0 and t̃3u ∈ N−
if C̃ ≤ 0. Since {u ∈ H1(RN ) : ‖u‖ = 1, 0 < C̃ < k0} and {u ∈ H1(RN ) :
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‖u‖ = 1, C̃ ≤ 0} are nonempty, we can infer that N± are nonempty. This implies
N 0 = {0}.

It is suffices to prove that k0 > C̃. By (A4), (A5) and Lemma 4.1 we have

k0 − C̃ = k(t0)− C̃ = Ãt0 − B̃t2p−1
0 − C̃ > 0.

(ii) Let u ∈ N− and denote ũ = u/‖u‖. Then ‖ũ‖ = 1. By (i), we know that

C̃(ũ) < k0 =
2(p− 1)
2p− 1

( 1
(2p− 1)B̃

)1/(2p−1)

with B̃ := B(ũ). Furthermore, if 0 < C̃(ũ) < κ0, the equation ψ′(t) = 0 has exactly
two roots t̃1, t̃2 satisfying 0 < t̃1 < t0 < t̃2 such that t̃1u ∈ N+, t̃2u ∈ N−. Then
t̃2ũ = u and so ‖u‖ = t̃2 > t̃0. If C̃ ≤ 0, the equation ψ′(t) = 0 has exactly one
root t̃3 > t̃0. Then t̃3ũ = u ∈ N− and so ‖u‖ = t̃3 > t̃0. In other words,

‖u‖ > t̃0 > 0, u ∈ N−.

So there exists τ > 0 such that

‖u‖ > τ > 0, ∀u ∈ N−. (4.7)

Therefore, 0 /∈ cl(N−), where cl(N−) is the closure of N−. On the other hand, by
(i),

cl(N−) ⊂ N− ∪N 0 = N− ∪ {0}.
Hence, cl(N−) = N− and N− is closed. The proof is complete. �

Lemma 4.3. Under assumption (A4) and (A5), for u ∈ N \{0}, there exists ε > 0
and a differential function η = η(w) > 0, w ∈ H1(RN ), ‖w‖ < ε such that

(1) η(0) = 1;
(2) η(w)(u− w) ∈ N , for all w ∈ Bε(0);
(3)

〈η′(0), w〉 =
(

2
∫

RN
(∇u∇w + uw)dx

− 2p
∫

RN

∫
RN

|u(y)|2p|u(x)|p−2u(x)w(x)
|x− y|α

dx dy −
∫

RN
hw dx

)
÷
(
‖u‖2 − (2p− 1)B̃(u)

)
.

Proposition 4.4. Assume (A4) and (A5) hold. Then (1.4) has a local minimum
solution with the least energy j0 = infN J(u).

Proof. Firstly, we show that ‖u‖ is bounded from both above and below: For any
u ∈ N ,

J(u) =
1
2
‖u‖2 − 1

2p
B̃(u)− C̃(u)

=
(1

2
− 1

2p

)
‖u‖2 −

(
1− 1

2p

)∫
RN

h(x)u dx

≥ p− 1
2p
‖u‖2 − 2p− 1

2p
|h| 2Np

2N(p−1)+α
d 2Np

2N−α
‖u‖

≥ − (2p− 1)2

8p(p− 1)
‖h‖22Np

2N−α
.

(4.8)
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Thus,

j0 ≥ −
(2p− 1)2

8p(p− 1)
‖h‖22Np

2N−α
.

Similar to the proof of Proposition 3.1, we can prove j0 < 0. By using the Ekeland’s
variational principle on N , we get a minimizing sequence {un} ⊂ N which satisfies

J(un) < j0 +
1
n
,

J(w) ≥ J(un)− 1
n
‖u− w‖, w ∈ N .

(4.9)

Since {un} ⊂ N , it follows that ‖un‖2 = B̃(un) + C̃(un). Furthermore, we infer
from (4.7) that

j0 +
1
n
≥ J(un) =

(1
2
− 1

2p

)
‖un‖2 −

(
1− 1

2p

)∫
RN

h(x)un dx

≥
(1

2
− 1

2p

)
‖un‖2 −

(
1− 1

2p

)
|h| 2Np

2N(p−1)+α
d 2Np

2N−α
‖un‖.

(4.10)

We know that {un} is bounded. We claim that infn ‖un‖ ≥ σ1 > 0, which σ1 is a
positive constant. Indeed, if not, by (4.10), J(un) would converge to zero. We can
infer that j0 ≥ 0 which is contradict with j0 < 0. So we have

σ1 ≤ ‖un‖ ≤ δ1. (4.11)

Secondly, we claim that, for a subsequence of {un} (still denoted by {un}),
‖∇J(un)‖ → 0 as n→∞.

In fact, if the claim were false, we could assume ‖∇J(un)‖ ≥ d > 0 for n
large enough. Consequently, according to Lemma 4.3, for un there exist εn and
differentiable ηn satisfying

ηn(0) = 1, ηn(w)(un − w) ∈ N , ‖w‖ < εn

and

〈η′n(0), w〉 =
(

2
∫

RN
(∇un∇w + unw)dx

− 2p
∫

RN

∫
RN

|un(y)|p|un(x)|p−2un(x)w(x)
|x− y|α

dx dy −
∫

RN
hw dx

)
÷
(
‖un‖2 − (2p− 1)B̃(un)

)
.

We choose wn = δn
∇J(un)
‖∇J(un)‖ , vn = ηn(wn)(un − wn), where 0 < δn < εn is suffi-

ciently small satisfying δn → 0, ηn(wn)→ 1 as n→∞ and∣∣J(vn)− J(un)− 〈J ′(un), vn − un)〉
∣∣

‖un − vn‖
<

1
n
,∣∣η(wn)− 1− 〈η′n(0), wn〉

∣∣
‖wn‖

< 1.

From (4.6), that vn ∈ N and the above, we deduce that
1
n
‖vn − un‖ ≥ J(un)− J(vn) ≥ 〈J ′(un), un − vn〉 −

1
n
‖un − vn‖

Thus, we have
2
n
‖ηn(wn)(un − wn)− un‖



20 L. WANG EJDE-2018/172

≥ (1− ηn(wn))〈J ′(un), un〉+ ηn(wn)δn〈J ′(un),
∇J(un)
‖∇J(un)‖

〉,

and
2
n

[
(|〈η′n(0), wn〉|+ ‖wn‖)‖un‖+ ηn(wn)‖wn‖

]
≥ ηn(wn)δn‖∇J(un)‖.

Dividing by δn > 0 on both left and right hand of the above inequality, we get
2
n

[
(|〈η′n(0),

∇J(un)
‖∇J(un)‖

〉|+ 1)‖un‖+ ηn(wn)
]
≥ ηn(wn)‖∇J(un)‖. (4.12)

Now, if there exists λ > 0 such that∣∣‖un‖2 − (2p− 1)B̃(un)
∣∣ ≥ λ,

we can get the claim. In fact,∣∣∣〈η′n(0), hn〉
∣∣∣

=
∣∣∣2(un, hn)−

∫
RN hnun − 2p

∫
RN
∫

RN
|un(y)|p|un(x)|p−2un(x)hn(x)

|x−y|α dx dy

‖un‖2 − (2p− 1)B̃(un)

∣∣∣
≤ C̃

λ
.

Here, hn = ∇J(un)/‖∇J(un)‖ and we have used the uniformly boundedness of
‖un‖. Consequently, as n→∞,

2
n

[
(|〈η′n(0), hn〉|+ 1)‖un‖+ ηn(wn)

]
→ 0.

So that, by passing to the limit as n → ∞ in (4.12), we get a contradiction which
implies the claim is true.

To show the existence of positive lower bound of
∣∣‖un‖2 − (2p − 1)B̃(un)

∣∣, we
argue indirectly again and assume

‖un‖2 − (2p− 1)B̃(un) = o(1) n→∞.
Here, {un} is a subsequence still denoted by itself. Combining this and (4.10),
similarly to the proof of Lemma 4.2(ii), we can easily get a contradiction.

So that we conclude that, for a subsequence still denoted by {un},
I(un)→ j0, ‖∇J(un)‖ → 0,

as n → ∞. By (4.10) we know that {un} is bounded in H1(RN ), and the weak
limit of {un} which we denote by u0 is a weak solution of system (1.4). Obviously,
u0 ∈ N and

j0 ≤ J(u0) =
1
2
‖u0‖2 −

1
2p
B̃(u0)− C̃(u0)

=
(1

2
− 1

2p

)
‖u0‖2 −

(
1− 1

2p

)
C̃(u0)

≤ lim inf J(un) = j0.

Therefore, u0 is a least energy solution.
Now, we only need to show that u0 is a local minimum solution. We apply

Lemma 4.1 to u0 and |u0|. Since
d

dt
J(tu0) = ψ′(t) > 0, t ∈ (t̃+(u0), t̃−(u0)),
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we know that u0 ∈ N+. Otherwise, u0 ∈ N− and j0 ≤ J(t̃+(u0)u0) < J(u0) = j0
which is a contradiction. By Lemma 4.1 and u0 ∈ N+ we know that

1 = t̃+(u0) < t̃0(u0) =
[ ‖u0‖2

(2p− 1)B̃(u0)

]1/(2p−2)

.

Therefore

1 <
[ ‖u0 − w‖2

(2p− 1)B̃(u0 − w)

]1/(2p−2)

, ‖w‖ < ε,

for ε small enough. Applying Lemma 4.3, we get a η(w) > 0 such that η(w)(u0 −
w) ∈ N for ‖w‖ < ε small. Moreover, it holds η(w) → 1 as w → 0. Thus we can
assume that, for ‖w‖ < ε sufficiently small,

η(w) <
[ ‖u0 − w‖2

(2p− 1)B̃(u0 − w)

]1/(2p−2)

, η(w)(u0 − w) ∈ N+.

Then by Lemma 4.1, we conclude that

J(u0) ≤ J(η(w)(u0 − w)) ≤ J(t(u0 − w)) (4.13)

for 0 < η <
[ ‖u0−w‖2

(2p−1)B̃(u0−w)

]1/(2p−2). Taking η = 1 in (4.13) we have

J(u0) ≤ J(u0 − w), ‖w‖ < ε,

which means u0 is a local minimum solution.
Additionally, if we assume that h > 0, then

ψ′|u0|(t) < ψ′u0
(t) < 0, t ∈ [0, 1).

Hence, t̃+(|u0|) ≥ 1 and consequently,

j0 ≤ J(t̃+(|u0|)|u0|) ≤ J(|u0|) ≤ J(u0) = j0.

Therefore, t̃+(|u0|) = 1 and
∫

RN h(x)|u0| dx =
∫

RN h(x)u0 dx, which yield u0 ≥ 0.
Then by the maximum principle, we know u0 > 0. The proof is complete. �

Consider the nonlinear Schrödinger equation

−∆u+ u =
( 1
|x|α

∗ |u|p
)
|u|p−2u in RN . (4.14)

By [28, Proposition 2.], we know that (4.14) has positive smooth solution V (x),
which is also a minimizer of

Sα,p = inf
u∈H1(RN )\{0}

∫
RN |∇u|

2 + u2dx

(
∫

RN
∫

RN
|u(x)|p|u(y)|p
|x−y|α dx dy)1/p

.

If V is a positive solution of (4.14) if and only if V is a critical point of the energy
functional

J (u) =
1
2

∫
RN

(|∇u|2 + u2)dx− 1
2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy.

We know that
‖V ‖ = B̃(V ) = S

p
p−1
α,p .

From the fact that the Sobolev embedding

H1(RN ) ↪→ Lq(RN ) (2 ≤ q ≤ 2∗)

is not compact, the variational functional J(u) fails to satisfy the (PS) condition.
Such a failure brings us some difficulties in applying the variational approach. In
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order to overcome the lack of compactness, we introduce the following proposition
which plays a key role in our argument. We remark here that since j0 < 0, any
solution u0 of system (1.4) with the least energy j0 satisfies

j0 = J(u0) =
1
2
‖u0‖2 −

1
2p
B̃(u0)−

∫
RN

h(x)u0dx

=
(1

2
− 1

2p

)
‖u0‖2 −

(
1− 1

2p

)∫
RN

h(x)u0 dx < 0.

Thus,
∫

RN h(x)u0dx > 0 and consequently, u0 ∈ N+.

Proposition 4.5. Let N ≥ 3, 0 < α < N , (A4) and (A5) hold. If {un} be a (PS)c
sequence of J with

c < j0 +
p− 1

2p
S

p
p−1
α,p , (4.15)

then {un} has a convergent subsequence.

Proof. Obviously, ‖un‖ is bounded. Thus, there exists w ∈ H1(RN ) which satisfies
un ⇀ v weakly in H1(RN ) and solves (1.4). Therefore, v 6= 0 and J(v) ≥ j0. Let
un − v = wn, by Brezis-Lieb lemma and [18, Lemmas 2.1 and 2.2], we deduce

‖un‖2 = ‖wn‖2 + ‖v‖2 + o(1), n→∞,
and ∫

RN

∫
RN

|un(x)|p|un(y)|p

|x− y|α
dx dy

=
∫

RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|α
dx dy +

∫
RN

∫
RN

|w(x)|p|w(y)|p

|x− y|α
dx dy + on(1)

as n→∞. So we obtain

c← J(un) =
1
2
‖un‖2 −

1
2p

∫
RN

∫
RN

|un(x)|p|un(y)|p

|x− y|α
dx dy −

∫
RN

h(x)un dx

=
1
2
‖wn‖2 −

1
2p

∫
RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|α
dx dy −

∫
RN

h(x)wn dx

+
1
2
‖v‖2 − 1

2p

∫
RN

∫
RN

|v(x)|p|v(y)|p

|x− y|α
dx dy −

∫
RN

h(x)v dx+ on(1)

= J(v) +
1
2
‖wn‖2 −

1
2p
B̃(wn) + on(1).

As a result, for n large, we have
1
2
‖wn‖2 −

1
2p
B̃(wn) + on(1) <

p− 1
2p

S
p
p−1
α,p . (4.16)

On the other hand,

o(1) = 〈J ′(un), un〉 = 〈J ′(v), v〉+ ‖wn‖2 − B̃(wn) + o(1),

which implies
‖wn‖2 − B̃(wn) = o(1). (4.17)

If we can show that {wn} has subsequence converging strong to 0, we have the
result. Therefore, arguing indirectly, we assume ‖wn‖ ≥ C > 0 for n large. By
(4.17), we have

‖wn‖2 = B̃(wn) ≤ ‖wn‖
2p

Spα,p
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and
1
2
p− 1
p

S
p
p−1
α,p =

1
2

(1− 1
p

)S
p
p−1

≤ 1
2

(1− 1
p

)‖wn‖2

=
1
2
‖wn‖2 −

1
2p
B̃(wn) + on(1)

<
p− 1

2p
S

p
p−1
α,p

which is a contradiction. The proof is complete. �

To prove Theorem 1.2, the only we need to show that

j0 < j1 = inf
N−

J(u) < j0 +
p− 1

2p
S

p
p−1
α,p .

Consider V (x) is a minimizer for both Sα,p. Let u0 be the positive local minimum
solution we get above. By the continuity of J , we know that there exists γ > 0
such that

J(u0 + tV ) < j0 +
p− 1

2p
S

p
p−1
α,p , 0 ≤ t < γ.

J(u0 + tV ) =
1
2
‖u0 + tV ‖2 − 1

2p
B̃(u0 + tV )−

∫
RN

h(u0 + tV )dx

= J(u0) +
t2

2
[‖V ‖2 − tp−2

p
B̃(V )] + B̃(u0) + B̃(tV )− B̃(u0 + tV )

< j0 +
p− 1

2p
S

p
p−1
α,p .

For t ≥ γ, a directly computation shows that

J(u0 + tV ) =
1
2
‖u0 + tV ‖2 − 1

2p
B̃(u0 + tV )−

∫
RN

h(u0 + tV )dx

=
1
2
‖u0‖2 + t

∫
RN
∇u0∇V + u0V dx+

t2

2
‖V ‖2 − 1

2p
B̃(u0)

+
1
2p

[B̃(u0) + B̃(tV )− B̃(u0 + tV )]− 1
2p
B̃(tV )

−
∫

RN
hu0dx−

∫
RN

htV dx

= J(u0) +
t2

2
[‖V ‖2 − t2(p−1)

2p
B̃(V )] +

1
2p

[B̃(u0) + B̃(tV )

− B̃(u0 + tV ) + 2p
∫

RN

∫
RN

|u0(x)|p|u0(y)|p−2u0(y)
|x− y|α

dx dy]

< j0 +
p− 1

2p
S

p
p−1
α,p .

Here, we use that 〈J ′(u0), tV 〉 = 0 and V (x) is a solution of (4.14).

Proof of Theorem 1.2. To show that

j0 < j1 = inf
N−

J(u) < j0 +
p− 1

2p
S

p
p−1
α,p .
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Firstly, we observe that for every u ∈ H1(RN ) with ‖u‖ = 1, there exists a unique
η−(u) > 0 such that (see Lemma 4.3)

t−(u) ∈ N−.
By Lemma 4.3, we know that η−(u) is a continuous function of u. Consequently
the manifold N− disconnects H1(RN ) in exactly two connected components U1

and U2, where

U1 =
{
u ∈ H1(RN ) : u = 0 or ‖u‖ < t−

( u

‖u‖
)}
,

U2 =
{
u ∈ H1(RN ); ‖u‖ > t−

( u

‖u‖
)}
.

Obviously, H1(RN ) = N− ∪ U1 ∪ U2. In particular, u0 ∈ N+ ⊂ U2. Since

t−
( u0 + tV

‖u0 + tV ‖

) u0 + tV

‖u0 + tV ‖
∈ N ,

we have
0 < t−

( u0 + tV

‖u0 + tV ‖

)
< C0

uniformly for t ∈ R.
On the other hand, there exists t̃ > 0 such that

‖u0 + tU‖ ≥ t‖V ‖ − ‖u0‖ ≥ C0, t ≥ t̃.
So that we can fix a t0 > 0 such that ‖u0 + t0V ‖ > t−( u0+t0V

‖u0+t0V ‖ ). Thus, u0 + t0V ∈
U2. Combining this and the fact u0 ∈ U1, we know that

u0 + t1V ∈ Λ−,

for some 0 < t1 < t0. Consequently, by Remark 3.3, we have

j1 = inf
Λ−

J(u) ≤ max
0≤t≤t0

J(u0 + tV ) < j0 +
p− 1

2p
S

p
p−1
α,p .

Next, we show that j1 is a critical value of J and satisfies j1 > j0. Similarly
to the proof of Proposition 4.4, we apply Ekeland’s variational principle and get a
minimizing sequence {un} ⊂ N− such that

J(un) < j1 +
1
n
,

J(w) ≥ J(un)− 1
n
‖u− w‖, w ∈ N−.

So that we have

j1 + 1 > J(un) =
1
2
‖un‖2 −

1
2p
B̃(un)−

∫
RN

h(x)un dx

≥
(1

2
− 1

2p

)
‖un‖2 −

(
1− 1

2p

)
|h| 2Np

2N(p−1)+α
d 2Np

2N−α
‖un‖

which applies ‖un‖ has a upper bound. Moreover, from {un} ⊂ N−, we know that

‖un‖2 ≤ (2p− 1)
‖un‖p

Spα,p
.

Thus, ‖un‖ has a uniform positive lower bound. Then, analogously to the proof of
Proposition 4.4, we know that

J(un)→ j1, J ′(un)→ 0 in H−1.



EJDE-2018/172 NONHOMOGENEOUS CHOQUARD EQUATIONS 25

From Proposition 4.5 and j1 < j0 + p−1
2p S

p
p−1
α,p , we can conclude that there exists

a subsequence of {un} such that un → u1 strongly in H1(RN ). Therefore u1 is a
critical point of J and J(u1) = j1. Noting that N− is closed, we have u1 ∈ N−.
To show j1 > j0, arguing indirectly, we assume j1 = j0. Thus by Remark 3.3 we
have ∫

RN
h(x)u1dx > 0 and u1 ∈ N+,

which leads to a contradiction.
Finally, we consider the case h > 0. Applying Lemma 4.3 to u1 and |u1|, we

know that there exist a η−(|u1|) such that η−(|u1|)|u1| ∈ N−. Moreover,

η−(|u1|) ≥ η0(|u1|) = η0(u1) =
[ Ã(u1)

(p− 1)B̃(u1)

] 1
p−2

Thus both in the case
∫

RN h(x)u dx > 0 and
∫

RN h(x)u dx ≤ 0, we can deduce that

j1 = J(u1) ≥ J(η−(u1)u1) ≥ J(η−(|u1|)|u1|) = η0(u1) ≥ j1.

Therefore,
∫

RN h(x)u1dx =
∫

RN h(x)|u1|dx, which implies u1 ≥ 0. By the maximum
principle we get u1 > 0. The proof is complete. �
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