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MINIMAL WAVE SPEED ON A DIFFUSIVE SIR MODEL WITH
NONLOCAL DELAYS

WEI-JIAN BO, GUO LIN, BEN XIONG

Abstract. This article concerns the minimal wave speed of a diffusive SIR
model with nonlocal delays, in which the dynamics of disease has no positive

outbreak threshold. By constructing a pair of super and sub-solutions, we

establish the existence of traveling wave solutions with the minimal wave speed.

1. Introduction

The geographic spread of epidemics is less well understood and much less well
studied than the temporal development and control of diseases and epidemics [16,
Chapter 13]. Since Kermack and McKendrick [10], many epidemic systems have
been proposed to model the evolutionary process of disease, which includes the
so-called SIS model, SIR model, SEIR model and so on. Moreover, there are also
some models involving spatial migration of individuals, see Rass and Radcliffe [18]
and references cited therein. In particular, the threshold dynamics of these models
has been widely studied, we refer to Anderson and May [1], Anderson et al. [2],
Brauer and Castillo-Chavez [3], Draief and Massoulie [6], Hethcote [8].

In the literature, the traveling wave solutions of epidemic models have been
studied since they can characterize several important features of spatial propagation
of the epidemic. For example, constant wave speeds of traveling wave solutions
could model the almost fixed spreading speeds of the epidemic, see Murray [16,
pp. 668, pp. 675] for two cases. Moreover, the minimal wave speed could reflect
the speed at which the epidemic spreads (see Diekmann [4, 5]). Partly because of
the fact that many epidemic models can not generate monotone semiflows, their
dynamical behavior is very plentiful, we may refer to the books mentioned above.
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In this article, we study the minimal wave speed of traveling wave solutions of
the following diffusive SIR model with nonlocal delays [11, 21, 22],

∂S(x, t)
∂t

= d1∆S(x, t)−
βS(x, t)

∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

S(x, t) +
∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

,

∂I(x, t)
∂t

= d2∆I(x, t) +
βS(x, t)

∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

S(x, t) +
∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

− γI(x, t),

∂R(x, t)
∂t

= d3∆R(x, t) + γI(x, t),

(1.1)

in which x ∈ R, t > 0. Here di > 0, i = 1, 2, 3, denote diffusion rates of the sus-
ceptible individuals S, the infected individuals I and the removed individuals R,
respectively. In addition, β > 0 is the transmission coefficient, γ > 0 is the recov-
ery/remove rate and J(y, s) satisfies proper integrable and measurable conditions
describing the interaction between the infected individuals at an earlier time t− s
at location y and susceptible individuals at location x at the present time t (see
Ruan [19]).

Observing that R(x, t) does not appear in the equations of S(x, t), I(x, t), and
Li et al. [11, Section 5] have discussed the properties of R(x, t) by S(x, t), I(x, t),
then it suffices to investigate the equations on S, I in (1.1); that is,

∂S(x, t)
∂t

= d1∆S(x, t)−
βS(x, t)

∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

S(x, t) +
∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

,

∂I(x, t)
∂t

= d2∆I(x, t) +
βS(x, t)

∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

S(x, t) +
∫∞
0

∫
R J(y, s)I(x− y, t− s) dy ds

− γI(x, t).

(1.2)

Hereafter, a traveling wave solution of (1.2) is a special translation invariant solution
taking the form

S(x, t) = S(ξ), I(x, t) = I(ξ), ξ = x+ ct ∈ R,

in which c > 0 is the wave speed at which the wave profile (S, I) propagates in the
whole R. If we consider the traveling wave solution of (1.2), then for all ξ ∈ R, one
has

cS′(ξ) = d1S
′′(ξ)− βS(ξ)(J ∗ I)(ξ)

S(ξ) + (J ∗ I)(ξ)
,

cI ′(ξ) = d2I
′′(ξ) +

βS(ξ)(J ∗ I)(ξ)
S(ξ) + (J ∗ I)(ξ)

− γI(ξ)
(1.3)

with

(J ∗ I)(ξ) =
∫ ∞

0

∫
R
J(y, s)I(ξ − y − cs) dy ds.

Moreover, to describe the evolutionary phenomenon that the initial susceptible
group admits a constant density S0 > 0 while all individuals eventually become the
removed, we shall investigate (1.3) with the following asymptotic behavior

lim
ξ→−∞

S(ξ) =: S(−∞) = S0, lim
ξ→∞

S(ξ) =: S(∞) = 0,

lim
ξ→−∞

I(ξ) =: I(−∞) = 0, lim
ξ→∞

I(ξ) =: I(∞) = 0.
(1.4)
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Under proper convergence conditions clarified later, let c∗ be the smallest con-
stant such that c ≥ c∗ implies

d2λ
2 − cλ+ β

∫ ∞
0

∫
R
J(y, s)eλ(y−cs) dy ds− γ = 0

admitting a positive root. In Li et al. [11], it has been proven that (1.3) has a
nontrivial positive solution satisfying (1.4) if c > c∗ and β/γ > 1, while 0 < c < c∗

and β/γ > 1 or β/γ < 1 implies the nonexistence of such a solution. Wang et
al. [21] obtained a similar conclusion if the nonlocal delays vanish. Very recently,
Li and Yang [12] studied the model with nonlocal dispersal version in [22, 21].
However, these results do not answer the existence or nonexistence of traveling
wave solutions if c = c∗. The purpose of this paper is to complete these results on
the minimal wave speed c = c∗.

In light of the ideas in [7, 14, 23], by constructing super and sub-solutions and
applying Schauder fixed point theorem, we confirm the existence of nontrivial pos-
itive solutions of (1.3) with (1.4) if c = c∗. This extends the results in [11, 21], and
indicates that c∗ is the true minimal wave speed. Thus, we can obtain some evident
control strategies of diseases and epidemics, e.g., reducing the movement ability of
infected individuals and improving the recovery ratio. Furthermore, we also find
different decay estimations, namely, I(ξ) decays exponentially as ξ → −∞ if c > c∗

[11], while c = c∗ implies different decay behavior.

2. Preliminaries

In this article, we discuss the existence of traveling wave solutions of (1.2) when
the kernel function satisfies the following assumptions:

(A1) J(y, s) = J(−y, s) ≥ 0, y ∈ R, s ≥ 0,
∫∞
0

∫
R J(y, s) dy ds = 1;

(A2) for each c > 0, there exists λc ≤ ∞ such that∫ ∞
0

∫
R
J(y, s)eλ(y−cs) dy ds <∞∀λ ∈ (0, λc),

d2λ
2 − cλ+ β

∫ ∞
0

∫
R
J(y, s)eλ(y−cs) dy ds→∞, λ→ λc−;

(A3) for each c > 0, there exists µ > 0 such that∫ ∞
0

∫
R
J(y, s)eµ|y−cs| dy ds <∞,

∫ ∞
0

∫
R
J(y, s)eµs dy ds <∞;

(J4)
∫∞
0

∫
R sJ(y, s) dy ds <∞;

(A5) J(y, s) admits non-empty compact support with respect to y, namely, there
exists a positive number K > 0 such that J(y, s) ≡ 0 for all |y| ≥ K and
s ∈ (0,+∞).

For any λ > 0, c > 0, define

Λ(λ, c) := d2λ
2 − cλ+ β

∫ ∞
0

∫
R
J(y, s)eλ(y−cs) dy ds− γ.

The properties of Λ(λ, c) have been analyzed by Tian and Weng [20, Lemma 3.1],
which can be described by the following lemma.

Lemma 2.1. Assume that β > γ. Then there exists c∗ > 0 such that
(1) Λ(λ, c) = 0 has no real roots if c < c∗;
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(2) if c > c∗, then Λ(λ, c) = 0 has two positive real roots λ1(c), λ2(c) such that
Λ(λ, c) < 0, λ ∈ (λ1(c), λ2(c));

(3) if c = c∗, then Λ(λ, c) = 0 only admits a unique positive real root λ∗ and
Λ(λ, c∗) > 0 for all λ > 0 and λ 6= λ∗. In addition,

Λλ(λ∗, c∗) := 2d2λ
∗ − c∗ + β

∫ ∞
0

∫
R
J(y, s)(y − c∗s)eλ

∗(y−c∗s) dy ds = 0.

Lemma 2.2. Assume that β > γ. Further suppose that S+(ξ), S−(ξ), I+(ξ), I−(ξ)
are continuous functions such that

(i) 0 ≤ S−(ξ) ≤ S+(ξ) ≤ S0, 0 ≤ I−(ξ) ≤ I+(ξ) ≤ (βγ − 1)S0, ξ ∈ R;
(ii) they are twice differentiable except finite points T ⊂ R, and S′+(ξ), S′−(ξ),

I ′+(ξ), I ′−(ξ), S′′+(ξ), S′′−(ξ), I ′′+(ξ), I ′′−(ξ) are bounded for ξ ∈ R\T;
(iii) if ξ ∈ T, then the left and right derivatives satisfy S′+(ξ−) ≥ S′+(ξ+),

I ′+(ξ−) ≥ I ′+(ξ+), S′−(ξ−) ≤ S′−(ξ+), I ′−(ξ−) ≤ I ′−(ξ+);
(iv) if ξ ∈ R\T, then

cS′+(ξ) ≥ d1S
′′
+(ξ)− βS+(ξ)(J ∗ I−)(ξ)

S+(ξ) + (J ∗ I−)(ξ)
, (2.1)

cI ′+(ξ) ≥ d2I
′′
+(ξ) +

βS+(ξ)(J ∗ I+)(ξ)
S+(ξ) + (J ∗ I+)(ξ)

− γI+(ξ), (2.2)

cS′−(ξ) ≤ d1S
′′
−(ξ)− βS−(ξ)(J ∗ I+)(ξ)

S−(ξ) + (J ∗ I+)(ξ)
, (2.3)

cI ′−(ξ) ≤ d2I
′′
−(ξ) +

βS−(ξ)(J ∗ I−)(ξ)
S−(ξ) + (J ∗ I−)(ξ)

− γI−(ξ). (2.4)

Then (1.3) admits a positive solution (S, I) such that

S−(ξ) ≤ S(ξ) ≤ S+(ξ), I−(ξ) ≤ I(ξ) ≤ I+(ξ), ξ ∈ R.

Remark 2.3. In Lemma 2.2, (S+(ξ), I+(ξ)), (S−(ξ), I−(ξ)) are a pair of super and
sub-solutions of (1.3), see Li et al. [11].

Lemma 2.2 can be proved using the Schauder fixed point theorem, as done in
[11]. The same method was used earlier by Ma [15] for delayed quasimonotone sys-
tems, and by Huang and Zou [9] for delayed predator-prey systems (the monotone
conditions are similar to those in (1.3)). So we omit that proof here.

3. Main Results

In this section, we establish the existence of nontrivial positive solutions of (1.3)-
(1.4) with c = c∗ by Lemma 2.2. To this end, we first construct a pair of proper
super and sub-solutions of (1.3) with c = c∗ under assumptions (A1)–(A5). We
define the continuous functions

S+(ξ) = S0,

S−(ξ) =

{
S0 − peλ3ξ, ξ < ξ1,

εe−λ4ξ, ξ ≥ ξ1,

I+(ξ) =

{
−ρξeλ∗ξ, ξ < ξ2,(
β
γ − 1

)
S0, ξ ≥ ξ2,
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I−(ξ) =

{
−ρξeλ∗ξ − L(−ξ)1/2eλ∗ξ, ξ < ξ3,

0, ξ ≥ ξ3,

where

λ3 = min
{λ∗

2
,
c∗

2d1

}
, λ4 =

√
β/d1,

and ξ1, ξ2, ξ3 ∈ R, p > S0, ε > 0, ρ > 0, L > 0 will be clarified later.

Lemma 3.1. Assume that β > γ and (A1)–(A5) hold. Then (1.3) with c = c∗

admits a solution satisfying

S−(ξ) ≤ S(ξ) ≤ S+(ξ), I−(ξ) ≤ I(ξ) ≤ I+(ξ), ξ ∈ R.

Proof. Clearly, from Lemma 2.2 and the definitions of S+(ξ), S−(ξ), I+(ξ), I−(ξ),
it suffices to verify (2.1)-(2.4) by selecting proper parameters. Next we define

m :=
∫ ∞

0

∫
R
J(y, s)eλ

∗(y−c∗s) dy ds,

n :=
∫ ∞

0

∫
R
J(y, s)(y − c∗s)eλ

∗(y−c∗s) dy ds .

Then (A1)–(A5) indicate that m,n are bounded and

ξm+ n ≤ (ξ +K)m− c∗
∫ ∞

0

∫
R
J(y, s)seλ

∗(y−c∗s) dy ds,

and so ξm+ n < 0 for all ξ < −K. In addition, Lemma 2.2 indicates that

d2λ
∗2 − c∗λ∗ + βm− γ = 0, 2d2λ

∗ − c∗ + βn = 0.

Note that if u ≥ 0, v ≥ 0 with u+ v > 0, then
uv

u+ v
≤ min{u, v}.

Now, we verify (2.1)-(2.4) one by one.
(1) S+(ξ) = S0. Since S+(ξ) is positive and I−(ξ) is nonnegative, then (2.1) is

straightforward.
(2) Let ρ > 0 be a positive constant such that

sup
ξ∈R
{−ρξeλ

∗ξ} >
(β
γ
− 1
)
S0,

and ξ2, ξ
∗ be the only two negative real roots of −ρξeλ∗ξ =

(
β
γ − 1

)
S0. Denote by

ξ2 the smaller one, then there exists ρ > 0 large enough such that ξ∗ − ξ2 > K. To
illustrate that the parameters are admissible, we give Figure 1.

If ξ < ξ2, then I+(ξ) = −ρξeλ∗ξ, and it suffices to prove that

c∗I ′+(ξ) ≥ d2I
′′
+(ξ) + β(J ∗ I+)(ξ)− γI+(ξ). (3.1)

Note that

(J ∗ I+)(ξ) =
∫ ∞

0

∫
R
J(y, s)I+(ξ − y − c∗s) dy ds

≤
∫ ∞

0

∫ +∞

ξ−ξ∗−c∗s
J(y, s)I+(ξ − y − c∗s) dy ds

= −ρ
∫ ∞

0

∫
R
J(y, s)(ξ − y − c∗s)eλ

∗(ξ−y−c∗s) dy ds
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Figure 1. I+(ξ).

= −ρ
∫ ∞

0

∫
R
J(y, s)(ξ + y − c∗s)eλ

∗(ξ+y−c∗s) dy ds

= −ρξeλ
∗ξ

∫ ∞
0

∫
R
J(y, s)eλ

∗(y−c∗s) dy ds

− ρeλ
∗ξ

∫ ∞
0

∫
R
J(y, s)(y − c∗s)eλ

∗(y−c∗s) dy ds

= −ρξeλ
∗ξm− ρeλ

∗ξn .

Then (3.1) holds if

c∗I ′+(ξ) ≥ d2I
′′
+(ξ)− βρξeλ

∗ξm− βρeλ
∗ξn− γI+(ξ).

From the definition of I+(ξ), for any ξ < ξ2, direct calculations yield

I ′+(ξ) = −ρeλ
∗ξ(1 + λ∗ξ),

I ′′+(ξ) = −ρeλ
∗ξ(2λ∗ + (λ∗)2ξ).

It follows that

c∗I ′+(ξ)− d2I
′′
+(ξ) + βρξeλ

∗ξm+ βρeλ
∗ξn+ γI+(ξ)

= Λλ(λ∗, c∗)ρeλ
∗ξ + Λ(λ∗, c∗)ρξeλ

∗ξ = 0,

which implies (3.1). Furthermore, if ξ > ξ2, then

βS+(ξ)(J ∗ I+)(ξ)
S+(ξ) + (J ∗ I+)(ξ)

≤
βS0(βγ − 1)S0

S0 + (βγ − 1)S0

= γ(
β

γ
− 1)S0

such that (2.2) is also evident.
(3) For any ρ > 0 and ξ∗ < 0 given in (2), denote

p = S0e
λ3(K−ξ∗) + sup

ξ<0

−βρe(λ∗−λ3)ξ(ξm+ n)
c∗λ3 − d1λ2

3

.

Let ε > 0 such that
S0 − peλ3ξ = εe−λ4ξ

admits two negative real roots and we choose the larger one as ξ1, then ξ1 is
admissible and ξ1 ≤ ξ∗ −K, see Figure 2.
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Figure 2. S−(ξ) and S+(ξ).

If ξ < ξ1, then S−(ξ) = S0 − peλ3ξ > 0, and (2.3) is true once

c∗S′−(ξ) ≤ d1S
′′
−(ξ)− β(J ∗ I+)(ξ), ξ < ξ1.

Since ξ < ξ1 ≤ ξ∗ −K, it follows that

(J ∗ I+)(ξ) =
∫ ∞

0

∫
R
J(y, s)I+(ξ − y − c∗s) dy ds

≤
∫ ∞

0

∫ +∞

ξ−ξ∗−c∗s
J(y, s)I+(ξ − y − c∗s) dy ds

= −ρξeλ
∗ξm− ρeλ

∗ξn.

Thus, we only need to verify that

c∗S′−(ξ) ≤ d1S
′′
−(ξ) + βρξeλ

∗ξm+ βρeλ
∗ξn.

Based on direct calculations, (2.3) holds once

−c∗λ3pe
λ3ξ ≤ −d1λ

2
3pe

λ3ξ + βρξeλ
∗ξm+ βρeλ

∗ξn, ξ < ξ1,

which is true by the definition of p.
Now we verify (2.3) with ξ > ξ1; it suffices to confirm that

c∗S′−(ξ) ≤ d1S
′′
−(ξ)− βS−(ξ),

which is equivalent to

−c∗λ4εe
−λ4ξ ≤ d1λ

2
4εe
−λ4ξ − βεe−λ4ξ,

this is also evident by the definition of λ4.
(4) Finally, we verify (2.4). For ρ > 0 and ξ2 < 0 defined in (2), let L ≥ M1 ≥

ρ
√
−ξ2 such that

S−(ξ) ≥ S0/2, ξ < ξ3 := −
(L
ρ

)2 ≤ ξ2,
then ξ3 is well defined, see Figure 1.4.

Now we verify that I−(ξ) satisfies (2.4). Clearly, the definition of ξ3 implies that
I−(ξ) ≤ I+(ξ) for all ξ ∈ R. If ξ < ξ3, then

I−(ξ) = −ρξeλ
∗ξ − L(−ξ)1/2eλ

∗ξ ≤ −ρξeλ
∗ξ = I+(ξ)
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Figure 3. I−(ξ).

such that

(J ∗ I−)(ξ) =
∫ ∞

0

∫
R
J(y, s)I−(ξ − y − c∗s) dy ds

≤
∫ ∞

0

∫
R
J(y, s)I+(ξ − y − c∗s) dy ds

= −ρξeλ
∗ξm− ρeλ

∗ξn.

It follows that
βS−(ξ)(J ∗ I−)(ξ)
S−(ξ) + (J ∗ I−)(ξ)

− β(J ∗ I−)(ξ)

≥
β S0

2 (J ∗ I−)(ξ)
S0
2 + (J ∗ I−)(ξ)

− β(J ∗ I−)(ξ)

≥ −2β
S0

[(J ∗ I−)(ξ)]2

≥ −2βρ2

S0
e2λ

∗ξ(ξm+ n)2.

Hence, (2.4) is true provided that

c∗I ′−(ξ) ≤ d2I
′′
−(ξ) + β(J ∗ I−)(ξ)− γI−(ξ)− 2βρ2

S0
e2λ

∗ξ(ξm+ n)2.

For any ξ < ξ3, a direct calculation yields

I ′−(ξ) = I ′+(ξ) + Leλ
∗ξ
[1
2

(−ξ)−1/2 − λ∗(−ξ)1/2
]
,

I ′′−(ξ) = I ′′+(ξ) + Leλ
∗ξ
[1
4

(−ξ)−3/2 + λ∗(−ξ)−1/2 − (λ∗)2(−ξ)1/2
]
.

Since −ξ + y + c∗s ≥ 0 for any ξ < ξ3, |y| < K and s ≥ 0, applying the Taylor’s
Theorem, we have

[−ξ + (y + c∗s)]1/2

= (−ξ)1/2 +
1
2

(−ξ)−1/2(y + c∗s)− 1
8

[−ξ + θ(y + c∗s)]−3/2(y + c∗s)2

≤ (−ξ)1/2 +
1
2

(−ξ)−1/2(y + c∗s)
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with some θ ∈ (0, 1). This implies

(J ∗ I−)(ξ) =
∫ ∞

0

∫
R
J(y, s)I−(ξ − y − c∗s) dy ds

=
∫ ∞

0

∫ K

−K
J(y, s)I−(ξ − y − c∗s) dy ds

≥
∫ ∞

0

∫ K

−K
J(y, s)

[
− ρ(ξ − y − c∗s)eλ

∗(ξ−y−c∗s)

− L(−(ξ − y − c∗s))1/2eλ
∗(ξ−y−c∗s)

]
dy ds

≥ −ρ
∫ ∞

0

∫ K

−K
J(y, s)(ξ − y − c∗s)eλ

∗(ξ−y−c∗s) dy ds

− L
∫ ∞

0

∫ K

−K
J(y, s)

[
(−ξ)1/2 +

1
2

(−ξ)−1/2(y + c∗s)
]
eλ

∗(ξ−y−c∗s) dy ds

= −ρξeλ
∗ξm− ρeλ

∗ξn− L(−ξ)1/2eλ
∗ξm+

1
2
L(−ξ)−1/2eλ

∗ξn.

Therefore, (2.4) holds if

c∗I ′+(ξ) + Lc∗eλ
∗ξ
[1
2

(−ξ)−1/2 − λ∗(−ξ)1/2
]

≤ d2I
′′
+(ξ) + d2Le

λ∗ξ
[1
4

(−ξ)−3/2 + λ∗(−ξ)−1/2 − (λ∗)2(−ξ)1/2
]

− βρξeλ
∗ξm− βρeλ

∗ξn− βL(−ξ)1/2eλ
∗ξm+

β

2
L(−ξ)−1/2eλ

∗ξn

− γI+(ξ) + γL(−ξ)1/2eλ
∗ξ − 2βρ2

S0
e2λ

∗ξ(ξm+ n)2,

which is true provided that

d2Le
λ∗ξ 1

4
(−ξ)−3/2 − 2βρ2

S0
e2λ

∗ξ(ξm+ n)2 ≥ 0.

Taking

M2 := sup
ξ<0

8βρ2(ξm+ n)2(−ξ)3/2eλ∗ξ

d2S0
+ 1,

for any ξ < ξ3, (2.4) is satisfied with L := M1 + M2. When ξ > ξ3, it is straight-
forward to show (2.4). The proof is complete. �

Remark 3.2. We now show the logical sequence on the parameters in Lemma 3.1.
Choose ρ > 0 such that there are two negative constants ξ2 = ξ2(ρ) and ξ∗ = ξ∗(ρ).
Then we can select p = p(ξ∗, ρ) > S0 and ε = ε(p) > 0 such that ξ1 = ξ1(p, ε) exists.
For any ρ > 0, ξ2 < 0 given above, let L = L(ρ, ξ2) > 0 be a positive constant large
enough and ξ3 = −(L/ρ)2, then S+(ξ), S−(ξ), I+(ξ), I−(ξ) are well defined.

Theorem 3.3. Assume that β > γ and (A1)–(A5) hold. Then (1.3) with c = c∗

admits a nontrivial positive solution satisfying (1.4).

Proof. From Lemmas 2.2 and 3.1, (1.3) with c = c∗ has a nonnegative solution
(S, I) such that

0 ≤ S(ξ) ≤ S0, 0 ≤ I(ξ) ≤ β − γ
γ

S0, ξ ∈ R.
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Thanks to Li et al. [11, Theorem 2.5], in light of the strongly positivity of the
solution operator, the nonnegative solution (S, I) satisfies

0 < S(ξ) < S0, 0 < I(ξ) <
β − γ
γ

S0, ξ ∈ R.

Moreover, by following exactly the same arguments as that in Li et al. [11, Theorem
3.6], the asymptotic behavior (1.4) is obtained and we omit it here. The proof is
complete. �

Before ending this paper, we make the following remark by the invariant form
of traveling wave solutions.

Remark 3.4. In Li et al. [11], they proved that if c > c∗, then the system admits a
positive solution such that I(ξ) ∼ Aeλ1(c)ξ, ξ → −∞ for any given constant A > 0.
Our results imply that (1.3) with c = c∗ has a solution satisfying

I(ξ) ∼ −Cξeλ
∗ξ, ξ → −∞,

where C > 0 is any given constant.

The model here admits the similar monotonicity of predator-prey system. Re-
cently, Pan [17] estimated the spreading speed of a predator-prey system [13], from
which it is possible to study the asymptotic spreading of this model. But the limit
behavior of this model is different from that in [13], so some new techniques are
needed, and we shall further study this question.
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