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EPIDEMIC REACTION-DIFFUSION SYSTEMS WITH TWO
TYPES OF BOUNDARY CONDITIONS

KEHUA LI, JIEMEI LI, WEI WANG

Abstract. We investigate an epidemic reaction-diffusion system with two dif-

ferent types of boundary conditions. For the problem with the Neumann
boundary condition, the global dynamics is fully determined by the basic re-

production number R0. For the problem with the free boundary condition,
the disease will vanish if the basic reproduction number R0 < 1 or the initial

infected radius g0 is sufficiently small. Furthermore, it is shown that the dis-

ease will spread to the whole domain if R0 > 1 and the initial infected radius
g0 is suitably large. Main results reveal that besides the basic reproduction

number, the size of initial epidemic region and the diffusion rates of the disease

also have an important influence to the disease transmission.

1. Introduction and model derivation

Mathematical modeling has been shown to be an effective approach to study the
spread of infectious diseases as they can capture the main factors underlying the
transmission mechanisms and provide feasible control strategies for health agencies.
One of the simplest epidemic models is the Kermack-McKendrick model, which
can be divided the population into susceptible (S), infectious (I) and recovered
individuals (R) [15]. In recent years, mathematical analyses for epidemic models
have received wide attentions (see, e.g., [5, 7, 18, 19, 23, 25, 28, 30, 31, 33]).

In the classical SIR models, it is assumed that recovered individuals have gotten
permanent immunity. However, the acquired immunity may disappear and recov-
ered individuals will become susceptible after a period of time [24]. Moreover, for
some bacterial agent diseases, infected individuals may recover after some treat-
ments and go back directly to the susceptible class because of transient antibody
[24]. Li et al [23] proposed the following SIRS epidemic system with nonlinear re-
sponse function Sf(I) and transfer from the infected class to the susceptible class,
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which is governed by a set of ordinary differential equations

dS

dt
= Λ− µS − Sf(I) + γ1I + δR,

dI

dt
= Sf(I)− (µ+ γ1 + γ2 + α)I,

dR

dt
= γ2I − (µ+ δ)R,

(1.1)

where Λ > 0 is the recruitment rate of susceptible individuals, γ1 ≥ 0 denotes the
transfer rate from the infected class to the susceptible class, γ2 ≥ 0 represents the
transfer rate from the infected class to the recovered class, α ≥ 0 stands for the
disease-induced death rate, δ ≥ 0 is the immunity loss rate, and µ > 0 is the natural
death rate.

Li et al [23] obtained the global dynamics of system (1.1), which is determined
by the basic reproduction number

R0 =
Λβ

µ(µ+ γ1 + γ2 + α)
,

with LaSalle’s invariance principle and the Lyapunov direct method.
Most of epidemic systems are governed by a set of ordinary differential equations,

which only reflect the epidemiological process as the time changes. To closely match
the reality, we consider a SIRS epidemic reaction-diffusion system as follows

∂S(x, t)
∂t

= D∆S(x, t) + Λ− µS(x, t)− S(x, t)f(I(x, t))

+ γ1I(x, t) + δR(x, t), x ∈ Ω, t > 0,

∂I(x, t)
∂t

= D∆I(x, t) + S(x, t)f(I(x, t))− (µ+ γ1 + γ2 + α)I(x, t),

x ∈ Ω, t > 0,

∂R(x, t)
∂t

= D∆R(x, t) + γ2I(x, t)− (µ+ δ)R(x, t), x ∈ Ω, t > 0,

∂S

∂ν
=
∂I

∂ν
=
∂R

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) > 0, I(x, 0) = I0(x) > 0, R(x, 0) = R0(x) > 0, x ∈ Ω,

(1.2)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω. ν is the outward
normal to ∂Ω. D > 0 stands for the diffusion rate. To continue our study, we make
the same hypotheses on f as in [23]. Namely, f is a real locally Lipschitz function
on R+ = [0,+∞) satisfying the following assumptions

(A1) f(0) = 0, f(I) > 0, and f ′(I) ≥ 0 for I > 0.
(A2) f(I)

I is continuous and nonincreasing for I > 0, and limI→0+
f(I)
I exists,

denoted by β > 0.
(A3) f ′′(I) ≤ 0 for I > 0.
In recent years, the free boundary problems have received tremendous attentions

(see, e.g., [4, 5, 7, 8, 10, 11, 12, 14, 17, 22, 26, 29, 32]). To make a better under-
standing for the dynamics of spatial transmission of the disease, the free boundary
condition is introduced to epidemic systems. Kim et al [16] investigated a reaction-
diffusion SIR epidemic system with the free boundary condition and derived some
sufficient conditions for the disease vanishing or spreading. Huang and Wang [13]
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studied a diffusive SIR system with the free boundary condition. The dynamical be-
havior of the susceptible population is obtained. A SIS reaction-diffusion-advection
system with the free boundary condition was proposed to discuss the persistence
and eradication of infectious disease [9]. Cao et al [6] explored a free boundary
problem of a diffusive SIRS system with nonlinear incidence. The estimate of the
expanding speed was discussed.

Motivated by the works mentioned above, we make further investigation for a
SIRS epidemic system with nonlinear incidence and the free boundary condition.
For the sake of simplicity, we assume that the environment is radially symmetric.
We study the behavior of the positive solution (S(z, t), I(z, t), R(z, t); g(t)) with
z = |x| and x ∈ Rn for the following problem

∂S(z, t)
∂t

= D∆S(z, t) + Λ− µS(z, t)− S(z, t)f(I(z, t))

+ γ1I(z, t) + δR(z, t), z > 0, t > 0,

∂I(z, t)
∂t

= D∆I(z, t) + S(z, t)f(I(z, t))− (µ+ γ1

+ γ2 + α)I(z, t), 0 < z < g(t), t > 0,

∂R(z, t)
∂t

= D∆R(z, t) + γ2I(z, t)− (µ+ δ)R(z, t), 0 < z < g(t), t > 0,

Sz(0, t) = Iz(0, t) = Rz(0, t) = 0, t > 0,

I(z, t) = R(z, t) = 0, z ≥ g(t), t > 0,

g′(t) = −µ1Iz(g(t), t), g(0) = g0 > 0, t > 0,

S(z, 0) = S0(z), I(z, 0) = I0(z), R(z, 0) = R0(z), z ≥ 0,

(1.3)

where g0, D and µ1 are positive constants. From the biological perspective, the
Neumann boundary condition at x = 0 indicates that the left boundary is fixed,
with the population confined to its right. Beyond the free boundary z = g(t), there
only exist susceptible individuals. The equation g′(t) = −µ1Iz(g(t), t) is a special
case of the well-known Stefan condition, which has been proposed in [17]. [0, g0] is
the initial epidemic region where infective individuals I and removed individuals R
exist. The constant µ1 denotes the ratio of expanding speed of the free boundary.
The initial functions S0, I0 and R0 are nonnegative and satisfy

S0 ∈ C2([0,+∞)), I0, R0 ∈ C2([0, g0]),

I0(z) = R0(z) = 0, z ∈ [g0,+∞), I0(z) > 0, z ∈ [0, g0).
(1.4)

The organization of this article is as follows. In Section 2, we study the Neumann
boundary problem in a bounded domain. We first show that the solution of system
(1.2) is positive and bounded, then study the global dynamics of steady states for
system (1.2). Main results reveal that ifR0 < 1, then the disease-free steady state is
globally asymptotically stable; while if R0 > 1, the endemic steady state is globally
asymptotically stable. In Section 3, we discuss the free boundary problem. We
firstly investigate the existence and uniqueness of the solution to system (1.3). We
derive some sufficient conditions for the disease vanishing or spreading. In Section
4, we perform some numerical simulations to illustrate theoretical results. At last,
we give discussions and conclusions in Section 5.
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2. Fixed domain

In this section, we aim to study system (1.2) with the Neumann boundary con-
dition in a bounded domain. The well-posedness of the solutions for system (1.2) is
discussed in Theorem 2.1. Furthermore, the global asymptotic stabilities of steady
states of system (1.2) are explored in Theorems 2.2 and 2.3.

2.1. Well-posedness of solutions. We denote the positive cone in R3 by

R3
+ = {φ = (S, I,R)T ∈ R3 : S ≥ 0, I ≥ 0, R ≥ 0}.

Take p > 3 so that the space W 1,p(Ω,R3) is continuously embedded in the
continuous function space C(Ω,R3) [1]. We consider the well-posedness of the
solutions in the phase space

X+ = {φ ∈W 1,p(Ω,R3) : φ(Ω) ⊂ R3
+ and ∂φ/∂ν = 0 on ∂Ω}.

We rewrite system (1.2) as

φt + S(φ)φ = F(x, φ), x ∈ φ, t > 0,
Bφ = 0, x ∈ ∂Ω, t > 0,

where S(e)φ = −
∑
i,k ∂i(ai,k(e)∂kφ), Bφ = ∂φ

∂ν , ai,k = a(e)δi,k, 1 ≤ i, k ≤ 3, and

a(e) =

D 0 0
0 D 0
0 0 D

 ,

for e(e1, e2, e3) ∈ R3
+. Here δi,k is the Kronecker delta function, and

F(x, φ) =
(

Λ−µS−Sf(I)+γ1I+δR, Sf(I)−(µ+γ1 +γ2 +α)I, γ2I−(µ+δ)R
)T
,

for φ = (S, I,R). Clearly, a(e) ∈ C2(R3
+, L)(R3

+)), where we identified L(R3
+) with

the space of 3× 3 real matrices.

Theorem 2.1. For every initial value (S0, I0, R0), system (1.2) admits a unique
nonnegative solution defined on [0,+∞)× Ω, such that

(S, I,R) ∈ C ([0,+∞),X+) ∩ C2,1
(
[0,+∞)× Ω,R3

)
.

Proof. In view of [2, Theorem 1] or [3, Theorems 14.4 and 14.6], system (1.2) admits
a unique nonnegative classical solution (S, I,R) defined on [0, %0)× Ω such that

(S, I,R) ∈ C ([0, %0),X+) ∩ C2,1
(
[0, %0)× Ω,R3

)
,

where %0 > 0 is the maximal interval of existence of the solution for system (1.2).
According to [3, Theorem 15.1 ], the solution of system (1.2) is nonnegative. Mo-
tivated by the idea developed in [2, Theorem 5.2], we need to show that any non-
negative solution (S(x, t), I(x, t), R(x, t)) of system (1.2) is bounded.

Denote N = S + I +R, from system (1.2), we get that
∂N

∂t
≤ D∆N + Λ− µN.

By [21, Lemma 1], Λ
µ is the globally attractive steady state for the reaction-diffusion

equations
∂N(x, t)

∂t
= D∆N + Λ− µN, x ∈ Ω, t > 0,
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∂N

∂ν
= 0, x ∈ ∂Ω, t > 0.

In view of the parabolic comparison theorem ([27, Theorem 7.3.4]), S + I +R is
bounded. Since S, I, and R are nonnegative, S(x, t), I(x, t), and R(x, t) of system
(1.2) are bounded. That is, %0 = +∞. By [2, Theorem 5.2], the global existence of
the solution can be obtained. The proof is complete. �

2.2. Global dynamics for system (1.2). In this subsection, we investigate the
global dynamics of steady states of system (1.2) by constructing suitable Lyapunov
functions. Firstly, we obtain that the state space Π is positively invariant for system
(1.2)

Π :=
{

(S, I,R)T : S(x, ·) + I(x, ·) +R(x, ·) ≤ Λ
µ
, for x ∈ Ω

}
.

Obviously, system (1.2) always has the disease-free steady state E0(Λ
µ , 0, 0). IfR0 >

1, from [23], system (1.2) has a unique endemic steady state E∗ = (S∗, I∗, R∗),
where

S∗ =
(µ+ γ1 + γ2 + α)I∗

f(I∗)
, R∗ =

γ2I
∗

µ+ δ
.

Here I∗ is a unique positive zero of H defined by

H(I) = µ(µ+ γ1 + γ2 + α)
I

f(I)
+
(
µ+ α+

µγ2

µ+ δ

)
I − Λ.

Theorem 2.2. If R0 < 1, the disease-free steady state E0 of system (1.2) is globally
asymptotically stable in Π.

Proof. We define the Lyapunov function

V0 =
∫

Ω

I(x, t)dx.

From (A2), we obtain that f(I) ≤ βI, for I ∈ R+. By the divergence theorem and
the Neumann boundary condition, we obtain

D

∫
Ω

∆Idx = 0.

The derivative of V0 along solutions of system (1.2) is

∂V0

∂t
= D

∫
Ω

∆Idx+
∫

Ω

[S(x, t)f(I(x, t))− (µ+ γ1 + γ2 + α)I(x, t)]dx

≤
∫

Ω

[βS(x, t)I(x, t)− (µ+ γ1 + γ2 + α)I(x, t)]dx

≤
∫

Ω

(Λβ
µ
− (µ+ γ1 + γ2 + α)

)
I(x, t)dx

= (µ+ γ1 + γ2 + α)
∫

Ω

(R0 − 1)I(x, t)dx.

We have ∂V0
∂t ≤ 0, and the equality holds if and only if I ≡ 0. By LaSalle’s invariance

principle, the disease-free steady state E0 is globally asymptotically stable ifR0 < 1.
The proof is complete. �
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Next we study the global asymptotic stability of the endemic steady state E∗.
We study the following equivalent system constituted by I, R, and N = S+ I +R,
∂I(x, t)
∂t

= D∆I + (N − I −R)f(I)− (µ+ γ1 + γ2 + α)I, x ∈ Ω, t > 0,

∂R(x, t)
∂t

= D∆R+ γ2I − (µ+ δ)R, x ∈ Ω, t > 0,

∂N(x, t)
∂t

= D∆N + Λ− µN − αI, x ∈ Ω, t > 0,

∂I

∂ν
=
∂R

∂ν
=
∂N

∂ν
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = I0(x) > 0, R(x, 0) = R0(x) > 0,

N(x, 0) = N0(x) > 0, x ∈ Ω.

(2.1)

If R0 > 1, this has a unique endemic steady state E
∗

= (I∗, R∗, N∗). Hence,

∂I(x, t)
∂t

= D∆I(x, t) + f(I){N − I −R− (µ+ γ1 + γ2 + α)
I

f(I)
}

− f(I){[N∗ − I∗ −R∗ − (µ+ γ1 + γ2 + α)
I∗

f(I∗)
]}.

We rewrite system (2.1) as

∂I(x, t)
∂t

= D∆I(x, t) + f(I) {(N −N∗)− (I − I∗)− (R−R∗)}

− f(I)(µ+ γ1 + γ2 + α)[
I

f(I)
− I∗

f(I∗)
], x ∈ Ω, t > 0,

∂R(x, t)
∂t

= D∆R(x, t) + γ2I(x, t)− (µ+ δ)R(x, t), x ∈ Ω, t > 0,

∂N(x, t)
∂t

= D∆N(x, t) + Λ− µN(x, t)− αI(x, t), x ∈ Ω, t > 0,

∂I

∂ν
=
∂R

∂ν
=
∂N

∂ν
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = I0(x) > 0, R(x, 0) = R0(x) > 0,

N(x, 0) = N0(x) > 0, x ∈ Ω.

(2.2)

Theorem 2.3. If R0 > 1, then the endemic steady state E
∗

of system (2.2) is
globally asymptotically stable in Π.

Proof. We define the Lyapunov function

V1 =
∫

Ω

∫ I

I∗

u− I∗

f(u)
dudx+

1
2γ2

∫
Ω

(R−R∗)2dx+
1

2α

∫
Ω

(N −N∗)2dx.

Then we have

D

∫
Ω

I − I∗

f(I)
∆Idx = −D

∫
Ω

[f(I)− If ′(I)]‖∇I‖2

f2(I)
dx−DI∗

∫
Ω

f ′(I)‖∇I‖2

f2(I)
dx,

D

γ2

∫
Ω

(R−R∗)∆Rdx = −D
γ2

∫
Ω

‖∇R‖2dx,

D

α

∫
Ω

(N −N∗)∆Ndx = −D
α

∫
Ω

‖∇N‖2dx.
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The derivative of V1 along solutions of system (2.2) is

∂V1

∂t
=
∫

Ω

I − I∗

f(I)
∂I

∂t
dx+

1
γ2

∫
Ω

(R−R∗)∂R
∂t
dx+

1
α

∫
Ω

(N −N∗)∂N
∂t

dx

= −D
∫

Ω

[f(I)− If ′(I)]‖∇I‖2

f2(I)
dx−DI∗

∫
Ω

f ′(I)‖∇I‖2

f2(I)
dx

− D

γ2

∫
Ω

‖∇R‖2dx− D

α

∫
Ω

‖∇N‖2dx

+
∫

Ω

I − I∗

f(I)
f(I){(N −N∗)− (I − I∗)− (R−R∗)}dx

−
∫

Ω

I − I∗

f(I)
f(I)

{
(µ+ γ1 + γ2 + α)[

I

f(I)
− I∗

f(I∗)
]
}
dx

+
∫

Ω

R−R∗

γ2
[γ2(I − I∗)− (µ+ δ)(R−R∗)]dx

+
∫

Ω

N −N∗

α
[−µ(N −N∗)− α(I − I∗)]dx

= −D
∫

Ω

[f(I)− If ′(I)]‖∇I‖2

f2(I)
dx−DI∗

∫
Ω

f ′(I)‖∇I‖2

f2(I)
dx

− D

γ2

∫
Ω

‖∇R‖2dx− D

α

∫
Ω

‖∇N‖2dx

−
∫

Ω

(I − I∗)2dx− (µ+ γ1 + γ2 + α)
∫

Ω

(I − I∗)[ I

f(I)
− I∗

f(I∗)
]dx

− µ+ δ

γ2

∫
Ω

(R−R∗)2dx− µ

α

∫
Ω

(N −N∗)2dx.

Thus, ∂V1
∂t ≤ 0, and the equality holds if and only if S ≡ S∗, I ≡ I∗, and R ≡ R∗.

By LaSalle’s invariance principle, the endemic steady state E
∗

is globally attractive
if R0 > 1. The proof is complete. �

From Theorem 2.3, we immediately obtain the following corollary.

Corollary 2.4. If R0 > 1, then the endemic steady state E∗ of system (1.2) is
globally asymptotically stable in Π.

3. Free boundary problem

In this section, we study the free boundary problem of system (1.3). Let g∞ :=
limt→∞ g(t), then g∞ ∈ (0,+∞]. If g∞ <∞ and limt→∞ ‖I(·, t)‖C[0,g(t)] = 0, then
the vanishing occurs. If g∞ = ∞, then the spreading occurs. In this case, the
moving domain (0, g(t)) becomes the whole domain (0,+∞).

3.1. Existence and uniqueness of solutions. We use a contraction mapping
theorem. The proof depends mainly on some existing arguments [5, 16, 17], with
some modifications. We sketch the details here for completeness.

Theorem 3.1. For any given (S0, I0, R0) satisfying (1.4) and any ι ∈ (0, 1), there
exists a T > 0 such that system (1.3) admits a unique bounded solution

(S, I,R; g) ∈ C1+ι, 1+ι2 (Z∞T )×
[
C1+ι, 1+ι2 (ZT )

]2 × C1+ ι
2 ([0, T ]);
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Furthermore,

‖S‖
C1+ι, 1+ι2 (Z∞T )

+ ‖I‖
C1+ι, 1+ι2 (ZT )

+ ‖R‖
C1+ι, 1+ι2 (ZT )

+ ‖g‖
C1+ ι

2 ([0,T ])
≤ K,

where

Z∞T = {(z, t) ∈ R2 : z ∈ [0,+∞), t ∈ [0, T ]},
ZT = {(z, t) ∈ R2 : z ∈ [0, g(t)], t ∈ [0, T ]}.

Here K and T only depend on g0, ι, ‖S0‖C2([0,+∞)), ‖I0‖C2([0,g0]), and ‖R0‖C2([0,g0]).

Proof. Let κ(s) be a function in C3[0,+∞) satisfying

κ(s) =

{
1, if |s− g0| < g0

8 ,

0, if |s− g0| > g0
2 ,

and |κ′(s)| < 5
g0

for all s.

We considering the transformation

(y, t)→ (x, t), where x = y + κ(|y|)
(
g(t)− g0y

|y|
)
, y ∈ Rn.

Then
(s, t)→ (z, t), where z = s+ κ(s)(g(t)− g0), 0 ≤ s <∞.

By adopting the method similar to [5], the free boundary z = g(t) can be changed
to the line s = g0. Direct calculations yield that

∂s

∂z
=

1
1 + κ′(s)(g(t)− g0)

:= A(g(t), s),

∂2s

∂z2
= − κ′′(s)(g(t)− g0)

[1 + κ′(s)(g(t)− g0)]3
:= B(g(t), s),

− 1
g(t)

∂s

∂t
=

κ(s)
1 + κ′(s)(g(t)− g0)

:= C(g(t), s).

We set

S(z, t) = S(s+ κ(s)(g(t)− g0), t) := m(s, t),

I(z, t) = I(s+ κ(s)(g(t)− g0), t) := n(s, t),

R(z, t) = R(s+ κ(s)(g(t)− g0), t) := j(s, t).

We rewrite system (1.3) as

mt −AD∆sm− (BD + g′C)ms = Λ− µm−mf(n)− γ1n+ δj, s > 0, t > 0,

nt −AD∆sn− (BD + g′C)ns = mf(n)− (µ+ γ1 + γ2 + α)n, 0 < s < g0, t > 0,

jt −AD∆sj − (BD + g′C)js = γ2n− (µ+ δ)j, 0 < s < g0, t > 0,

ms(0, t) = ns(0, t) = js(0, t) = 0, t > 0,

n(s, t) = j(s, t) = 0, s ≥ g0, t > 0,

g′(t) = −µ1ns(g0, t), g(0) = g0 > 0, t > 0,

m(s, 0) = m0(s), n(s, 0) = n0(s), j(s, 0) = j0(s), s ≥ 0,

where m0 = S0, n0 = I0, and j0 = R0.
We denote g∗ = −µ1n

′
0(g0), and for 0 < T ≤ g0

8(1+g∗) , we set

HT =
{
g ∈ C1[0, T ] : g(0) = g0, g

′(0) = g∗, ‖g′ − g∗‖C([0,T ]) ≤ 1
}
,

MT =
{
m ∈ C([0,+∞)× [0, T ]) : m(s, 0) = m0(s), ‖m−m0‖L∞([0,+∞)×[0,T ]) ≤ 1

}
,
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NT =
{
n ∈ C([0,+∞)× [0, T ]) : n(s, 0) ≡ 0 for s ≥ g0, 0 ≤ t ≤ T,

n(s, 0) = n0(s), for 0 ≤ s ≤ g0, ‖n− n0‖L∞([0,+∞)×[0,T ]) ≤ 1
}
,

JT =
{
j ∈ C([0,+∞)× [0, T ]) : j(s, 0) ≡ 0 for s ≥ g0, 0 ≤ t ≤ T,

j(s, 0) = j0(s), for 0 ≤ s ≤ g0, ‖j − j0‖L∞([0,+∞)×[0,T ]) ≤ 1
}
.

Since g1, g2 ∈ HT and g1(0) = g2(0) = g0, one gets

‖g1 − g2‖C([0,T ]) ≤ T‖g′1 − g′2‖C([0,T ]).

ΓT := MT ×NT × JT ×HT is a complete metric space with the metric

D
(
(m1, n1, j1; g1), (m2, n2, j2; g2)

)
= ‖m1 −m2‖L∞([0,+∞)×[0,T ]) + ‖n1 − n2‖L∞([0,+∞)×[0,T ])

+ ‖j1 − j2‖L∞([0,+∞)×[0,T ]) + ‖g′1 − g′2‖C([0,T ]).

By adopting standard Lp theory and the Sobolev embedding theorem [20], for
(m,n, j; g) ∈ ΓT , the initial boundary value problem

m̃t −AD∆sm̃− (BD + g′C)m̃s = Λ− µm−mf(n)− γ1n+ δj, s > 0, t > 0,

ñt −AD∆sñ− (BD + g′C)ñs = mf(n)− (µ+ γ1 + γ2 + α)n, 0 < s < g0, t > 0,

j̃t −AD∆sj̃ − (BD + g′C)j̃s = γ2n− (µ+ δ)j, 0 < s < g0, t > 0,

m̃s(0, t) = ñs(0, t) = j̃s(0, t) = 0, t > 0,

ñ(s, t) = j̃(s, t) = 0, s ≥ g0, t > 0,

m̃(s, 0) = m0(s), ñ(s, 0) = n0(s), j̃(s, 0) = j0(s), s ≥ 0,

has a unique solution

(m̃, ñ, j̃) ∈
[
C1+ι, 1+ι2 ([0,+∞)× [0, T ])

]3
,

and it satisfies

‖m̃‖
C1+ι, 1+ι2 ([0,+∞)×[0,T ])

≤ K1,

‖ñ‖
C1+ι, 1+ι2 ([0,g0]×[0,T ])

≤ K1,

‖j̃‖
C1+ι, 1+ι2 ([0,g0]×[0,T ])

≤ K1,

where K1 is a constant depending on ι, g0, ‖S0‖C2([0,+∞)), ‖I0‖C2([0,g0]), and
‖R0‖C2([0,g0]).

We define

g̃(t) = g0 − µ1

∫ t

0

ñs(g0, τ)dτ.

Then it follows that g̃′(t) = −µ1ñs(g0, t), g̃(0) = g0, and g̃′(0) = −µ1n
′
0(g0) = g∗.

Thus, g̃′(t) ∈ Cι/2([0, T ]) and

‖g̃′(t)‖Cι/2([0,T ]) ≤ K2 := µ1K1.

Next, we define a map F : ΓT → [C([0,+∞)× [0, T ])]3 × C1([0, T ]) by

F(m(s, t), n(s, t), j(s, t); g(t)) = (m̃(s, t), ñ(s, t), j̃(s, t); g̃(t)).

Then (m(s, t), n(s, t), j(s, t); g(t)) ∈ ΓT is a fixed point of F.
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From [7], there is a T > 0 such that F is a contraction mapping in ΓT . In view
of the contraction mapping theorem, there exists a (m(s, t), n(s, t), j(s, t); g(t)) in
ΓT such that

F(m(s, t), n(s, t), j(s, t); g(t)) = (m(s, t), n(s, t), j(s, t); g(t)).

Thus, (S(z, t), I(z, t), R(z, t); g(t)) is the solution of system (1.3). Further, by em-
ploying the Schauder estimates, h(t) ∈ C1+ ι

2 ([0, T ]), S ∈ C2+ι,1+ ι
2 ((0,+∞)×[0, T ])

and I,R ∈ C2+ι,1+ ι
2 ((0, g(t)) × [0, T ]). Hence, (S(z, t), I(z, t), R(z, t); g(t)) is the

classical solution of system (1.3). The proof is complete. �

To show the existence of solution for t > 0, we need to show the following lemma.
For mathematical considerations, we assume that γ1 = δ = 0.

Lemma 3.2. Let (S, I,R; g) be a bounded solution to system (1.3) defined on
t ∈ (0, T0) for some T0 ∈ (0,+∞]. Then there exist positive constants C1 and
C2 independent of T0 such that

0 < S(z, t) ≤ C1, for 0 ≤ z < +∞, t ∈ (0, T0),

0 < I(z, t), R(z, t) ≤ C2, for 0 ≤ z < g(t), t ∈ (0, T0).

Proof. By employing the strong maximum principle to system (1.3) in [0, g(t)] ×
[0, T0), S(z, t), I(z, t), R(z, t) > 0 for 0 ≤ z < g(t), 0 < t < T0. Note that S(z, t)
satisfies

St −D∆S = Λ− µS − Sf(I), z > 0, t > 0,

S(z, 0) = S0(z) ≥ 0, z ≥ 0.

Thus, S(z, t) ≤ C1 := max{‖S0(z)‖L∞(0,+∞),
Λ
µ }. Let H(z, t) = S(z, t) + I(z, t) +

R(z, t). Then

Ht −D∆H = Λ− µH − αI, 0 < z < g(t), t > 0,

H = S ≤ C1, z = g(t), t > 0,

H(z, 0) = S0(z) + I0(z) +R0(z), 0 ≤ z ≤ g0.

Hence, there exists a constant C2 > 0 such that

S + I +R ≤ C2, for (z, t) ∈ [0, g(t)]× [0, T0).

The proof is complete. �

Similar to the proof of [22, Lemma 3.2], we have the following result.

Lemma 3.3. There exists a positive constant C3 independent of T0 such that 0 <
g′(t) ≤ C3 for t ∈ (0, T0).

By adopting the similar arguments to [22, Theorem 3.3], combined with Lemmas
3.2 and 3.3, we obtain the following result.

Theorem 3.4. The solution of system (1.3) exists and is unique for t ∈ (0, ∞).
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3.2. Spreading and vanishing.

Theorem 3.5. If R0 < 1, then limt→∞ S(z, t) = Λ
µ , limt→∞ ‖I(·, t)‖C[0,g(t)] =

0, and limt→∞ ‖R(·, t)‖C[0,g(t)] = 0 uniformly in any bounded subset of [0,+∞).
Moreover, g∞ <∞.

Proof. From the comparison principle, S(z, t) ≤ S(t) for z ≥ 0 and t ∈ (0,+∞),
where

S(t) :=
Λ
µ

+
(
‖S0‖∞ −

Λ
µ

)
e−µt.

S(t) is the solution of the problem

dS

dt
= Λ− µS, t > 0; S(0) = ‖S0‖∞.

Since limt→∞ S(t) = Λ
µ , it follows that lim supt→∞ S(z, t) ≤ Λ

µ uniformly for z ∈
[0,+∞). From R0 < 1, there exists T0 such that S(z, t) ≤ Λ

µ
1+R0
2R0

in [0,+∞) ×
[T0,+∞). We find that I(z, t) satisfies

It −D∆I ≤
[βΛ
µ

1 +R0

2R0
− (µ+ γ2 + α)

]
I(z, t), 0 < z < g(t), t > T0,

I(z, t) = 0, Iz(0, t) = 0, z = g(t), t > 0,

I(z, T0) > 0, 0 ≤ z ≤ g(T0).

Because of
βΛ

µ(µ+ γ2 + α)
1 +R0

2R0
< 1,

we have limt→∞ ‖I(·, t)‖C[0,g(t)] = 0. From (1.3), we have limt→∞ ‖R(·, t)‖C[0,g(t)] =
0. Next, we show that g∞ < +∞. In fact,

d

dt

∫ g(t)

0

zn−1I(z, t)dt

=
∫ g(t)

0

zn−1It(z, t)dz + g′(t)gn−1(t)I(g(t), t)

=
∫ g(t)

0

Dzn−1∆Idz +
∫ g(t)

0

zn−1I(z, t)
[Sf(I)

I
− (µ+ γ2 + α)

]
dz

=
∫ g(t)

0

D(zn−1Iz(z, t))zdz +
∫ g(t)

0

zn−1I(z, t)
[Sf(I)

I
− (µ+ γ2 + α)

]
dz

= −D
µ1
gn−1g′(t) +

∫ g(t)

0

zn−1I(z, t)
[Sf(I)

I
− (µ+ γ2 + α)

]
dz.

Integrating from T0 to t (t > T0) gives∫ g(t)

0

zn−1I(z, t) =
∫ g(T0)

0

zn−1It(z, T0)dz +
D

nµ1
gn(T0)− D

nµ1
gn(t)

+
∫ t

T0

∫ g(s)

0

zn−1I(z, s)
[Sf(I)

I
− (µ+ γ2 + α)

]
dz ds.

Since 0 < S(z, t) ≤ Λ
µ

1+R0
2R0

for z ∈ [0, g(t)) and t ≥ T0, it follows that[Sf(I)
I
− (µ+ γ2 + α)

]
≤ βS − (µ+ γ2 + α) ≤ βΛ

µ

1 +R0

2R0
− (µ+ γ2 + α) ≤ 0.
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For t ≥ T0, it follows that∫ g(t)

0

zn−1I(z, t)dz ≤
∫ g(T0)

0

zn−1I(z, T0)dz+
D

nµ1
gn(T0)− D

nµ1
gn(t), for t ≥ T0.

Hence, g∞ <∞. From system (1.3), limt→∞ S(z, t) = Λ
µ uniformly in any bounded

subset of [0,+∞). The proof is complete. �

By using an argument analogous to [7] with some minor modifications, we can
obtain the following result.

Lemma 3.6. Suppose that T ∈ (0,+∞), g ∈ C1([0, T ]), S ∈ C([0,+∞)× [0, T ])∩
C2,1([0,+∞) × [0, T ]), I,R ∈ C(Z

∗
T ) ∩ C2,1(Z∗T ) with Z∗T = {(z, t) ∈ R2 : 0 < z <

g(t), 0 < t ≤ T}, and

St −D∆S ≥ Λ− µS, z > 0, 0 < t ≤ T ,
It −D∆I ≥ (βS − (µ+ γ2 + α))I, 0 < z < g(t), 0 < t ≤ T ,

Rt −D∆R ≥ γ2I − µR, 0 < z < g(t), 0 < t ≤ T ,
Sz(0, t) ≥ 0, Iz(0, t) ≥ 0, Rz(0, t) ≥ 0, 0 < t ≤ T ,

I(z, t) = R(z, t) = 0, z ≥ g(t), 0 < t ≤ T ,
g′(t) ≥ −µ1Iz(g(t), t), g(0) = g0 > 0, 0 < t ≤ T ,

S(z, 0) = S0(z), I(z, 0) = I0(z), R(z, 0) = R0(z), z ≥ 0.

Then the solution (S, I,R; g) of system (1.3) satisfies

S(z, t) ≤ S(z, t), g(t) ≤ g(t), for z ∈ (0,+∞) and t ∈ (0, T ],

I(z, t) ≤ I(z, t), R(z, t) ≤ R(z, t), for z ∈ (0, g(t)) and t ∈ (0, T ].

Theorem 3.7. If g∞ <∞, then limt→∞ S(z, t) = Λ
µ , limt→∞ ‖I(·, t)‖C[0,g(t)] = 0,

and limt→∞ ‖R(·, t)‖C[0,g(t)] = 0 uniformly in any bounded subset of [0,+∞).

Proof. By contradiction, we assume that lim supt→∞ ‖I(·, t)‖C[0,g(t)] = δ1 > 0.
There exists a sequence (zq, tq) in [0, g(t)) × (0,+∞) such that I(zq, tq) ≥ δ1

2 for
q ∈ N , and tq → +∞. Since 0 ≤ zq < g(t) < g∞ < ∞, there exists a subsequence
of {zn} converging to z0 ∈ [0, g∞). We assume zq → z0 as q →∞.

Define

Sq(z, t) = S(z, tq + t), Iq(z, t) = I(z, tq + t),

Rq(z, t) = R(z, tq + t), for (z, t) ∈ (0, g(tq + t))× (−tq,+∞).

From the parabolic regularity, {(Sq, Iq, Rq)} has a subsequence {(Sqi , Iqi , Rqi)} such
that (Sqi , Iqi , Rqi)→ (S̃, Ĩ, R̃) satisfies

S̃t −D∆S̃ = Λ− µS̃ − S̃f
(
Ĩ
)
, 0 < z < g∞, t ∈ (−∞,+∞),

Ĩt −D∆Ĩ = S̃f(Ĩ)− (µ+ γ2 + α)Ĩ , 0 < z < g∞, t ∈ (−∞,+∞),

R̃t −D∆R̃ = γ2Ĩ − µR̃, 0 < z < g∞, t ∈ (−∞,+∞).

Because Ĩ(z0, 0) ≥ δ1/2, we obtain Ĩ > 0 in [0, g∞)× (−∞,+∞). Noting that

S̃f(Ĩ)− (µ+ γ2 + α)Ĩ =
(
S̃
f(Ĩ)

Ĩ
− (µ+ γ2 + α)

)
Ĩ
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is bounded by Q1 := βmax
{
‖S0‖L∞ , Λ

µ

}
+ µ+ γ2 + α.

Further, Ĩz(g∞, 0) ≤ −σ0 for some σ0 > 0. For any 0 < $ < 1, there exists a
constant C̃, which depends on $, g0, ‖I0‖C1+$[0,g0], and g∞, such that

‖I0‖
C1+$, 1+$2 ([0,g(t))×[0,+∞))

+ ‖g‖
C1+$2 ([0,+∞))

≤ C̃.

Define

S =
g0z

g(t)
, m(s, t) = S(z, t), n(s, t) = I(z, t), j(s, t) = R(z, t).

It then follows that

It = nt −
g′(t)
g(t)

sns, Iz =
g0

g(t)
ns, ∆zI =

g2
0

g2(t)
∆sn.

Thus, n(s, t) satisfies

nt −D
g2

0

g2(t)
∆sn−

g′(t)
g(t)

sns = n
(f(n)m

n
− (µ+ γ2 + α)

)
, 0 < s < g0, t > 0,

ns(0, t) = n(g0, t) = 0, t > 0,

n(s, 0) = I0(s) ≥ 0, 0 ≤ s ≤ g0.

Lemmas 3.2 and 3.3 yield

‖n
(f(n)m

n
− (µ+ γ2 + α)

)
‖L∞ ≤ Q2.

By employing standard LP theory and Sobolev embedding theorem [20], one gets

‖n‖
C1+$, 1+$2 ([0,g0)×[0,+∞))

≤ Q3,

where Q3 is a positive constant depending on $, g0, Q1, Q2, and ‖I0‖C2[0,g0].
Since ‖g‖

C1+$2 ([0,+∞))
≤ C̃, it follows that g′(t) → 0 as t → ∞, namely,

Iz(g(tq), tq)→ 0 as tq → +∞. Furthermore, from ‖g‖
C1+$, 1+$2 ([0,g(t))×[0,+∞))

≤ C̃,

it follows that Iz(g(tq), tq + 0) = (Iq)z(g(tq), 0) → Ĩz(g∞, 0) as q → ∞, which is a
contradiction. Thus, limt→∞ ‖I(·, t)‖C[0,g(t)] = 0. Then limt→∞ ‖R(·, t)‖C[0,g(t)] =
0 and limt→∞ S(z, t) = Λ

µ uniformly in any bounded subset of [0,+∞). The proof
is complete. �

Theorem 3.8. If R0 > 1, g0 ≤ min
{√

D
16q0

,
√

D
16γ2

}
, and µ1 ≤ D

8M , then g∞ <

∞, where q0 = βC1 − µ− γ2 − α > 0 and M = 4
3 max{‖I0‖∞, ‖R0‖∞}.

Proof. We construct suitable upper solutions for system (1.3). As in [7], we define
upper solutions as follows:

S(z, t) = C1,

I = R =

{
Me−γtV

(
z
g(t)

)
, 0 ≤ z ≤ g(t),

0, z > g(t),

g(t) = 2g0

(
2− e−γt

)
, t ≥ 0, V(x) = 1− x2, 0 ≤ x ≤ 1,

where γ and M are positive constants to be determined. From R0 > 1, we get
k0 = βC1 − µ− γ2 − α > 0. A simple calculation yields

St −D∆S = 0 ≥ Λ− µS,



14 K. LI, J. LI, W. WANG EJDE-2018/170

It −D∆I −
(
βS − (µ+ γ2 + α)

)
I ≥Me−γt

[ D
8g2

0

− γ − k0

]
,

Rt −D∆R−
(
γ2I − µR

)
≥Me−γt

[ D
8g2

0

− γ − γ2

]
,

for 0 < z < g(t) and t > 0.
Direct calculations yield g′(t) = 2g0γe

−γt and−µ1Iz(g(t), t) = 2Mµ1g
−1(t)e−γt.

Hence, S(z, 0) ≥ S0(z), I(z, 0) =M
(
1− z2

4g20

)
≥ 3

4M, and R(z, 0) =M
(
1− z2

4g20

)
≥

3
4M for z ∈ [0, g0]. By choosing M = 4

3 max{‖I0‖∞, ‖R0‖∞}, γ = D
16g20

, µ1 ≤ D
8M ,

and g0 ≤ min{ D
16q0

, D
16γ2
}, one gets

St −D∆S ≥ Λ− µS − Sf(I), z > 0, t > 0,

It −D∆I ≥ Sf(I)− (µ+ γ2 + α)I, 0 < z < g(t), t > 0,

Rt −D∆R ≥ γ2I − µR, 0 < z < g(t), t > 0,

Sz(0, t) = Iz(0, t) = Rz(0, t) = 0, t > 0,

I(z, t) = R(z, t) = 0, z ≥ g(t), t > 0,

g′(t) = −µ1Iz(g(t), t), g(0) = 2g0 > g0 > 0, t > 0,

S(z, 0) ≥ S0(z), I(z, 0) ≥ I0(z), R(z, 0) ≥ R0(z), ; z ≥ 0.

From Lemma 3.6, g(t) ≤ g(t) for t > 0. Hence, g∞ ≤ limt→∞ g(t) = 4g0 <∞. The
proof is complete. �

Let λ1 represent the principle eigenvalue of the operator −∆ with respect to the
homogeneous Dirichlet boundary condition. We then have the following result.

Theorem 3.9. If R0 > 1, then g∞ = ∞ provided that g0 > g∗0 , where λ1(g∗0) =
µ+γ2+α

D (R0 − 1).

Proof. By a way of contradiction, we assume that g∞ < ∞. From Theorem 3.7,
limt→∞ ‖I(·, t)‖C[0,g(t)] = 0. Further, limt→∞ S(z, t) = Λ

µ uniformly in the bounded
subset. Consequently, for ε > 0, there exists T ∗ > 0 such that S(z, t) ≥ Λ

µ − ε for
r ∈ [0, g(t)), t ≥ T ∗. I(z, t) satisfies

It −D∆I ≥ I
(
f ′(ε)

(Λ
µ
− ε
)
− (µ+ γ2 + α)

)
, 0 < s < g0, t > T ∗,

Iz(0, t) = I(g0, t) = 0, t > T ∗,

I(z, T ∗) > 0, 0 ≤ z < g0.

I(z, t) has a lower solution I(z, t) satisfying

It −D∆I = I
(
f ′(ε)

(Λ
µ
− ε
)
− (µ+ γ2 + α)

)
, 0 < s < g0, t > T ∗,

Iz(0, t) = I(g0, t) = 0, t > T ∗,

I(z, T ∗) = I(z, T ∗), 0 ≤ z < g0.

From g0 > g∗0 , we can choose sufficiently small ε satisfying

f ′(ε)
(Λ
µ
− ε
)
− (µ+ γ2 + α) > Dλ1(g0).
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Hence, I is unbounded in (0, g0) × [T ∗,+∞), which leads to a contradiction. The
proof is complete. �

4. Numerical simulations

In this section, we perform some numerical simulations to illustrate the theoret-
ical results. For the homogeneous system, we choose parameters

Λ = 0.1, dU = 0.01, β = 0.3, γ1 = 1, δ = 1, γ2 = 2, α = 2. (4.1)

We choose the initial conditions as follows

S0(x) = 5
(

1 + 0.5 cos
( 9

10
π
))
, I0(x) = 5

(
1 + 0.8 sin

( 9
10
π
))
,

R0(x) = 5
(

1 + 0.6 sin
( 9

10
π
))
, x ∈ [0, 10],

and the Neumann boundary condition

∂S(x, t)
∂ν

=
∂I(x, t)
∂ν

=
∂R(x, t)
∂ν

= 0, t > 0, x ∈ ∂Ω.

Figure 1. E0 is globally asymptotically stable when D = 0.1.

For the case D = 0.1, by a simple computation, we get R0 < 1. In view of
Theorem 2.1, the disease-free steady state E0 of system (1.2) is globally asymp-
totically stable (see, Figure 1). Further, if Λ = 50 and the other parameters are
the same as (4.1), system (1.2) exists a unique endemic steady state. By Theorem
2.1, the endemic steady state of system (1.2) is globally asymptotically stable (see,
Figure 2). Similarly, for the case D = 10000, from Figures 3 and 4, the disease-free
steady state E0 of system (1.2) is globally asymptotically stable if R0 < 1, while
the endemic steady state of system (1.2) is globally asymptotically stable if R0 > 1.
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Figure 2. E∗ is globally asymptotically stable when D = 0.1.

Figure 3. E0 is globally asymptotically stable when D = 10000.

Next, we fix parameters as (4.1) and vary β(x) with the following form

β(x) = β(1 + 0.8 cosπx),
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Figure 4. E∗ is globally asymptotically stable when D = 10000.

Figure 5. E0 is globally asymptotically stable when D = 0.1.

where β is a positive constant. We choose the function β to explore the difference
for the dynamical behavior between the homogeneous system and the heterogeneous
system.
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Figure 6. The endemic steady state of system (1.2) converges to
a positive distribution which is not a constant when D = 0.1.

Figure 7. E0 is globally asymptotically stable when D = 10000.

Let D = 0.1. For β = 0.3 and the other parameters as (4.1), we have R0 < 1. In
Figure 5, we observe that the disease-free steady state E0 of system (1.2) is globally
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Figure 8. The endemic steady state of system (1.2) converges to
a positive constant distribution which is the homogeneous constant
steady state when D = 10000.

asymptotically stable. On the other hand, for Λ = 50 and the other parameters are
the same as (4.1), we get R0 > 1. Thus, from Theorem 2.1, the endemic steady
state of system (1.2) converges to a positive distribution which is not a constant
(see, Figure 6).

Let D = 10000. For β = 0.3 and the other parameters as (4.1), we get R0 < 1.
In fact, in Figure 7, the disease-free steady state E0 of system (1.2) is globally
asymptotically stable. On the other hand, for Λ = 50 and the other parameters are
the same as (4.1), it then follows that R0 > 1. From the numerical simulations, the
endemic steady state of system (1.2) converges to a positive constant distribution
which is the homogeneous constant steady state (see, Figure 8).

In biology, for the homogeneous system, we observe that the final state of the
infectious disease is independent on its dispersal rate, while for the heterogeneous
system, the final state of the infectious disease is dependent on its dispersal rate.

Discussions and conclusions

In this paper, we have proposed a SIRS epidemic reaction-diffusion system with
two different kinds of boundary conditions. For the problem with the Neumann
boundary condition, we have obtained the global dynamics, which are fully deter-
mined by the basic reproduction number R0. To make a better understanding for
the transmissions dynamics for the disease, we further consider a free boundary
problem of system (1.3). Main results reveal that besides the basic reproduction
number, the size of initial epidemic region and the diffusion rate of the disease also
play a crucial role in the disease transmission.
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