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UNIQUENESS OF SOLUTION IN A RECTANGULAR DOMAIN
OF AN EVOLUTION DAM PROBLEM WITH
HETEROGENEOUS COEFFICIENTS

ELMEHDI ZAOUCHE

Communicated by Jesus Ildefonso Diaz

ABSTRACT. In this article, we consider an evolution dam problem with hetero-
geneous coefficients of type a(x1)(uzy +X)zs — Xt = 0 in a bounded rectangular
domain of R2. We establish uniqueness of the solution for this problem. Our
proofs are based on the test function by using the method of doubling variables.

1. INTRODUCTION

Let Q = (0,L) x (0,1) a bounded rectangular domain in R?,  represents a
porous medium, with Lipschitz boundary 02 = I'; UT'y where I's = ({0} x [0,1]) U
([0,L] x {1}) U ({L} x [0,1]) is the part in contact with air or covered by fluid
and T’y = [0, L] x {0} is the impervious part of 9Q. Q = Q x (0,7),T > 0, ¢
is a nonnegative Lipschitz function defined in Q, ¥; = I'y x (0,7), ¥y = I'y x
(0,T7), X3 =33N{¢ > 0} and ¥y = X3 N {¢ = 0}. Moreover, let a be a function
of the variable x; satisfying for two positive constants 0 < A < A:

A<a(z1) <A ae z1€(0,L) (1.1)
and xo is a function of the variable = satisfying
0<xo(z)<1 ae x€. (1.2)
Now, let us consider the following weak formulation of an evolution dam problem
with heterogeneous coefficients [9} 5l [3, [7, [0, 11]: Find (u, x) € L*(0,T; H(Q2)) x
L°(Q) such that
u>0, 0<x<1, wu(l—-x)=0 ae inQ,
u=¢ on Mo,

/ (ae) (tzy + X)Era — XErlda dt < / xo(@)€(, 0) dz
Q Q

VEc HY(Q), €=0o0nX3 £>0o0nYy, &(z,T)=0forae z€.
Note that the strong formulation corresponding to (|1.3) is given by
u>0, 0<x<1, u(l—-x)=0 inQ

(1.3)
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a(@1)(Uzy, + X)an —xe =0 in @
u=¢ on Xy
x(0)=x0 inQ
a(x1)(uz, +X)-v=0 onX;
a(x1)(Ugy +x) - v <0 on Xy

Regarding existence of a solution of the problem we refer to [5] and [I1]
respectively for the evolutionary dam problem with homogeneous coefficients and
for a class of free boundary problem in heterogeneous domain. The regularity of
the solution of the problem was discussed in [8], where it was proved that
X € C°([0,T); LP(2)) for all p € [1,+00) in both the class of free boundary problem
of types div(a(z)Vu+ H(xz)x) — x¢ and div(a(x)Vu+ H(z)x) — (u + x)¢, and that
u € C°([0,T7]; LP(2)) for all p € [1,2] in the second class.

Uniqueness of the solution for the evolutionary dam problem in the homogeneous
case for both incompressible and compressible fluids was obtained in [2] by using
the method of doubling variables. In the case of a rectangular dam wet at the
bottom and dry near to the top, the uniqueness was obtained in [4] and [9] by a
different method, respectively in homogeneous and heterogeneous porous media.
For the evolution free boundary problem in theory of lubrication, we refer to [IJ.

In this paper, we consider the weak formulation of an evolution dam problem
with heterogeneous coefficients in a bounded rectangular domain Q of R2.
We establish uniqueness of the solution for this problem. Our proofs are based
on the test function by using the method of doubling variables. This uniqueness
result is new in the general framework of an heterogeneous and bounded rectangular
domain.

2. PROPERTIES
We shall denote by (u, x) a solution of (L.3)).
Proposition 2.1 ([§]). If a € C%'([0, L]), then we have
X € C°([0, T]; LP(Q))  V¥p € [1, +00).

Proposition 2.2. Fore >0, k>0 and £ € D(R? x (0,T)) such that £ >0, =0
on X3, we have

/Qa(gcl)(uw2 + X)(min (M,f))m dedt=0 (2.1)

and if £ =0 on Yo,
/Qa(an)(um + X)(min (Mg) — min (%g))z da dt = 0. (2.2)

Proof. Let ¢ be a smooth function such that d(supp(¢),¥2) > 0 and supp(¢) C
R? x (0,T). Then there exists 7o > 0 such that for any 7 € (=79, 7o) the functions
(x,t) — £((x,t — 7) vanishes on X and in © x {0,T}. So, they are test functions
for and we have

/Q [a(xl)(u?m + X)C-TQ (:L’,t - T) + (1 - X)Ct(l'7t - T))] drdt=0
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which can be written as
/Qa(xl)(um )G, (@t — 7) dar dt = ;T(/Qu —x(z,t+7))C(x, t) da dt). (2.3)

This identity still holds for any ¢ € L?(0,7; H'(2)) such that ¢ = 0 on X5 and
¢=0o0nQx ((0,70) U (T —10,T)). So, if we consider £ € D(R? x (19,7 — 79))
such that £ > 0, £ = 0 on X3, and set ( = min ((“_ek)+,£), we have from (2.3) for
all 7 € (—70,70) :

/ a(z1) (v, + X)(min (@’5))1; (x,t —7)dxdt
@ ’ (2.4)

€

= aaT(/Q(l —x(x,t + 7)) min (M,§> (z,1) d:cdt) = G'(1)

where
k)t
G(r) = / (1 - x(z,t+ 7)) min (u
Q €
Since the integral on the left hand side of (2.4]) is continuous on (—79,7p), the
function G’ belongs to C°(—79,70). So, G is in C'(—79,79). Moreover, for all
T € (—70,70), G(t) > 0 = G(0) since v > 0,0 < x <1 and u(l —x) =0 a.e. in
Q. So, 0 is absolute minimum for G in (—7p,79) and G'(0) = 0. Using ([2.4)), we
deduce that (2.1)) holds for £ € D(R? x (0,T)) such that £ >0, £ =0 on ¥3.
Now if we consider £ = 0 on X5, and set ( = min (@,{) — min (%,5), we
have from (2.3) for all 7 € (—79,79):
(k—u)*

/Qa(ftl)(ugg2 +X)(min (f,g) — min (é,{))xz(x,t —7)dzdt
_ ;_(/Q(lx(x,t+7—))<min (Mg) i (éf))(x,t)dxdt) (2.5)

€

,5) (z,1) d dt.

:=K'(1)
where

K(7) —/Q(lX(:zc,tJrT))(min((k_u)Jr

€

,5) — min (%, 5)) (z,t) da dt.

Since v > 0,0 < x <1 and u(1 —x) = 0 a.e. in Q, we have for all 7 € (—79,79),
K(r) < 0= K(0). So, 0 is absolute maximum for K in (—79,79) and K'(0) = 0.
Using (2.5), we deduce that (2.2) holds for ¢ € D(R? x (0,7)) such that & > 0,
& =0on 3. O

3. UNIQUENESS OF THE SOLUTION

In this section, we state and prove our main result, that the solution of problem
(1.3) is unique. Let us assume that

a € C*([0, L]). (3.1)

We begin with the following theorem.
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Theorem 3.1. Let (u1, x1) and (ug, x2) be two solutions of (1.3). Then we have
e {0 = vt )%+ (=)

+ ((1 - Xg(ﬂ?,t)) + (1 — U2z, (mvt)))X{u1>0}}n££Q dxdt <0
vEe D), £=20, VpeD(0,T), n=0.

(3.2)

Proof. Let us consider (u1, x1) and (uz, x2) related to the variables (z,t,y, ) in the
following way

(uth) : (1’,t7y78) = (ul(x7t)aX1(xat))
(u2aX2) : (.Z‘,t,y,S) = (u2(yas)ax2(yv8)) .
Let £ € D(Q),n € D(0,T) such that £ > 0, n > 0. For all (z,t,y,s) € Q X Q, we
define
C(@,t,y,s) = &(

where p15(r) = $p1(
p1,p2,p3 > 0, bupp(p

r1+y1 r2o+y2, t+s 1 — Y1 To — Y2 t—s
5y ) (e (5 )pss (),

£), 025(r) = 2pa(5), pa.s(r) = Loa(3) with pr. pa. pu € D(R),
1), supp(p2),supp(p3) C (—1,1). For ¢ small enough, we have

¢(,y,8) €DQ) V(y,5) €Q (3.3)
Let € be a positive real number. We define

(ur(z,t) —uz(y,s)) "

€

I x,t,y,s) = min < ,C(x, t,y, s)) (3.5)

Now, for almost every (y, s) € Q we can apply (2.1)) (of Proposition [2.2)) to (u1, x1)
with k& = us(y, s),&(x,t) = 9(x, t,y, s), from which it follows that

/ a(x1) U1z, + X1)0s, dzdt = 0. (3.6)
Q

Since u;1.(1 — x1) = 0 a.e. in @, we have
+

o (un —ug)t (w1 — u)
Xla(xl)(mln (77§)) a(:cl)(mln (i,g))m
a.e. in @ and (3.6) can be written as
/ a(x1)(U1gy, + 1)V, dedt = 0.
Q
By integrating over @), we obtain
/ a(x1) U1z, + 1)0s, dedtdyds = 0. (3.7
QxQ

Similarly, for almost every (x,t) € @, we can apply (2.2) (of Proposition [2.2]) to
(u27X2) Wlth k = ul(xvt)a g(ya 8) = 19(1"753:% S) to gEt

. (u
/ a(y1)(uzy, + x2) (19 — min (*1, C)) dyds = 0.
Q € Y2
By integrating over @), we obtain

/QXQ a(y1)(uay, + x2) (19 — min (%, C))yQ dydsdz dt = 0. (3.8)
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Then, subtracting (3.8)) from (3.7, we obtain
/ [a(xl)ulxzﬁ:m - a‘(yl)u2y219y2
QxXQ
+ a(z1)Vs, — X20(y1)Vy, | dvdt dy ds (3.9)

- / a(y1)(uzy, + Xx2) min (E,C) drdtdyds =0.
QxQ € Y2

Moreover, from (3.3))-(3.5), we have

/ a(z1) U1z, Vy, drdtdyds =0 (3.10)
QxQ
/ a(y1) Uy, Vs, dedtdyds =0 (3.11)
QxQ
/ a(x1)(0g, + Oy, )0 daxdtdyds =0 (3.12)
XQ
/ X2a(y1)Vg, dzdtdyds =0 (3.13)
QxQ
AL
/ a(y1)(uzy, + x2) min (—, C) dxdtdyds =0 (3.14)
QxQ € x2
. (U1
/ a(x1)(0p, + Oy, ) min (—, () dx dtdyds = 0. (3.15)
QxQ €

Then, by adding ((3.10)-(3.15)) and (3.9 we have

/ [(a’(‘rl)(aﬂﬂz + ayz)ul - a’(yl)(a«m + ay2)u2)(812 + ayz)ﬁ
QxXQ

+ (a(21) = x20(y1)) 0z, + 8y,)0] d dt dy ds

3.16
+ / (alw1) = aly1) (s, + Dy, )u2) (D + ) min (“2,¢) da dt dy ds (316)
QxQ €
. (U1
—|—/ (a(z1) — x2a(y1)) (Ozy + Oy,) min (—7 () dxdtdyds = 0.
QxQ €
Now, let us introduce the change of variables
rhYy _, Ty, PEs_ L ITs g (3.17)
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Note that (z,7) € Q and (0,0) € (=%, 2y x (=L Lyx (-2, 2) =0y x (-£,%) =

Q1. Then, from (3.16)-(3.17), we obtain

/ (a(z1 + 011z, (2 + 0,7+ 0)
QxQ1
—a(z1 — 01)ugs, (2 — 0,7 — 0))9., dz d7 do df
+ / (a(z1 +01) — x2(2 — 0,7 — 0)a(z1 — 01))V.,dz d7 do db
QXQ1
+/ (a(z1 4+ 01) = x2(2 — 0,7 — O)a(z1 — 01)) (3.18)
QxQ1
» min (ﬂ,g) dz dr do df
€ Z2
+ / (a(z1 +01) — u2zy (2 — 0,7 — B)a(z1 — 01))
QXxQ1

» min (%g) dzdr do d = 0.

Let us set

Is= / (a(zl +o01)Uur(z+ 0,7+ 6)
QXQ1
—a(z1 —o1)ugs,(z — 0,7 — 0))1922 dz dt do db,
Jes = / (a(z1 + 01) — x2(2 — 0,7 — 0)a(z1 — 01))V,dz dT do db
Kel,(s:/ (a(zl +01)—X2(2—U,T—9)a(zl—01))
QXQ1
X mm( ,g) dz dr do df
Kf’é = / (a(z1 + 01) — Uz, (2 — 0,7 — B)a(z — 01))
QXQ1

X min (% C)Z2 dz dr do do.

Thus, we have the following lemmas.

Lemma 3.2.

%m%)(hm Jes) = / NX {ur >usy@(21) (1 = x2(2, 7)) &2, dzdr. (3.19)

— €— Q

}m%) hm K / NX{ur>0ya(z1) (1 — xa(z, 7)) &, dzdr. (3.20)
—0 e—0 Q

gnr%) llIl'é KZ5) / NX{ur>03a(21) (1 = ugzy (2, 7)) &, dzdr. (3.21)
—0 €e— Q
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Proof. We have

s

Js= / (a(z1 + 1) — a(z1 — 01))9., dz dr do df
QXQ1

+ / a(z1 — 01)(1 = yal(z — 0,7 — )., dzdr do df (3:22)
QxQ1

=Jl s+ J25.

We use integration by parts, (3.3)-(3.5), and the fact that a(z; + o1) — a(z1 — o1)
does not depend on zy, we obtain J! 5 = 0. So,

. . 1y
}ILI(I)QEI(I) Jes) =0. (3.23)
Now, we will show that
(}ir%(lir% J2s) = / na(z1)(1 = x2(z,7))&, dz dr. (3.24)
— €— Q

Let us set Ac = {(u1 —u2)t > e} and Be = {0 < u; —uz < eC}. We have

JZs :/B a(z1 —o1)(1 = x2(2 — 0,7 = 0))(

Uy — Uz

)22 dz dr do df

€

€

+/ a(z1 _Ul)(l_X2(Z—J,T—9))CZ2dszdad9 (3.25)
A

2,1 2,2
= Je,é + Je,5 .
Using (3.17) and that (1 — x2)ug =0, u1y, = 0 a.e. in @, we obtain

2L = /B a(y) (1~ xa(v.))

€

Uy

™2 dx dt dy ds.

€

Using (3.3) and that the function (y,s) — a(y1)(1 — x2(y, s)) does not depend on
T9, integrating by parts we have

I = /ng a(y)) (1 = xa(y, 5)) (min (%g))m da dt dy ds

- /A a(y1) (1 = x2(y, 5)) Ca, da dt dy dss

€

= /QXQ a(y1)(1 = x2(y,9)) (min (%,C))IQ dz dt dy ds

*/ a(y1) (1 — x2(y, 5)) Ca, d dt dy ds
QxQ

+/ a(y1)(1 = x2(y, 5)) G, dx dt dy ds
B

€

= /B a(y1) (1 = x2(y, 5)) o, dx dt dy ds.

Applying Holder’s inequality and taking into account that lim. .o |B¢| = 0, we
obtain lim._,q Ji’sl = 0. So,

lim (lim J2) = 0. (3.26)

d—0 e—0
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For Jif, we pass to the limit as ¢ — 0 and § — 0, respectively, we obtain

lim (lim J.'") = /Q a(21) X ur ua} (1 = X2 (2, 7)) €2, dzdr, (3.27)

Hence, if we combine (3.26])-(3.27]), we obtain (3.24)) by letting e — 0 and § — 0 in

(3.25). Now, we pass successively to the limit in (3.22)), as ¢ — 0 and then as § — 0

and using (3.23))-(3.24)), we obtain (3.19). Finally, arguing as in the proof (3.19),
we obtain (3.20)) and (3.21)). O

Lemma 3.3.

;in%)(ling) I.s)> / na(z1)(ui(z,7) — uZ(z,T))Zszdsz. (3.28)
— €— Q

Proof. We have

I.s :/ (a(z1 + 01)u1, (2 + 0,7+ 0)
A

€

—a(z1 —o1)ugs,(z — 0,7 — 9))@2 dzdr do df

+ / (a(z1 + 01) U1z, (2 + 0,7+ 0) (3.29)
B.
—a(z1 — 01)ugz, (2 — 0,7 — 0)) (w)ndz dr do do
€
= 161’5 + IZ’(;.
The integral [ 62 s can be decomposed as
25
1
— E{ / [a(zl + 01 U1, (2 + 0,7+ O)ut,, (2 + 0,7+ 0)
B.
+a(z1 — 01)u2s, (2 — 0,7 — O)uss, (2 — 0,7 — 0)] dzdr do df
- / a(z1 — 01)ugz, (2 — 0,7 — O)ur,, (2 + 0,7 + 0)dz dr do db
B.
_ / (a(z1 + 01)urz, (2 + 0,7 + O)uge, (2 — 0,7 — 0) dzdr do d@}
2,1 722 123
= Ie,é - 16,5 - Ie,§ .
From (1.1)), the integral Iibl is positive. So,
AP e b (3.30)

For Ii’f , we use integration by parts, (3.3), (3.5)), and the fact that the function
(y,8) — a(y1)uay, (v, s) does not depend on x2, we obtain

uy(x,t) —u2(y, s
12 = [ oot (U0 gy dtayas
Be T2

€

= / a(yl)u2y2 (ya S)ﬂmz dx dt dy ds
QxQ

- / a(yl)u2y2 (ya S)Ca:z dx dt dy ds
Ae
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- / a(y1 )izgs (3, 8)0z, da dt dy ds
QxQ

yl u2y2 Y,Ss )C:m dx dt dy ds
xQ

+

m\e\

a(y1)uay, (Y, $)Cp, dx dt dy ds

- / (42 g (4. 5)Con i dit dy ds.
BE

Applying Holder’s inequality and taking into account that lim. .o |B¢| = 0, we
obtain

lim (I275) = 0. (3.31)
In the same way, we prove

213%(13;(?) =0. (3.32)
Combine -, we obtain, by passing to the limit as ¢ — 0 in 7

lir%(IZ5) > 0. (3.33)

Let us study I, ! 5 Applying the Lebesgue theorem to I 5, We obtain

e—0 0

hm(]1 ) —/ X{ul>u2}(a(z1 + 01U, (2 + 0,7+ 0)
QXQ1
—a(z1 — 01)u2z,y (2 — 0,7 — 0)) (s, dzdr do df
which can be written as
liH(l)(IEl’(;) = / Xfur>usy (21 +01)(ur(z + 0,7 4 0)
A X Q1
—ug(z —o,7—0)),,(.,dzdr do df

+ / X {us >uz) (@(21 + 01) (3.34)
QXQ1

—a(z1 — 01))ugs, (2 — 0,7 — 0)(,,dz dT do db
=1t + 1%

Using (3.1) and taking into account supp(p1,s) C (—6,0), we obtain that for some
positive constant C,

1,2
s

lo1|[uz, [|€2,[m01,6(01) p2,6(01) p3,5(0)dz dT do df

< 60/ |2z, €2, INP1,6(01) 2,6 (01)p3,5(8)dz dT do df
QxQ1
= JCW5.
So, since (Ws)s is bounded, we obtain
o opl2
lim ;% = 0. (3.35)

In I;’l, we pass to the limit as § — 0, to obtain

}H% Il ! / na(z1)(ui(z,7) — uz(z, 7)1 &, dz dr. (3.36)
- Q
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Hence, if we combine (3.35)-(3.36]), we obtain by letting § — 0 in (3.34):
lim (lim I ;) = / na(z)(us(z,7) — ua(z, )", Enydadr, (3.37)
Q

§—0 e—0

Finally, we pass successively to the limit in (3.29)), as ¢ — 0 and then as 6 — 0, and

using (3.33) and (3.37]), we obtain ([3.28)). O
Now, using Lemma[3.2]and Lemma[3:3] and letting successively ¢ — 0 and § — 0
in (3.18)), we obtain (3.2). This completes the proof of Theorem [3.1 O

Now, we can state our uniqueness theorem.

Theorem 3.4. The solution of the problem (1.3) associated with the initial data
Xo (see (1.2)) is unique .

Proof. Let (u1,x1) and (usg,x2) be two solutions of the problem ([1.3)) such that
x1(z,0) = x2(2,0) = xo(z) a.e. in Q. Let us set v = (u; —uz)™ and v = (1 —
X2(I7t))X{u1>UQ} + ((1 - XQ(xat)) + (1 — U2z, (x’t)))X{u1>0}' From Theorem .
we have

/ na(21)(Vay + 7)Ea, drdt <0,
Q
V¢ e D(Q), £ >0, neD(0,T), n>0.

Let g9 = d(supp(£),09Q) and A, = {x € R?*/d(x,09Q) > e0o}. We extend v and v
outside @ by 0 and still denote by v (resp. ) this function. Moreover, from (3.1,
the function a admits an extension to R, still denote by a, such that a € C*(R, R).
For ¢ € (0,%2), let p. € D(R?) with supp(p:) C B(0,¢) be a regularizing sequence
and let f. = pc * f, the regularized of a function f. We have by using Fubini’s
theorem and change of variables:

(3.38)

/ na(xl)(vawz + 'Va)gxz dz dt
R2x(0,T)

R2

/mo,T) { / (Voo (2 =y, t) +(z — t))Ps(y)dy}a(x1)§$2 (21, x2) dz dt

n
R
/]R2 Pe(y){ /R?x(o,T) Ny (x — Yy, t) +v(x — y, t))a(x1)Es, (21, x2) do dt}dy
/B(Oﬁ) Ps(y){/QT)(UZQ(z,t)+’y(z,t))(a(zl+y1)£(z+y))szzdt}dy
:~/B(07a) pE(y){/Qna(Zl)(’UzQ(Z,ﬁ)+’y(Z,t))(a(Zl+y1)£(z+y)>z2dzdt}dy'

a(z1)

For all y € B(0,¢), the function z — % is nonnegative and belongs to

C}(2). Therefore, since (3.38) still holds for the functions ¢ € C¢(2), ¢ > 0, we
obtain by taking into account that p. > 0,

/ na(z1)(Vegy + Ve )€, drdt <0
R2x(0,T)

VE € D(Q), £ =0, d(supp(§),090) =0 >0, vVneD(0,T), n=0
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which using integration by parts, can be written as

—/ na(x1)velpye, dr dt +/ na(z1)Ve€s, dx dt <0
Aey x(0,T) Acyx(0,T) (3.39)

£€D(), £ >0, d(supp(§), 0Q) =¢9 >0, VneD(0,T), n=>0.
‘We define

T
a(z) = a(xl)/o nNvedt,

and suppose there exists z9 € A, N2 and €; € (0, %) such that a., (x¢) > 0.

Since a., is continuous and A., N € is open set, there exists » > 0 such that

B(zg,r) C A, NQ and ag, () > 0 for all z € B(xg,r). Therefore, we deduce

from (1.1)) that fOT NUe,dt > 0 in B(xg,r). Now, let us consider the following
homogeneous Dirichlet problem for linear second order partial differential equation:

T
1 Jo myedt 1 .
_7511_5224_0752: IHB(Jfo,T’)
aﬁl(‘r) o v fOT nvgldt ‘ ail (LL') (340)
&=0 on 9(B(zo,r))
which can be written as
> 1
- Z Qeyij (x)gmbm] + 661 (x)glz = m in B($0’ T)
1,9=1 1
&=0 on d(B(zo,r))-
where
1
ae11(z) = o 0e12(7) = ag21(7) =0, ag(z) =1,
Qg ()
T
e, dt
661 (.’I}) = fOT e .
fo NV, dt
Observe that the matrix (a.,;;(x));; is strictly elliptic in B(zq,r) with constant
1
min ( ,1) >0
max

z€B(xzo,r) Qe ("I))

and the coefficients -, 3, are in C'(B(wo,r)). So, by the regularity theory (see [6]
€1

for example), the problem (3.40) has a unique solution £ € C2(B(zo,r)). Moreover,
since the function in the right side of the first equation of (3.40)) satisfies - > 0

in B(zg,r), we have from the maximum principle, f >0 in B(zg,r). Therefore, we
see that £ € C2(Q),£ > 0 and d(supp(€), ) > o. Then, we can choose £ = ¢ in
(13-39) to obtain

/ { - na(ml)vg&zm + na(acl)%éxz}dx dt <0 Vee (0, E—O).
Aoy x(0,T) 2

When we write the first equation of ([3.40) for ¢ and multiplying by e, (z), we
obtain

T
_51111 — Oy ($)£x2x2 + a(1'1)512 / 77751dt =1,
0
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and by integrating over B(zo,r), we obtain

/ { - na(xl)vslézzzz + na(‘rl)’yfléfDQ} dz dt
B(zo,r)x(0,T)

:/ é$1$1d$+/ dx
B(xo,r) B(xo,r)
Q B(zo,r)

which leads, using integration by parts, to

/ { — Tya(ﬂlcl)vslém;,;2 + na(xl)'yslém} dx dt = |B(zg,r)| > 0.
Acy x(0,T)
So, we deduce that
T 13
ag(x) = a(xl)/ n(t)ve(z, t)dt <0 Ve € (0, ?0), Ve e A, NQ
0

from which, we obtain by taking into account that ¢ > 0 and integrating over
A, NQ:

/ n(t)ve(z,t)dedt <0 Ve € (0, 870)'
(AN Q) x(0,T) 2

Passing to the limit as € — 0, we obtain
0< / n(t)(ug — uz)t(z,t)dedt <0
(AcyN Q) x(0,T)
and since ¢q is arbitrary, we have

/ (1) (r — ) (1) dir dt = 0.
Q

So, for all n € D(0,T), n > 0, we have n(u; —uz)™ = 0 a.e. in Q. This leads to
u1 < ug a.e. in Q. By exchanging the roles of u; and us, we obtain us < u; a.e. in
Q. We conclude that

Uy = ug :=u a.e. in Q. (3.41)
Now, we are going to prove that
X1 = X2 a.e. in Q. (3.42)

Let us consider s € (0,7]. For a positive real number § we define the following
function 7 on [0, s| by

2(4)? if t € [0, 2]
1-2(1—4)? if t € (2,4]
nt) =41 if t € (5,5 — 0]

1-2(1— 512 ifte(s—46,s— 3]
2(551)2 ifte(s— g,s].
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Note that n € C*([0, s]) and

4% if t € [0, &]
1-14 if t € ($,0]

() =<0 ift € (5,s — ]
—4(1-=1t) ifte(s—6,s— 9]
—3(551) ifte(s—32,s.

We extend 7 outside [0, s] by 0 and still denote by n this function and let us consider
¢ € D(R). Note that &n? € HY(Q), £€n?> = 0 on 9Q x (0,T) and (£n?)(z,0) =
(€n?)(x,T) = 0 a.e. in Q. Choosing +£&n? as test functions for , both for
(u, x1) and (u, x2), we obtain

/ (1) (ks +x2)Emar?® — 21 €] dar dt = 0 (3.43)
Qx(0,s)

/ (1) (g + X2)Era® — 2xam'€] da dt = 0. (3.44)
Qx(0,s)

Subtracting (3.44) from and (3.43]), we obtain
0 :/ a(a1)(x1 = X2)&x,n” de dt — / 2(x1 — x2)m'€ dz dt
Qx(0,s) Qx(0,s)

(3.45)
=R} — R2.
Applying the Lebesgue theorem to R}, we obtain
lim B! — / a(21) (X1 — Xa)Es, da dt. (3.46)
6—0 Qx(0,s)

Let us study R%. From the definition of 7/, we have

=] [ [ atenia —xomrewas [ et - xomicaral

SC’{ /O5 (/Q Ix1 XzIdw)n|n’|dtdt+/:5 (/Q [x1 fxg\d:c)mn’\dt}

=C(R}" + R3?)

(3.47)
where C' = sup(,, ,,)eq |a(21)§(x1,22)[. We have x1 — x2 € C°([0,T]; L (2)) (see
Propositions , n € C9([0,s]), n(0) = 0 and 7 is uniformly bounded indepen-
dently of 4. In particular, the function ¢ — (fﬂ [x1 — x2|da:>77 is right-continuous
and vanishes at 0, and uniformly bounded independently of §. Therefore, since
In'| ~ %, we deduce that

lim R =0. (3.48)

Similarly, since the function ¢ — ( fQ [x1— X2|dx)17 is left-continuous and vanishes
at s, uniformly bounded independently of §, and |n/| ~ %, we deduce that

lim R* =0. (3.49)
By letting 6 — 0 in (3.47) and using (3.48)-(3.49), we obtain
lim R} = 0. (3.50)

6—0
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Passing to the limit as § — 0 in (3.45]), and using (3.46|) and (3.50]), we obtain
0= / / a(x1)(x1 — x2)&a, dxdt := F(s) Vs €[0,T). (3.51)
0o Jo

Since [, a(z1)(x1—x2)&., dx is continuous on [0, T] and x1 (x, 0)—x2(z,0) = xo(z)—
Xo(z) = 0 a.e. in , we deduce from (3.51)) that F'(s) = 0 for all s € [0,T]. So,

”Ldmxm—x@@ﬂ@ﬂxzo vt € [0,T], Ve € D). (3.52)

Let g9 = d(supp(§), 09). Let us extend x1(+,t) and x2(-, t) outside © by 0 and still
denote by x1(-,t) (resp. x2(-,t)) this function. Moreover, since a € C1([0, L], R),
there exists an extension to R, still denote by a, such that a € C'(R,R). For
e€(0,%), let p. € D(R?) with supp(p.) C B(0,¢) be a regularizing sequence and
let f. = p. x f, the regularized of a function f. Then, using , we obtain

/]R2 a(xl)(bﬁ - X2)('vt))5§x2dx =0
Vt € [0,T], V& € D(Q), £ >0, d(supp(&),IN) = eo.

(3.53)

) ()T
For positive real number &, we choose min (w, 1>§ as test function in

, we obtain
_ (= x2) (L 0)F
0= [ aten)((a = x2):0)cbemin (2D 1)

. —x2)(, )T 3.54
+/ a(ml)((XI —Xg)(~7t))€m1n(((X1 X;)( )) ’1) fdl’ ( )
R2 T2
=85+ 55
Applying the Lebesgue theorem to Si, we obtain
tim 5% = [ oo = )0 Ende (3.55)
For S%, we have by using integration by parts
1 .
S5 = o5 [ a(z){min(((x1 — x2) (1), 8)*}o,€da
25 R2
_ 1 i —x2)(, )T, 0)%d
DY a(l‘l)sz mln(((xl XQ)( ﬂt))e ) ) €.
R2
By letting § — 0, we obtain
lim 52 =0. (3.56)
Passing to the limit as ¢ — 0 in (3.54) and using (3.55))-(3.56)), we obtain
a(x — S, dr =0
[ atanita = .0, .

Vi € [0,T], V€ € D(R), £ >0, d(supp(§),IN) = &¢.
Choosing x5 as a test function in (3.57)), we obtain

/Qa(ﬂh)((Xl _ XQ)(.vt))jgdx + /Q a(ZUl)((Xl - X2)(-,t)):1'2£mzdl’ =0 (3.58)

vt € [0,T], V¢ € D(Q), £ >0, d(supp(§), Q) = &o.
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Let x1,2? € (0,L) and 23,22 € (0,1) such that 2} < 22, 23 < 22 and d(0,2}) =
d(0,23) = d(L,2?) = d(l,23) = 9. Now, for positive real number § we define the
following functions h and g in (z1, %) (resp. (xd,23)) by

2(1"1%1"%)2 if 21 € [z1, 21 + ]
1-2(1—2552)? ifay € (2] + 2,x1+5]
h(z1) =41 if z; € (21 +6,2% — ]
271/' .
1 12(1 - A2 if oy € (af — 5 z? — 1]
2(B57)? if z1 € (2% — ¢, 22
and
2(%)2 1 if 25 € [23, 23 + &
1-2(1— 25%2)2 ifl‘2€($%+2,$2+6]
glza) =<1 if 2o € (23 + 6,23 — 4]
271 .
1722(1—%%)2 if xo € (x%f(s xQ—g}
2(%2522)? if 2y € (23 — &, 23].

We have h(z1) = h(a?) = g(z3) = g(23) =0, h € 02([1'1,301]) g € C?([z3,23])
and h,g > 0. If we set Q., = (21,23) x (21,22), we see that hg? € C?(Q2) and
hg® > 0. Let us extend hg? outside €2, by 0 and still denote by hg? this function.
Since d(supp(hg?),00) = g, we can choose ¢ = hg? as test function in ([3.58)) to
obtain

0= / a(e) (01 — x2) (- ) hgPde

€0

2 [ e = ) O)F bt (3.59

€0

= N + Nj.

Applying the Lebesgue theorem to N, 61, we obtain

tim ) = [ a0 = )0 de. (3.60)

€0

Let us study NZ. From the definition of ¢/, we have

3 pxd+s
N =2 [ [ aen)(Ga - xa)(0) shag do
Ty T3

[ at@nita - xa).) eshgg dal
zl z3—6

e 3.61
// ((x1 = x2)(, 1)) I glg'ldx (3.61)

/ /2 [(ba =)t ))?g\g’ldx}

_CN21+N22)
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where C' = sup(,, ., eq(a(z1)r2h(z1)) which is independent of §. Since the function
2

za ([ ((x1 —x2)(-, )T dx1) g is right-continuous and vanishes at 23, uniformly

1

bounded independently of § and |¢’| ~ %, we deduce that
lim N =o. (3.62)

2
Similarly, since the function zo — ([ ((x1 — x2)(-,))Tdx1)g is left-continuous
1
and vanishes at 22, uniformly bounded independently of &, and |g’| ~ %, we deduce
that

lim N;? =0. (3.63)
By letting 6 — 0 in (3.61]) and using (3.62)-(3.63]), we obtain
. 2
lim N7 = 0. (3.64)
Now, passing to the limit as 6 — 0 in (3.59) and using (3.60) and (3.64) we obtain
/ a(e) (61 — x2) (D) Fde =0 e € 0,7]. (3.65)
Q

€0

Finally, by letting e — 0 in (3.65]), we obtain

/ a(z1)((x1 — x2)(,t))Tdz =0 Vt € [0,T]

Qe

and since g¢ is arbitrary, we have

/Qa(xl)(()a —x2)(t)Tde =0 Vte[0,T).

This leads to a(z1)((x1 — x2)(-,t))" = 0 a.e. in Q for all ¢ € [0,7]. Thanks to
(1.1), we deduce that ((x1 — x2)(-,t))" =0 a.e. in Q for all ¢ € [0,T]. So, x1 < X2
a.e. in ). By exchanging the roles of x; and x2, we obtain x2 < x1 a.e. in Q). We
conclude that y; = x2 a.e. in Q. Hence, (3.42) holds. If we combine and
(13.42), we see that the solution of problem E&ssociated with the initial data g
is unique. O
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