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EXISTENCE AND REGULARITY OF GLOBAL SOLUTIONS
NONLINEAR HARTREE EQUATIONS WITH COULOMB

POTENTIALS AND SUBLINEAR DAMPING
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Abstract. In this article, we consider the nonlinear Hartree equation with a

sublinear damping and a time-dependent Coulomb potential in R3. We first

prove the existence of a global solution and then obtain the Σ2-regularity.

1. Introduction

Because of their important applications in physics, nonlinear Schrödinger equa-
tions with damping have been extensively studied; see [3, 4, 12, 16, 22, 23]. In this
article, we consider the nonlinear Hartree equation with a time-dependent Coulomb
potential and a sublinear damping,

i∂tu+ ∆u = V (x)u+
1

|x− a(t)|
u+ λ

( 1
|x|
∗ |u|2

)
u− ib u

|u|α
,

(t, x) ∈ [0,∞)× R3,

u(0) = u0 ∈ Σ,

(1.1)

where u(t, x) is a complex-valued function in (t, x) ∈ [0,∞) × R3, λ ∈ R, b > 0,
0 < α 6 1, a ∈ W 1,1((0,∞),R3), Σ denotes the energy space associated to the
harmonic oscillator, i.e.,

Σ := {u ∈ H1(R3) : xu ∈ L2(R3)},
equipped with the norm

‖u‖Σ := ‖u‖H1 + ‖xu‖L2 .

The external potential V is assumed to be harmonic,

V (x) =
3∑
j=1

ω2
jx

2
j , ωj > 0. (1.2)

Equation (1.1) has many interesting applications in the quantum theory of large
systems of non-relativistic bosonic atoms and molecules. In particular, this equation
arises in the study of mean-field limit of many-body quantum systems, see, e.g.,
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[1, 21, 25] and the references therein. An essential feature of equation (1.1) is
that the convolution kernel |x|−1 still retains the fine structure of micro two-body
interactions of the quantum system. It is therefore of considerable interest to extend
mathematical methods originally develop for nonlinear Schrödinger equations with
local nonlinearities to the study of Hartree-type equation, see [18, 19, 20, 24, 13, 14].

In this article, we are interested in the existence and Σ2-regularity of global
solutions to (1.1). More precisely, we will prove that the solution u(t) of (1.1)
satisfies: ‖u(t)‖Σ 6 C(‖u0‖Σ) for all t > 0. Moreover, if u0 ∈ Σ2, then u ∈
L∞((0, T ); Σ2) for any T > 0, where

Σ2 = {u ∈ L2 : xj∇ku ∈ L2,∀ multi-indices j and k with |j|+ |k| ≤ 2},

equipped with the norm

‖u‖Σ2 :=
∑

|j|+|k|≤2

‖xj∇ku‖2L2 .

To solve these problems, we mainly use the ideas from Carles et al. [7, 9]. Carles
and Gallo [7] proved that the solution for the Schrödinger equation

i∂tu+ ∆u = −ib u

|u|α
, (t, x) ∈ [0,∞)×M, (1.3)

becomes zero in finite time, where M is a compact manifold without boundary.
Carles and Ozawa [9] extended this study to the equation

i∂tu+ ∆u = V (x)u+ λ|u|2σ1u− ia|u|2σ2u− ib u

|u|α
, (t, x) ∈ [0,∞)×M, (1.4)

where M is either a compact manifold without boundary, or the whole space in the
presence of harmonic confinement V (x), in space dimension one and two.

However, compared with the equations (1.3) and (1.4) in [7, 9], there exist some
major difficulties in the analysis of the global existence and regularity of (1.1). For
example, due to the appearance of a time-dependent Coulomb potential 1

|x−a(t)| ,
it is difficult to obtain the Σ2-regularity of (1.1) by differentiating equation (1.1)
two times with respect to space variable. Therefore, we use the idea due to Kato
[17] (see also [10]), based on the general idea for Schrödinger equation, that two
space derivatives cost the same as one time derivative. However, due to the same
reason, we cannot immediately calculate the time derivative of equation (1.1). To
overcome this difficulty, we will use a change of variable y = x − a(t) to avoid
the time derivative of the time-dependent Coulomb potential. This leads to a
more complicated equation (4.8). For this reason, we only prove the solution u ∈
L∞loc((0,∞); Σ2). If the initial data u0 6= 0, and the corresponding solution u ∈
L∞((0,∞); Σ2), then the solution of (1.1) becomes zero in finite time. Indeed, it
follows from (2.1) that

‖u(t)‖L2 6 C‖u(t)‖1−
3α

8−α
L2−α ‖u(t)‖

3α
8−α
H2 6 C‖u‖

3α
8−α
L∞((0,∞);Σ2)‖u(t)‖1−

3α
8−α

L2−α ,

for t > 0. This and (1.5) imply that

d

dt

∫
R3
|u(t, x)|2dx =− 2b

∫
R3
|u(t, x)|2−αdx

6− 2b

C‖u‖3α/4L∞((0,∞);Σ2)

(∫
R3
|u(t, x)|2dx

)1−(α/8)

.
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This differential inequality can be solved explicitly:

‖u(t)‖2L2 6
(
‖u(0)‖α/4L2 −

bα

4C‖u‖3α/4L∞((0,∞);Σ2)

t
)8/α

.

This implies that ‖u(t)‖L2 vanishes in finite time T , with

T 6
4C‖u0‖α/4L2 ‖u‖3α/4L∞((0,∞);Σ2)

bα
.

Therefore, if u ∈ L∞((0,∞); Σ2), the solution of (1.1) becomes zero in finite time.
Before stating our main results, we give the notion of weak solution of (1.1).

Definition 1.1. Assume 0 < α < 1 and a ∈ W 1,1((0,∞),R3). A global weak
solution to (1.1) is a function u ∈ C([0,∞);L2(R3)) ∩ L∞((0,∞); Σ) solving (1.1)
in D′((0,∞)× R3).

Definition 1.2. Assume α = 1 and a ∈ W 1,1((0,∞),R3). A global weak solution
to (1.1) is a function u ∈ C([0,∞);L2(R3)) ∩ L∞((0,∞); Σ) solving

i∂tu+ ∆u = V (x)u+
1

|x− a(t)|
u+ λ

( 1
|x|
∗ |u|2

)
u− ibF

in D′((0,∞)× R3), where F is such that

‖F‖L∞((0,∞)×R3) 6 1, and F =
u

|u|
if u 6= 0.

Since a ∈W 1,1((0,∞),R3) ↪→ L∞((0,∞),R3), it follows that 1
|x−a(t)| ∈ L

2
loc(R3).

This and u ∈ C([0,∞);L2(R3))∩L∞((0,∞); Σ) imply that 1
|x−a(t)|u ∈ L

1
loc((0,∞)×

R3). In addition, from Hardy’s inequality, ( 1
|x| ∗ |u|

2) ∈ L∞((0,∞);L∞(R3)). This
implies that ( 1

|x| ∗ |u|
2)u ∈ L1

loc((0,∞)× R3).
Our main results read as follows.

Theorem 1.3. Let 0 < α 6 4/5, a ∈ W 1,1((0,∞),R3) and u0 ∈ Σ. Then the
Cauchy problem (1.1) has a unique, global weak solution. In addition,

d

dt

∫
R3
|u(t, x)|2dx = −2b

∫
R3
|u(t, x)|2−αdx, (1.5)

‖u(t)‖Σ ≤ C(‖u0‖Σ) ∀t > 0. (1.6)

Theorem 1.4. Let u0 ∈ Σ2, a ∈ W 2,∞((0,∞),R3), b > 0 and 0 < α 6 1
2 . For

every 0 < T <∞, the solution u of (1.1) belongs to L∞((0, T ),Σ2).

The Hs-regularity for nonlinear Schrödinger equations is well-known if the non-
linearity is sufficiently smooth, see [10]. The smooth condition on the nonlinearity
can be improved (removed, if s ≤ 2) by estimating time derivatives of the equation
instead of space derivatives, see [17, 10, 15]. Since the appearance of the time-
dependent Coulomb potential 1

|x−a(t)| and the sublinear term u
|u|α , we will prove

the Σ2-regularity for (1.1) by estimating its time derivatives. However, compared
to the classical Schrödinger equation, there are two major difficulties in proving this
problem. Firstly, due to the presence of a sublinear damping term, the Strichartz’s
estimates cannot be applied to prove the Σ2-regularity for (1.1) by the similar
method as that in [10]. Secondly, for applying Kato’s idea, the key point is obtain
an L2-estimate for the time derivative of solution uδ for the regularizing equation
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(3.1). For this aim, we will use a change of variable y = x− a(t) to avoid the time
derivative of the time-dependent Coulomb potential. This leads to a more compli-
cated equation (4.8). We finally obtain the desired estimate which is independent
of δ.

This article is organized as follows: in Section 2, we present some preliminaries
and some estimates for Hartree nonlinearity. In section 3, we prove Theorem 1.3.
In section 4, we prove Theorem 1.4.

Notation. Throughout this article, we use the following notation. C > 0 will
stand for a constant that may be different from line to line when it does not cause
any confusion. Since we exclusively deal with R3, we often abbreviate Lq(R3),
‖ · ‖Lq(R3) and Hs(R3) by Lq, ‖ · ‖Lq and Hs, respectively. We recall that a pair of
exponents (q, r) is Schrödinger-admissible if 2

q = 3( 1
2 −

1
r ) and 2 ≤ r ≤ 6. Then, for

any space-time slab I × R3, we can define the Strichartz norm

‖u‖S(I) = sup
(q,r)

‖u‖LqtLrx(I),

where the supremum is taken over all admissible pairs of exponents (q, r). Further-
more, ‖f‖SΣ(I) := ‖f‖S(I) + ‖∇f‖S(I) + ‖xf‖S(I).

2. Preliminaries

In this section, we recall some useful results. Firstly, we recall the following
Gagliardo-Nirenberg inequality (see [10]).

Lemma 2.1. There exists a constant C such that

‖f‖L2 6 C‖f‖1−θL2−α‖f‖θH2 , ∀f ∈ L2−α ∩H2, (2.1)

where θ = 3α/(8− α) with α ∈ (0, 1].

The following inequalities can be viewed as dual to the Gagliardo-Nirenberg
inequalities.

Lemma 2.2. There exist some constants C such that

‖f‖Lp′ 6 C‖f‖
1−δ1(p)
L2 ‖xf‖δ1(p)

L2 , ∀f ∈ Σ, (2.2)

where δ1(p) = 3
(

1
2 −

1
p

)
with p ∈ [2, 6).

‖f‖Lp′ 6 C‖f‖
1−δ2(p)
L2 ‖x2f‖δ2(p)

L2 , ∀f ∈ Σ2, (2.3)

where δ2(p) = 3
2

(
1
2 −

1
p

)
with p > 2.

Proof. The proof of (2.2) is similar to that of [8, Lemma 6.2]. We give the proof
for the reader’s convenience. Let λ > 0, and write∫

R3
|f(x)|p

′
dx =

∫
|x|6λ

|f(x)|p
′
dx+

∫
|x|>λ

|f(x)|p
′
dx.

Estimate the first term by Hölder’s inequality∫
|x|6λ

|f(x)|p
′
dx 6 Cλ3/r′

(∫
|x|6λ

|f(x)|p
′rdx

)1/r

,
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and choose r = 2/p′. Estimate the second term by the same Hölder’s inequality,
after inserting the factor x as follows,∫

|x|>λ
|f(x)|p

′
dx =

∫
|x|>λ

|x|−p
′
|x|p

′
|f(x)|p

′
dx

6
(∫
|x|>λ

|x|−p
′r′dx

)1/r′(∫
|x|>λ

|xf(x)|2dx
)1/r

6Cλ
3
r′−p

′
‖xf‖2/rL2 .

In summary, we have the following estimate, for any λ > 0,

‖f‖Lp′ 6 Cλ
3
r′p′ ‖f‖L2 + Cλ

3
r′p′−1‖xf‖L2 . (2.4)

Notice that 3
r′p′ = δ(p), taking λ = ‖xf‖L2

‖f‖L2
, this yields (2.2). By a similar argument,

we can obtain (2.3). �

The following lemma is vital for proving the uniqueness for (1.1); it was first
proved in [5].

Lemma 2.3. Let σ > −1. For all z1, z2 ∈ C,

Re((|z1|σz1 − |z2|σz2)(z1 − z2)) > 0.

3. Proof of Theorem 1.3

By a similar idea as that in [7, 9], we modify (1.1) by regularizing the singular
potential and sublinear nonlinearity:

i∂tu
δ + ∆uδ = V (x)uδ +

uδ

(|x− a(t)|2 + δ)1/2

+ λ

(
1
|x|
∗ |uδ|2

)
uδ − ib uδ

(|uδ|2 + δ)α/2
,

uδ(0) = u0.

(3.1)

By the energy estimates, we can infer the following global existence for (3.1).

Lemma 3.1. Let δ > 0 and a ∈ W 1,1((0,∞),R3). For every u0 ∈ Σ, there exists
a unique global solution uδ ∈ C([0,∞); Σ) to (3.1). In addition, for every t > 0, we
have ∫

R3
|uδ(t, x)|2dx+ 2b

∫ t

0

∫
R3

|uδ(s, x)|2

(|uδ(s, x)|2 + δ)α/2
dxds = ‖u0‖2L2 , (3.2)

‖uδ(t)‖Σ ≤ C(‖u0‖Σ). (3.3)

Proof. Since the external potential V (x) is quadratic, local in time Strichartz’s
estimates hold for the Hamiltonian −∆ + V (x). The local existence can be proved
by applying a fixed-point argument in space of the type SΣ(0, T ), which can be
found for instance in [10] in the case of V = 0 (see [6] in the presence of a potential,
see [2, 11] for a time-dependent Coulomb potential 1

|x−a(t)| ). So we omit it.

On the other hand, multiplying (3.1) by uδ, integrating on R3 and taking the
imaginary part, we can obtain (3.2).

To show (3.3), we first assume that u(t) is sufficiently regular and decaying so
that all of the following formal manipulations can be carried out. Once the final
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result is established, a standard density argument allows to conclude that it also
holds for u ∈ C([0, T ],Σ).

We deduce from (3.1) that
d

dt
‖∇uδ(t)‖2L2

= −2 Re
∫

R3
∆uδ(t, x)∂tuδ(t, x)dx

= −2 Re
∫

R3

(
V (x)uδ(t, x) +

uδ(t, x)
(|x− a(t)|2 + δ)1/2

)
∂tuδ(t, x)dx

− 2 Re
∫

R3

(
λ
( 1
|x|
∗ |uδ(t)|2

)
uδ(t, x)− ibfδ(uδ)(t, x)

)
∂tuδ(t, x)dx

= − d

dt

∫
R3
V (x)|uδ(t, x)|2dx− d

dt

∫
R3

|uδ(t, x)|2

(|x− a(t)|2 + δ)1/2
dx

− λ

2
d

dt

∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx

− 2b Im
∫

R3
fδ(uδ)(t, x)∂tuδ(t, x)dx

+
∫

R3
∂t

( 1
(|x− a(t)|2 + δ)1/2

)
|uδ(t, x)|2dx,

(3.4)

where
fδ(v) =

v

(|v|2 + δ)α/2
.

For the last term in (3.4), we deduce from Hardy’s inequality that∫
R3
∂t

( 1
(|x− a(t)|2 + δ)1/2

)
|uδ(t, x)|2dx 6 |da

dt
(t)|
∫

R3

|uδ(t, x)|2

|x− a(t)|2
dx

6 4|da
dt

(t)|
∫

R3
|∇uδ(t, x)|2dx.

(3.5)

In addition, using (3.1) again, we have

− 2b Im
∫

R3
fδ(uδ)(t, x)∂tuδ(t, x)dx

= 2bRe
∫

R3
fδ(uδ)(t, x)∆uδ(t, x)dx− 2b

∫
R3

V (x)|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx

− 2b
∫

R3

1
(|x− a(t)|2 + δ)1/2

|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx

− 2bλ
∫

R3

( 1
|x|
∗ |uδ(t)|2

) |uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx,

(3.6)

where

2bRe
∫

R3
fδ(uδ)(t, x)∆uδ(t, x)dx

= −2bRe
∫

R3

|∇uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx+ 2bα

∫
R3

|Re(uδ(t, x)∇uδ(t, x))|2

(|uδ(t, x)|2 + δ)α/2+1
dx (3.7)

= −2b
∫

R3

δ|∇uδ(t, x)|2 + (1− α)|Re(uδ∇uδ)(t, x)|2 + | Im(uδ∇uδ)(t, x)|2

(|uδ(t, x)|2 + δ)α/2+1
dx.
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Now, we define

Eδ(t) =
∫

R3
|∇uδ(t, x)|2dx+

∫
R3
V (x)|uδ(t, x)|2dx.

Collecting (3.4)-(3.7), we derive

d

dt
Eδ(t)

= − d

dt

(∫
R3

|uδ(t, x)|2

(|x− a(t)|2 + δ)1/2
dx+

λ

2

∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx

)
+
∫

R3
∂t

( 1
(|x− a(t)|2 + δ)1/2

)
|uδ(t, x)|2dx− 2b

∫
R3

V (x)|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx

− 2b
∫

R3

δ|∇uδ(t, x)|2 + (1− α)|Re(uδ∇uδ)(t, x)|2 + | Im(uδ∇uδ)(t, x)|2

(|uδ(t, x)|2 + δ)α/2+1
dx

− 2b
∫

R3

1
(|x− a(t)|2 + δ)1/2

|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx (3.8)

− 2bλ
∫

R3

( 1
|x|
∗ |uδ(t)|2

) |uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx

6 − d

dt

(∫
R3

|uδ(t, x)|2

(|x− a(t)|2 + δ)1/2
dx+

λ

2

∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx

)
+ 4|da

dt
(t)|
∫

R3
|∇uδ(t, x)|2dx+ C‖∇uδ(t)‖L2

∫
R3

|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx.

Integrating this inequality on (0, t) with respect to time t, it follows that

Eδ(t)

6 Eδ(0)−
(∫

R3

|uδ(t, x)|2

(|x− a(t)|2 + δ)1/2
dx+

λ

2

∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx

)
+
(∫

R3

|u0(x)|2

(|x− a(0)|2 + δ)1/2
dx+

λ

2

∫
R3

( 1
|x|
∗ |u0|2

)
|u0(x)|2dx

)
+ 4

∫ t

0

|da
ds

(s)|‖∇uδ(s)‖2L2ds+ C

∫ t

0

‖∇uδ(s)‖L2g(s)ds (3.9)

6 C(‖u0‖Σ) +
|λ|
2

∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx

+ 4
∫ t

0

|da
ds

(s)|‖∇uδ(s)‖2L2ds+ C

∫ t

0

g(s)‖∇uδ(s)‖2L2ds+ C

∫ t

0

g(s) ds,

where

g(t) =
∫

R3

|uδ(t, x)|2

(|uδ(t, x)|2 + δ)α/2
dx.

Using Hardy’s and Young’s inequalities, for all t > 0, we have∫
R3

( 1
|x|
∗ |uδ(t)|2

)
|uδ(t, x)|2dx 6 ‖ 1

|x|
∗ |uδ(t)|2‖L∞

∫
R3
|uδ(t, x)|2dx

6 ε‖∇uδ(t)‖2L2 + Cε‖u0‖2L2 .

(3.10)
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This and (3.9) imply

‖∇uδ(t)‖2L2 6 C(‖u0‖Σ) + 4
∫ t

0

|da
ds

(s)|‖∇uδ(s)‖2L2ds

+ C

∫ t

0

g(s)‖∇uδ(s)‖2L2ds.

(3.11)

In view of (3.2) and a ∈ W 1,1((0,∞),R3), from Gronwall’s inequality we deduce
that

‖∇uδ(t)‖2L2 6 C(‖u0‖Σ) ∀t > 0,
which, together with (3.9) imply

Eδ(t) 6 C(‖u0‖Σ) ∀t > 0. (3.12)

This yields
‖uδ(t)‖Σ 6 C(‖u0‖Σ) ∀t > 0, (3.13)

which implies that the solution of (3.1) exists globally. �

Proof of Theorem 1.3. Firstly, it follows from (3.2) and (3.3) that (uδ)0<δ61 is
uniformly bounded in L∞([0,∞); Σ) ∩ L2−α([0,∞);L2−α). Therefore, there exist
u ∈ L∞([0,∞); Σ) and a subsequence (uδn) such that

uδn ⇀ u in w ∗ L∞([0,∞); Σ), as n→∞; (3.14)

this and Lemma 3.1, imply

‖u‖L∞([0,∞);H1) 6 C(‖u0‖Σ).

In addition, we infer from Hardy’s and Hölder’s inequalities that∥∥ 1
|x|
∗ |u|2u− 1

|x|
∗ |v|2v

∥∥
L2

6
∥∥ 1
|x|
∗ |u|2

∥∥
L∞
‖u− v‖L2 +

∥∥ 1
|x|
∗ |u|2 − 1

|x|
∗ |v|2

∥∥
L∞
‖v‖L2

6 C‖u‖L2‖∇u‖L2‖u− v‖L2

+ C sup
x∈R3

(∫
R3

(|u(y)|+ |v(y)|)2

|x− y|2
dy
)1/2

‖v‖L2‖u− v‖L2

6 C‖u‖2H1‖u− v‖L2 + C(‖∇u‖L2 + ‖∇v‖L2)‖v‖L2‖u− v‖L2

6 C(‖u‖2H1 + ‖v‖2H1)‖u− v‖L2 .

(3.15)

Thus, from (3.14) and the compact embedding Σ ↪→ L2 it follows that( 1
|x|
∗ |uδn(t)|2

)
uδn(t)→

( 1
|x|
∗ |u(t)|2

)
u(t) (3.16)

in L2 for a.e. t ∈ [0, T ], for every 0 < T <∞. Moreover, we have
1

(|x− a(t)|2 + δ)1/2
→ 1
|x− a(t)|

(3.17)

in L∞([0,∞);Lq + L∞), q ∈ (1, 3) as δ → 0.
Since uδn

(|uδn |2+δn)α/2 is uniformly bounded in L∞([0,∞);L
2

1−α ), there exists F ∈
L∞([0,∞);L

2
1−α ) such that

uδn

(|uδn |2 + δn)α/2
⇀ F in w ∗ L∞([0,∞);L

2
1−α ), (3.18)
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and ‖F‖
L∞([0,∞);L

2
1−α )

6 ‖u0‖1−αL2 .

On the other hand, it follows from (3.1) that for every ω ∈ C∞c (R3) and η ∈
C∞c ([0,∞)),∫ T

0

[〈iuδn , ω〉Σ∗,Ση′(t) + 〈−∆uδn + V (x)uδn +
uδn

(|x− a(t)|2 + δn)1/2

+ λ
( 1
|x|
∗ |uδn |2

)
uδn − ib uδn

(|uδn |2 + δn)α/2
, ω〉Σ∗,Ση(t)]dt = 0.

(3.19)

Applying (3.14)-(3.18), and the dominated convergence theorem, we deduce easily
that ∫ T

0

[〈iu, ω〉Σ∗,Ση′(t) + 〈−∆u+ V (x)u+
u

|x− a(t)|

+ λ

(
1
|x|
∗ |u|2

)
u− ibF, ω〉Σ∗,Ση(t)]dt = 0.

(3.20)

This implies that u satisfies

iut + ∆u = V (x)u+
1

|x− a(t)|
u+ λ

( 1
|x|
∗ |u|2

)
u− ibF (3.21)

for a.e. t ∈ [0,∞). We next show that F = u/|u|α. Fix t′ ∈ [0,∞) and δ > 0. It
follows from (3.2) that for any t ∈ [0,∞),

d

dt
‖uδ(t)− uδ(t′)‖2L2 6

d

dt
(−2 Re〈uδ(t), uδ(t′)〉L2)

= 2 Re〈−i∆uδ + iV (x)uδ + i
uδ

(|x− a(t)|2 + δ)1/2

+ iλ
( 1
|x|
∗ |uδ|2

)
uδ + b

uδ

(|uδ|2 + δ)α/2
, uδ〉L2 .

Integrating this inequality with respect to time, applying Hardy’s inequality and
(2.2), we obtain

‖uδ(t)− uδ(t′)‖2L2 6C|t− t′|(‖∆uδ‖L∞([0,∞);H−1)‖uδ‖L∞([0,∞);H1)

+ ‖xuδ‖L∞([0,∞);L2) + ‖ |uδ|2

|x− a(t)|
‖L∞([0,∞);L1)

+ ‖
( 1
|x|
∗ |uδ|2

)
|uδ|2‖L∞([0,∞);L1) + ‖uδ‖2−αL∞([0,∞);L2−α))

6C|t− t′|(‖∆uδ‖L∞([0,∞);H−1)‖uδ‖L∞([0,∞);H1)

+ ‖xuδ‖L∞([0,∞);L2) + ‖∇uδ‖L∞([0,∞);L2)‖uδ‖L∞([0,∞);L2)

+ ‖∇uδ‖L∞([0,∞);L2)‖uδ‖3L∞([0,∞);L2)

+ ‖uδ‖
4−5α

2
L∞([0,∞);L2)‖xu

δ‖
3α
2
L∞([0,∞);L2)),

which, together with (3.3) imply

‖uδ(t)− uδ(t′)‖L2 6 C|t− t′|1/2.

Therefore, for any T > 0, (uδ)0<δ61 is a bounded sequence in C([0, T ]; Σ) and
is uniformly equicontinuous from [0, T ] to L2. In addition, since the embedding
Σ ↪→ L2 is compact, the set {uδ(t)|δ ∈ (0, 1]} is relatively compact in L2. Applying
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Arzelà-Ascoli Theorem, it follows that (uδn) is relatively compact in C([0, T ];L2).
Thus, we deduce from (3.14) that

uδn → u in C([0, T ];L2).

This yields that u ∈ C([0, T ];L2) as well as u(0) = uδ(0) = u0. Note that this
holds for any T > 0, therefore, u ∈ C([0,∞);L2). Finally, up to subsequence,
uδn(t, x)→ u(t, x) in (t, x) ∈ [0,∞)× R3. Hence, for a.e. (t, x) ∈ [0,∞)× R3 such
that u(t, x) 6= 0, it follows

uδn

(|uδn |2 + δn)α/2
(t, x)→ u

|u|α
(t, x), as n→∞.

This and (3.18) imply that F (t, x) = u
|u|α (t, x). This completes the proof of exis-

tence.
Next we show uniqueness. Let u and v be two solutions to (1.1) with the same

initial data u0. We set w = u− v and it satisfies

i∂tw + ∆w = V (x)w +
1

|x− a(t)|
w + λ

( 1
|x|
∗ |u|2u− 1

|x|
∗ |v|2v

)
− ib

( u

|u|α
− v

|v|α
)
,

w(0, x) = 0.

(3.22)

Multiplying this equation by w, integrating over R3 and taking the imaginary part,
by (3.15) and Lemma 4.2 we obtain

1
2
d

dt

∫
R3
|w(t, x)|2dx = Im

∫
R3

( 1
|x|
∗ |u|2u− 1

|x|
∗ |v|2v

)
wdx

− bRe
∫

R3

( u

|u|α
− v

|v|α
)
wdx

6 ‖ 1
|x|
∗ |u|2u− 1

|x|
∗ |v|2v‖L2‖w‖L2

6 C‖w(t)‖2L2 .

This and Gronwall’s inequality impliy w(t) = 0 for all t ∈ [0,∞). Therefore, there
exists a unique global weak solution of (1.1). �

4. Proof of Theorem 1.4

Firstly, we have the following estimates.

Lemma 4.1. Assume 0 < α 6 1/2. There exists C > 0 such that the solution uδ

of (3.1) satisfies

‖uδ(t)‖H2 + ‖x2uδ(t)‖L2 6 C‖∂tuδ(t)‖L2 + C, for all t > 0, (4.1)

where C depends only on u0.
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Proof. Since uδ is the solution of (3.1), it follows that for all t > 0

‖uδ(t)‖H2 + ‖x2uδ(t)‖L2

6 C‖∆uδ(t)‖L2 + C‖uδ(t)‖L2 + C‖V uδ(t)‖L2

6 C‖∂tuδ(t)‖L2 + C‖uδ(t)‖L2 + C‖ uδ(t)
|x− a(t)|

‖L2

+ C‖
( 1
|x|
∗ |uδ(t)|2

)
uδ(t)‖L2 + C‖|uδ(t)|1−α‖L2 .

(4.2)

Applying Hardy’s and Young’s inequalities, we obtain that for any ε > 0, there
exists Cε > 0 such that

‖ uδ(t)
|x− a(t)|

‖L2 6 2‖∇uδ(t)‖L2 6 ε‖uδ(t)‖H2 + Cε‖uδ(t)‖L2 , (4.3)

and

‖ 1
|x|
∗ |uδ|2uδ(t)‖L2 6 C‖∇uδ(t)‖L2‖uδ(t)‖2L2 6 ε‖uδ(t)‖H2 + Cε‖uδ(t)‖L2 . (4.4)

When α 6 1/2, we deduce from (2.3) and Young’s inequality that

‖|uδ(t)|1−α‖L2 = ‖uδ(t)‖1−αL2−2α

6 C‖x2uδ(t)‖3α/4L2 ‖uδ(t)‖
4−7α

4
L2

6 ε‖x2uδ(t)‖L2 + Cε‖uδ(t)‖L2 .

(4.5)

Taking ε = 1
6 in (4.3)-(4.5), (4.1) follows from (4.2)-(4.5). �

Lemma 4.2. Let u0 ∈ Σ2, a ∈W 2,∞((0,∞),R3), b > 0 and 0 < α 6 1
2 . Then, for

every T <∞, there exists C > 0 such that the solution uδ of (3.1) satisfies

‖∂tuδ(t)‖L2 6 C(‖a‖W 2,∞((0,∞),R3), T, ‖u0‖Σ2), for all t ∈ [0, T ].

Proof. We make the change of variables y = x − a(t) and set uδ(t, x) = vδ(t, y).
Then,

∂tv
δ(t, y) = ∂tu

δ(t, x) +
da

dt
(t) · ∇uδ(t, x), (4.6)

and ∇uδ(t, x) = ∇vδ(t, y). Therefore, vδ satisfies the equation

i∂tv
δ + ∆vδ = V (y + a(t))vδ +

vδ

(|y|2 + δ)1/2
+ λ

1
|x|
∗ |vδ|2vδ

+ ib
vδ

(|vδ|2 + δ)α/2
+ i

da

dt
(t) · ∇vδ,

vδ(0, y) = u0(y + a(0)).

(4.7)

Now, we set wδ(t, y) = ∂tv
δ(t, y) and since

∂tV (y + a(t)) =
da

dt
(t) · ∇V (y + a(t)),
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it follows that w satisfies

i∂tw
δ + ∆wδ = V (y + a(t))wδ + (

da

dt
(t) · ∇V (y + a(t)))vδ

+
wδ

(|y|2 + δ)1/2
+ λ∂t

( 1
|x|
∗ |vδ|2vδ

)
+ ib∂t

( vδ

(|vδ|2 + δ)α/2

)
+ i

d2a

dt2
(t) · ∇vδ + i

da

dt
(t) · ∇wδ,

wδ(0, y) = i∆vδ(0)− iV (y + a(0))vδ(0)− i vδ(0)
(|y|2 + δ)1/2

− iλ 1
|x|
∗ |vδ(0)|2vδ(0) + b

vδ(0)
(|vδ(0)|2 + δ)α/2

+
da

dt
(t) · ∇vδ(0).

(4.8)
Multiplying by wδ, integrating on R3 and taking the imaginary part we have

1
2
d

dt

∫
R3
|wδ(t, y)|2dy = Im

∫
R3

(da
dt

(t) · ∇V (y + a(t))
)
vδ(t, y)wδ(t, y)dy

+ λ Im
∫

R3
∂t

( 1
|x|
∗ |vδ|2vδ

)
(t, y)wδ(t, y)dy

+ bRe
∫

R3
∂t

( vδ

(|vδ|2 + δ)α/2

)
(t, y)wδ(t, y)dy

+ Re
∫

R3

d2a

dt2
(t) · ∇vδ(t, y)wδ(t, y)dy

+ Re
∫

R3

da

dt
(t) · ∇wδ(t, y)wδ(t, y)dy.

(4.9)

We deduce from the Hölder and Hardy inequalities that

Im
∫

R3
∂t

( 1
|x|
∗ |vδ|2vδ

)
(t, y)wδ(t, y)dy

= Im
∫

R3

(
1
|x|
∗ 2 Re(vδwδ)

)
(t, y)vδ(t, y)wδ(t, y)dy

6 C‖ 1
|x|
∗ Re(vδ(t)wδ(t))‖L∞‖vδ(t)‖L2‖wδ(t)‖L2

6 C‖ 1
|x|2
∗ |vδ(t)|2‖1/2L∞‖v

δ(t)‖L2‖wδ(t)‖2L2

6 C‖∇vδ(t)‖L2‖vδ(t)‖L2‖wδ(t)‖2L2 .

(4.10)

After some computations, we have

− bRe
∫

R3
∂t

( vδ

(|vδ|2 + δ)α/2

)
(t, y)wδ(t, y)dy

= −bRe
∫

R3

( wδ

(|vδ|2 + δ)α/2
− αvδ Revδwδ

(|vδ|2 + δ)α/2+1

)
(t, y)wδ(t, y)dy

= −b
∫

R3

(1− α)|Revδwδ|2(t, y) + |Imvδwδ|2(t, y) + δ|wδ|2(t, y)
(|vδ(t, y)|2 + δ)α/2+1

dy,

(4.11)

where we use the decomposing

|vδ|2|wδ|2 = |Re vδwδ|2 + | Im vδwδ|2.
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In addition,

Re
∫

R3

da

dt
(t) · ∇wδ(t, y)wδ(t, y)dy =

1
2

∫
R3

da

dt
(t) · ∇|wδ(t, y)|2dy = 0. (4.12)

Collecting (4.9)-(4.12), we have

1
2
d

dt

∫
R3
|wδ(t, y)|2dy

6 Im
∫

R3

(da
dt

(t) · ∇V (y + a(t))
)
vδ(t, y)wδ(t, y)dy

+ C‖∇vδ(t)‖L2‖vδ(t)‖L2‖wδ(t)‖2L2

+ Re
∫

R3

d2a

dt2
(t) · ∇vδ(t, y)wδ(t, y)dy

6 |da
dt
|‖xuδ(t)‖L2‖wδ(t)‖L2 + C‖∇vδ(t)‖L2‖vδ(t)‖L2‖wδ(t)‖2L2

+ |d
2a

dt2
|‖∇vδ(t)‖L2‖wδ(t)‖L2 .

(4.13)

Integrating in the time variable on (0, t), we deduce from Lemma 3.1 that

‖wδ(t)‖2L2 6 C‖u0‖2Σ2 + C

∫ t

0

|da
ds

(s)|‖xuδ(s)‖L2‖wδ(s)‖L2ds

+ C

∫ t

0

‖∇vδ(s)‖L2‖vδ(s)‖L2‖wδ(s)‖2L2ds

+
∫ t

0

|d
2a

ds2
|‖∇vδ(s)‖L2‖wδ(s)‖L2ds

6 C‖u0‖2Σ2 + C

∫ t

0

(
|da
ds

(s)|+ |d
2a

ds2
(s)|
)
‖wδ(s)‖L2ds

+ C

∫ t

0

‖wδ(s)‖2L2ds.

(4.14)

Thus, it follows from Gronwall’s inequality that

‖wδ(t)‖L2 6 C(T, ‖u0‖Σ2) ∀t ∈ [0, T ], (4.15)

for every T <∞.
Finally, it follows from (4.6) and Theorem 1.3 that

‖∂tuδ(t)‖L2 6 ‖∂tvδ(t)‖L2 + C‖∇uδ(t)‖L2 6 C(‖a‖W 2,∞(0,∞), T, ‖u0‖Σ2).

�

Proof of Theorem 1.4. Combining Lemmas 4.1 and 4.2, for every 0 < T <∞, there
exists C > 0 such that the solution uδ of (3.1) satisfies for all t ∈ [0, T ]

‖uδ(t)‖H2 + ‖x2uδ(t)‖L2 + ‖∂tuδ(t)‖L2 6 C, (4.16)

where C is independent of δ. This implies that there exist u ∈ L∞((0, T ); Σ2) and
a subsequence (uδn) such that, for a.e. t ∈ [0, T ]

uδn(t) ⇀ u(t), in Σ2 as n→∞. (4.17)
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Thus, we can pass to the limit in the distributions sense in (3.1) as δ → 0. Thus, u
is the solution of (1.1) in the sense of distributions and satisfies u ∈ L∞((0, T ); Σ2),
∂tu ∈ L∞((0, T );L2) and

‖u(t)‖Σ2 + ‖∂tu(t)‖L2 6 C, ∀t ∈ [0, T ].

This completes the proof. �
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