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Abstract. In this article, we consider the stabilization of a wave equation
with variable coefficients and internal memory in an open bounded domain,

by the Riemannian geometry approach. For the wave equation with a locally

distributed memory with a kernel, we obtain exponential decay of the energy
under some geometric conditions. In addition, for the wave equation with

nonlinear internal time-varying delay without upper bound, we obtain uniform

decay of the energy.

1. Introduction and statement of main results

Let Ω be an open bounded domain in Rn with smooth boundary Γ. Define

A u = −divA(x)∇u for u ∈ H1(Ω), (1.1)

where A(x) = (aij(x))n×n is a symmetric, positively definite matric for each x ∈ Rn
and aij(x) is a smooth function on Rn for each 1 ≤ i, j ≤ n.

We consider the stabilization of the problem

utt + A u+ a(x)[µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ] = 0

(x, t) ∈ Ω× (0,+∞),

u(x, t)
∣∣
Γ

= 0 t ∈ (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t) = f0(x, t) (x, t) ∈ Ω× (−∞, 0),

(1.2)

where a(x) ∈ C1(Ω) is a nonnegative function and the kernel k(·) satisfies∫ ∞
0

|k(ρ)|dρ = 1. (1.3)

Moreover, µ1, µ2 > 0, and the initial data (u0, u1, f0) belongs to a suitable space.
Stability results for system (1.2) in the case of µ2 = 0; that is, without memory,

were obtained by some authors. See [6, 12, 26].
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Time delays often arise in many physical, chemical, biological and economical
phenomena. In recent years, different equations with time delay effects have become
an active area of research. In particular, as is well-known that an arbitrarily small
delay may be the source of instability and some dissipative mechanism need to be
introduced to against the instabilities, the control and stabilization of the wave
equations with time delay have been extensively studied by several authors (see
for example, [1, 2, 10, 13, 18, 19, 20, 21, 22, 23, 24, 25] and many others.) To
be specific, with a internal or boundary constant delay term, the stability and
instability results of the constant coefficient wave equation are given by [1, 18, 25].
The results in [18] have been extended to the variable coefficient wave equation in
[22, 24]. Besides, with a time-varying delay term in the boundary or interior, the
uniform decay results of the energy of the constant coefficient wave equation are
obtained by [2, 10, 13, 19, 20, 21, 23].

The following system was studied in [17].

utt + A u = 0 (x, t) ∈ Ω× (0,+∞),

u(x, t) = 0 (x, t) ∈ Γ2 × (0,+∞),

∂u

∂νA
+ but(x, t) +

∫ t

0

k(t− ρ)ut(x, ρ)dρ = 0 (x, t) ∈ Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t) = f0(x, t) (x, t) ∈ Γ1 × (−∞, 0)

(1.4)

where Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅ and Γ2 6= ∅. b is a positive constant and ∂u
∂νA

=
〈A(x)u, ν〉 is the co-normal derivative, 〈·, ·〉 denotes the standard metric of the
Euclidean space Rn and ν(x) is the outside unit normal vector for each x ∈ Γ.

The exponential decay of the energy of system (1.4) is obtained under the fol-
lowing assumptions: the kernel k(·) satisfies

k(t) ≥ 0, k′(t) ≤ −γ0k(t), k′′(t) ≥ −γ1k
′(t), (1.5)

where γ0, γ1 are positive constants, and there exists a vector field H on Ω and a
constant ρ0 > 0 such that

DgH(X,X) ≥ ρ0|X|2g for X ∈ Rnx x ∈ Ω, (1.6)

sup
x∈Ω

divH < inf
x∈Ω

divH + 2ρ0, (1.7)

H · ν ≤ 0 x ∈ Γ2 and H · ν ≥ δ x ∈ Γ1, (1.8)

where δ is a positive constant.
Note that the initial memory of ut is zero and

∫ t
0
k(t − ρ)ut(x, ρ)dρ =

∫ −t
0

k(ρ)
ut(x, t+ρ)dρ in (1.4). Our objective in this paper is to study the exponential decay
of the energy of system (1.2) with a nonzero initial memory of ut, a more general
kernel k(·) and vector field H than (1.4).

To obtain our stabilization result, we assume that

µ2 < µ1. (1.9)

Let

G(h) =
∫ +∞

h

|k(ρ)|dρ for h ≥ 0. (1.10)
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Define the energy of system (1.2) by

E(t) =
1
2

∫
Ω

(
u2
t +

n∑
i,j=1

aijuxiuxj

)
dx

+ ξ

∫ ∞
0

∫
Ω

a(x)G(ρ)u2
t (x, t− ρ) dx dρ,

(1.11)

where ξ is a positive constant satisfying

µ2 < 2ξ < 2µ1 − µ2. (1.12)

As in [29, 15], we define

g = A−1(x) for x ∈ Rn (1.13)

as a Riemannian metric on Rn and consider the couple (Rn, g) as a Riemannian
manifold. For each x ∈ Rn, the metric g introduces an inner product and the norm
on the tangent space on Rnx = Rn by

〈X,Y 〉g = 〈A−1(x)X,Y 〉, |X|2g = 〈X,X〉g X, Y ∈ Rnx ,

where 〈·, ·〉 denotes the standard dot metric. Let f ∈ C1(Rn), we define the gradient
∇gf of f in the Riemannian metric g by

X(f) = 〈∇gf,X〉g, (1.14)

where X is any vector field on (Rn, g).
We denote the Levi-Civita connection of the metric g by Dg. For the system

(1.2), our main assumption is as follows:
(A1) There exist ε, ρ0 > 0,Ωi ⊂ Ω with smooth boundary ∂Ωi and C2 vector

fields Hi on Ωi, i = 1, 2, . . . ,m such that Ωi ∩ Ωj = ∅, 0 ≤ i < j ≤ m and

DgH
i(X,X) ≥ ρ0|X|2g for X ∈ Rnx x ∈ Ωi, (1.15)

a(x) ≥ a0, for x ∈ V1 ∩ Ω, (1.16)

where m is a positive integer and

V1 = Ω ∩ ℵε(∪mi=1Γi0 ∪ (Ω\ ∪mi=1 Ωi)), (1.17)

where
ℵε(S) = ∪x∈S{y ∈ Rn||y − x| < ε}, S ⊂ Rn,

Γi0 = {x ∈ ∂Ωi|Hi(x) · νi(x) > ε0},
(1.18)

with νi(x) the unit normal of ∂Ωi in the Euclidean space Rn, pointing
towards the exterior of Ωi, and ε0 is a nonnegative constant satisfying

Γ ⊃ ∪mi=1{x ∈ ∂Ωi|0 < Hi(x) · νi(x) ≤ ε0}. (1.19)

For 0 < ε′ < ε, we set

V2 = ℵε′(∪mi=1Γi0 ∪ (Ω\ ∪mi=1 Ωi)). (1.20)

Assumption (1.15) is a verifiable condition used in [29] to establish the control-
lability of the wave equation with variable coefficients. There some examples of
the global existence of such vector fields are given by using the Riemann curvature
theory. So far, it has been widely used in the study of control and stabilization of
many variable-coefficient systems, see for example [4, 7, 9, 11, 16, 27, 28].
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If ε0 = 0 in (1.18), Assumption (A1) is used in [5, 6] to study the locally dis-
tributed control and stabilization of the wave equation with variable coefficients. If
ε0 6= 0, Assumption (A1) is a weaker than the geometric conditions in [5, 6].

If J = 1 and Ω1 = Ω, then from (1.17), we have

V1

∣∣
ε0 6=0

⊂ Γ0 ⊂ V1

∣∣
ε0=0

, (1.21)

where
Γ0 = {x ∈ ∂Ω|H1(x) · ν(x) > 0}. (1.22)

Γ0 is widely used to study the control and stabilization of the wave equations with
boundary feedbacks. See [8, 17, 23, 29].

In what follows, we denote by C or Ci any positive constant which may be
different from line to line. The following is the stability results of system (1.2).

Theorem 1.1. Assumption (A1) holds, and that ε0 is sufficiently small and there
are positive constants λ > 1 and T0 > 0 such that

G(ρ) ≥ λG(ρ+ T0) ∀ρ ≥ 0. (1.23)

Then there exist constants C1, C2 > 0, such that

E(t) ≤ C1e
−C2tE(0), ∀t > 0. (1.24)

Example 1.2. Let G(h) =
∫ +∞
h

e−ρdρ = e−h, h ≥ 0, where |k(ρ)| = e−ρ satisfies
(1.3). Since G′(h) = −e−h < 0, condition (1.23) holds naturally.

In this paper, we also consider the stabilization of the problem

utt + A u+ a1g1(ut(x, t)) + a2g2(ut(x, t− τ(t))) = 0

(x, t) ∈ Ω× (0,+∞),

u(x, t)
∣∣
Γ

= 0 t ∈ (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t) = h0(x, t) (x, t) ∈ Ω× (−τ(0), 0),

(1.25)

where a1 > 0, a2 ∈ R are constants and τ(t) satisfies

τ(t) ≥ 0 and τ ′(t) ≤ d < 1 ∀t ≥ 0, (1.26)

where d is a constant. And there exist positive constants c1, p ≥ 1 such that
g1, g2 ∈ C(R) satisfy

g1(0) = 0, sg1(s) ≥ max{|s|2, (g2(s))2} for s ∈ R, (1.27)

|g1(s)| ≤ c1|s| for |s| > 1. (1.28)

In [2, 10, 13, 19, 20, 21, 23], the well-posedness and stabilization of the wave
equation with a time-varying delay was studied under the assumption that τ(t) has
a upper bound. While in this paper, we will consider the stabilization of system
(1.25) with a more general τ(t), that is, τ(t) does not need to have a upper bound
(See (1.26)). To obtain our stabilization result, we assume that

|a2|√
1− d

< a1. (1.29)
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We define the energy of system (1.25) as

J(t) =
1
2

∫
Ω

(
u2
t +

n∑
i,j=1

aijuxi
uxj

)
dx

+ η

∫ φ(t)

t

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ,

(1.30)

where η is a positive constant satisfying

|a2|
2
√

1− d
<

η

1− d
< a1 −

|a2|
2
√

1− d
, (1.31)

and φ(t), ϕ(t) satisfy

ϕ(t) = t− τ(t), ∀t ≥ 0, φ(t) = ϕ−1(t), ∀t ≥ −τ(0). (1.32)

Since ϕ′(t) = 1 − τ ′(t) ≥ 1 − d > 0, ϕ(t) and φ(t) are strictly increasing functions
satisfying

lim
t→+∞

ϕ(t) = +∞, lim
t→+∞

φ(t) = +∞. (1.33)

As in [3, 14], we let h ∈ C([0,+∞)) be a concave increasing function such that

h(0) = 0, s2 + (g1(s))2 ≤ h(sg1(s)) for |s| ≤ 1. (1.34)

We define
F (t) = sup{τ(ρ) + 1|0 ≤ ρ ≤ t} ∀t ≥ 0. (1.35)

The following is the stability results of system (1.25).

Theorem 1.3. (a) Assume that

|g1(s)| ≤ c2|s| for |s| ≤ 1. (1.36)

Then there exist constants C1, C2 > 0, such that

J(t) ≤ C1J(0)
tC2

, ∀t > 0. (1.37)

(b) Assume that

lim
t→+∞

F (t)
t

= 0. (1.38)

Then

lim
t→+∞

F (φ(t))
t

= 0. (1.39)

Also there exist constants C1, C2 > 0, such that

J(t) ≤ C1h
( C2

φ(t)
J(0)

)
+ C1

F (φ(t))
t

J(0),∀t > 0. (1.40)

Example 1.4. Let τ(t) = d2

t+1 , then τ ′(t) = − d2

(t+1)2 , which implies relation (1.26).
Since

lim
t→+∞

F (t)
t

= lim
t→+∞

sup{d2/(ρ+ 1) + 1|0 ≤ ρ ≤ t}
t

= 0, (1.41)

condition (1.38) is satisfied.

This article is organized as follows. Section 2 is devoted to presenting the well-
posedness of systems (1.2) and (1.25). The technical details of the proof for Theo-
rems 1.1 and 1.3 are given in Section 3 and Section 4, respectively.
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2. Well-posedness

To obtain the well-posedness of system (1.2), we define

L2
a(Ω× (−∞, t)) =

{
u :
∫ ∞

0

∫
Ω

a(x)G(ρ)u2(x, t− ρ) dx dρ < +∞
}
. (2.1)

L2
a(Ω, H1(−∞, t))

=
{
u :
∫ ∞

0

∫
Ω

a(x)G(ρ)(u2(x, t− ρ) + u2
ρ(x, t− ρ)) dx dρ < +∞

}
.

(2.2)

Note that system (1.2) is a linear equation and the kernel k(·) defined on [0,+∞)
does not change with time t. Using the methods in [18], by a similar proof, we
obtain the following well-posedness result.

Theorem 2.1. For any initial datum (u0, u1, f0) ∈ H1
0 (Ω) × L2(Ω) × L2

a(Ω ×
(−∞, 0)), there exists a unique solution u of system (1.2) satisfying

u ∈ C1([0,+∞), L2(Ω)) ∩ C([0,+∞), H1
0 (Ω)), ut ∈ C([0,+∞), L2

a(Ω× (−∞, t)).

Moreover, if (u0, u1, f0) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×L2
a(Ω, H1(−∞, 0)) satisfies

the compatibility condition f0(·, 0) = u1, then the unique solution u satisfies

u ∈ C1([0,+∞), H1
0 (Ω)) ∩ C([0,+∞), H2(Ω) ∩H1

0 (Ω))

and ut ∈ C([0,+∞), L2
a(Ω, H1(−∞, t)).

To obtain the stabilization of system (1.25), we assume system (1.25) is well-
posed such that ∫ φ(0)

0

∫
Ω

h0(x, ϕ(t))g1(h0(x, ϕ(t))) dx dt < +∞ (2.3)

and u ∈ C1([0,+∞), L2(Ω)) ∩ C([0,+∞), H1
Γ2

(Ω)).

3. Proofs of Theorem 1.1

The following lemma is given in [29, Lemma 2.1] to introduce the relations
between the standard dot metric 〈·, ·〉 and the Riemannian metric g = 〈·, ·〉g.

Lemma 3.1. Let x = (x1, · · · , xn) be the natural coordinate system in Rn. Let f ,
h be functions and let H, X be vector fields. Then

(a)
〈H(x), A(x)X(x)〉g = 〈H(x), X(x)〉, x ∈ Rn; (3.1)

(b)

∇gf =
n∑
i=1

( n∑
j=1

aij(x)fxj

) ∂

∂xi
= A(x)∇f, x ∈ Rn, (3.2)

where ∇f is the gradient of f in the standard metric;
(c)

∇gf(h) = 〈∇gf,∇gh〉g = 〈∇f, A(x)∇h〉, x ∈ Rn, (3.3)

where the matrix A(x) is given in the formula (1.1).
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Let
E0(t) =

1
2

∫
Ω

(
u2
t + |∇gu|2g

)
dx . (3.4)

Using (1.11) and (1.30), we have

E(t) = E0(t) + ξ

∫ ∞
0

∫
Ω

a(x)G(ρ)u2
t (x, t− ρ) dx dρ, (3.5)

J(t) = E0(t) + η

∫ φ(t)

t

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ. (3.6)

Let Ω̂ be a subset of Ω, we define

E0(Ω̂, t) =
1
2

∫
Ω̂

(
u2
t + |∇gu|2g

)
dx, (3.7)

E(Ω̂, t) = E0(Ω̂, t) + ξ

∫ ∞
0

∫
Ω̂

a(x)G(ρ)u2
t (x, t− ρ) dx dρ. (3.8)

Lemma 3.2. Suppose that (1.12) holds. Let u(x, t) be the solution of (1.2). Then
there exist constants C1, C2 > 0 such that

E(0)− E(T ) ≥ C1

∫ T

0

∫
Ω

a(x)
(
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)
dx dt, (3.9)

E(0)− E(T ) ≤ C2

∫ T

0

∫
Ω

a(x)
(
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)
dx dt, (3.10)

where T > 0. The assertion (3.9) implies that E(t) is decreasing.

Proof. Differentiating (1.11), we obtain

E′(t) =
∫

Ω

(ututt +∇gu · ∇ut) dx

+ 2ξ
∫ +∞

0

∫
Ω

a(x)G(ρ)utt(x, t− ρ)ut(x, t− ρ) dx dρ.
(3.11)

Applying Green’s formula, the fact that

ut(x, t− ρ) = −uρ(x, t− ρ), utt(x, t− ρ) = uρρ(x, t− ρ),

and integrating by parts, we obtain

E′(t) =
∫

Ω

a(x)
[(
− µ1u

2
t (x, t)− µ2ut(x, t)

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ
)

+ ξ
(
u2
t (x, t)−

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)]
dx.

(3.12)

With (1.3) we deduce that∣∣∣ut(x, t)∫ ∞
0

k(ρ)ut(x, t− ρ)dρ
∣∣∣

≤ 1
2
u2
t (x, t) +

1
2

(∫ ∞
0

k(ρ)ut(x, t− ρ)dρ
)2

≤ 1
2
u2
t (x, t) +

1
2

∫ ∞
0

|k(ρ)|dρ
∫ ∞

0

|k(ρ)|u2
t (x, t− ρ)dρ

=
1
2
u2
t (x, t) +

1
2

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ.
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Then, it follows from (1.12) and (3.12) that

E′(t) ≤ −C1

∫
Ω

a(x)
(
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)
dx, (3.13)

E′(t) ≥ −C2

∫
Ω

a(x)
(
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)
dx, (3.14)

where C1, C2 > 0 and C1 satisfies

C1 = min
{
ξ − µ2

2
, µ1 −

µ2

2
− ξ
}
.

Then inequalities (3.9) and (3.10) follow directly from (3.13) and (3.14) by inte-
grating from 0 to T . �

By a similar proof as in [29, Proposition 2.1], we have the following identities.

Lemma 3.3. Suppose that u(x, t) solves the equation

utt + A u+ a(x)
[
µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ
]

= 0 (3.15)

for (x, t) ∈ Ω× (0,+∞), and that H is a vector field defined on Ω. Then∫ T

0

∫
Γ

∂u

∂νA
H(u)dΓdt+

1
2

∫ T

0

∫
Γ

(
u2
t − |∇gu|2g

)
H · νdΓdt

= (ut,H(u))
∣∣T
0

+
∫ T

0

∫
Ω

a(x)H(u)[µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ] dx dt

+
∫ T

0

∫
Ω

DgH(∇gu,∇gu) dx dt+
1
2

∫ T

0

∫
Ω

(
u2
t − |∇gu|

2
g

)
divH dx dt.

(3.16)
Moreover, assuming that P ∈ C1(Ω), we have∫ T

0

∫
Ω

(
u2
t − |∇gu|2g

)
P dx dt

= (ut, uP )
∣∣T
0

+
1
2

∫ T

0

∫
Ω

∇gP (u2) dx dt−
∫ T

0

∫
Γ

Pu
∂u

∂νA
dΓdt

+
∫ T

0

∫
Ω

a(x)Pu[µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ] dx dt.

(3.17)

The following is the energy inequality for our stabilization problem.

Lemma 3.4. Let the conditions in Theorem 1.1 hold, and let u(x, t) be the solution
of system (1.2). Then there exists T > 0 such that, for T > T , there exists a positive
constant CT such that

E(0) ≤ CT
∫ T

0

∫
Ω

a(x)
[
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

]
dx dt. (3.18)

Proof. Let φi ∈ C∞0 (Rn) satisfy 0 ≤ φi ≤ 1 and

φi =

{
1, x ∈ Ωi\V1

0, x ∈ V2,
(3.19)

for 1 ≤ i ≤ m. Set

H = φiHi, P =
1
2
(

div(φiHi)− ρ0

)
, Ωi = Ω.
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Substituting (3.17) into (3.16), we have
Π∂Ωi

=
(
ut, φ

iHi(u) + Pu
)∣∣T

0
+
ρ0

2

∫ T

0

E0(Ωi, t)dt

+
∫ T

0

∫
Ωi

(
Dg(φiHi)(∇gu,∇gu)− ρ0|∇gu|2g +

1
2
∇gP (u2)

)
dx dt

+
∫ T

0

∫
Ωi

a(x)φiHi(u)[µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ] dx dt

+
∫ T

0

∫
Ωi

a(x)Pu[µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ] dx dt,

(3.20)

where

Π∂Ωi
=
∫ T

0

∫
∂Ωi

∂u

∂νA

(
φiHi(u) + uP

)
dΓdt

+
1
2

∫ T

0

∫
∂Ωi

(
u2
t − |∇gu|2g

)
φiHi · νdΓdt.

(3.21)

Note that ∂Ωi ∈ V2 ∪ Γi1, where Γi1 = {x ∈ ∂Ωi ∩ Γ|Hi(x) · ν(x) ≤ 0}. We
decompose Π∂Ωi

as
Π∂Ωi = Π∂Ωi∩V2 + Π(∂Ωi∩Γi

1)\V2
, (3.22)

where

Π∂Ωi∩V2 =
∫ T

0

∫
∂Ωi∩V2

∂u

∂νA

(
φiHi(u) + uP

)
dΓdt

+
1
2

∫ T

0

∫
∂Ωi∩V2

(
u2
t − |∇gu|2g

)
φiHi · νdΓdt,

(3.23)

Π(∂Ωi∩Γi
1)\V2

=
∫ T

0

∫
(∂Ωi∩Γi

1)\V2

∂u

∂νA

(
φiHi(u) + uP

)
dΓdt

+
1
2

∫ T

0

∫
(∂Ωi∩Γi

1)\V2

(
u2
t − |∇gu|2g

)
φiHi · νdΓdt.

(3.24)

From (3.19), we have
Π∂Ωi∩V2 = 0. (3.25)

Since u
∣∣
(∂Ωi∩Γi

1)\V2
= 0, we obtain ∇Γg

u
∣∣
(∂Ωi∩Γi

1)\V2
= 0; that is,

∇gu =
∂u

∂νA

νA

|νA |2g
for x ∈ (∂Ωi ∩ Γi1)\V2. (3.26)

Similarly, we have

H(u) = 〈H,∇gu〉g =
∂u

∂νA

H · ν
|νA |2g

for x ∈ (∂Ωi ∩ Γi1)\V2. (3.27)

Using formulas (3.26) and (3.27) in (3.24), with (1.19) and (1.20), we obtain

Π(∂Ωi∩Γi
1)\V2

=
1
2

∫ T

0

∫
(∂Ωi∩Γi

1)\V2

( ∂u

∂νA

)2 H · ν
|νA |2g

dΓdt

≤ Cε0

∫ T

0

∫
Γ

( ∂u

∂νA

)2

dΓdt.

(3.28)
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Let H1 be a C1 vector field on Ω satisfying

H1 =
νA

|νA |2g
x ∈ Γ. (3.29)

Replacing H with H1 in (3.16) and noting that u
∣∣
Γ

= 0, by a similar discussion on
Γ with (3.26) ∼ (3.28) we have

1
2

∫ T

0

∫
Γ

( ∂u

∂νA

)2

dΓdt

= (ut, H1(u))
∣∣T
0

+
∫ T

0

dt

∫
Ω

DgH1(∇gu,∇gu)dx

+
1
2

∫ T

0

dt

∫
Ω

(
u2
t − |∇gu|2g

)
divH1dx

+
∫ T

0

dt

∫
Ω

a(x)H1(u)
[
µ1ut(x, t) + µ2

∫ ∞
0

k(ρ)ut(x, t− ρ)dρ
]
dx

≤ C1(E(0) + E(T )) + C2

∫ T

0

E0(t)dt

+ C3

∫ T

0

∫
Ω

a(x)
[
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

]
dx dt.

(3.30)

Substituting (3.25), (3.28) and (3.30) into (3.20), and using (1.15) and (1.16), we
obtain∫ T

0

E0(Ωi\V1, t)dt

≤ C4(E(0) + E(T )) + C5ε0

∫ T

0

E0(t)dt+
∫ T

0

∫
Ωi

(Cαu2 + α|∇gu|2g) dx dt

+ C6

∫ T

0

∫
Ω

a(x)[u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ+ |∇gu|2g] dx dt,

(3.31)

where α is sufficiently small. Then, noting that Ω ⊂ (
⋃m
i=1 Ωi ∪ V1), we have∫ T

0

E0(Ω\V1, t)dt

≤ C4m(E(0) + E(T )) + C5mε0

∫ T

0

E0(t)dt

+
m∑
i=1

∫ T

0

∫
Ωi

(Cαu2 + α|∇gu|2g) dx dt+ C6m

∫ T

0

∫
Ω

a(x)[u2
t (x, t)

+
∫ ∞

0

|k(ρ)|u2
t (x, t− ρ)dρ+ |∇gu|2g] dx dt

≤ C4m(E(0) + E(T )) + C5mε0

∫ T

0

E0(t)dt+ C7

∫ T

0

∫
Ω

u2 dx dt

+ C8

∫ T

0

∫
Ω

a(x)[u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ+ |∇gu|2g] dx dt.

(3.32)
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Then, using (1.16), we have∫ T

0

E0(t)dt

≤ C9(E(0) + E(T )) + C10

∫ T

0

∫
Ω

u2 dx dt

+ C11

∫ T

0

∫
Ω

a(x)[u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ+ |∇gu|2g] dx dt.

(3.33)

Set P = a(x) and substituting identity (3.17) into identity (3.33), we obtain∫ T

0

E0(t)dt ≤ C12(E(0) + E(T )) + C13

∫ T

0

∫
Ω

u2 dx dt

+ C14

∫ T

0

∫
Ω

a(x)[u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ] dx dt.

(3.34)

From (1.23), we have∫ T0

0

∫ ∞
0

∫
Ω

a(x)|k(ρ)|u2
t (x, t− ρ) dx dρ dt

=
∫ T0

0

∫ ∞
−t

∫
Ω

a(x)|k(t+ ρ)|u2
t (x,−ρ) dx dρ dt

≥
∫ ∞

0

∫
Ω

a(x)
∫ T0

0

|k(t+ ρ)|u2
t (x,−ρ) dx dρ dt

≥
(
1− 1

λ

) ∫ ∞
0

∫
Ω

a(x)G(ρ)u2
t (x,−ρ) dx dρ dt.

(3.35)

Then, for T ≥ T0, with (3.5) and (3.9) we obtain

C12(E(T ) + E(0)) + E(0) ≤ (2C12 + 1)E(0)

= (2C12 + 1)E0(0) + (2C12 + 1)ξ
∫ ∞

0

∫
Ω

a(x)G(ρ)u2
t (x, t− ρ) dx dρ dt

≤ (2C12 + 1)E0(0)

+ (2C12 + 1)
( λ

λ− 1
)
ξ

∫ T

0

∫ ∞
0

∫
Ω

a(x)|k(ρ)|u2
t (x, t− ρ) dx dρ dt.

(3.36)

Note that for T ≥ 2C12 + 1,

(2C12 + 1)E0(0) ≤
∫ T

0

E0(t)dt+
∫ 2C12+1

0

(E0(0)− E0(t))dt

= −
∫ 2C12+1

0

∫ t

0

∫
Ω

a(x)ut(x, t′)[µ1ut(x, t′)

+ µ2

∫ ∞
0

k(ρ)ut(x, t′ − ρ)dρ] dx dt′dt+
∫ T

0

E0(t)dt

≤ (2C12 + 1)(µ1 +
µ2

2
)
∫ 2C12+1

0

∫
Ω

a(x)[u2
t (x, t)

+
∫ ∞

0

|k(ρ)|u2
t (x, t− ρ)dρ] dx dt+

∫ T

0

E0(t)dt.

(3.37)



12 Z.-H. NING, F. YANG EJDE-2018/160

Substituting (3.36)-(3.37) into (3.34), for sufficiently large T , we obtain

E(0) ≤ C15

∫ T

0

∫
Ω

a(x)
(
u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ

)
dx dt

+ C13

∫ T

0

∫
Ω

u2 dx dt.

(3.38)

Estimate (3.18) follows from the inequality (3.38) by a compactness-uniqueness
argument as in [24]. �

Proof of Theorem 1.1. Let T > 0 be given by Lemma 3.4. Then it follows from
(3.9) and (3.18) that, for T > T ,

E(0) ≤ CT
∫ T

0

∫
Ω

a(x)(u2
t (x, t) +

∫ ∞
0

|k(ρ)|u2
t (x, t− ρ)dρ) dx dt

≤ CTC−1
1 (E(0)− E(T )).

(3.39)

Then

E(T ) ≤ CTC
−1
1 − 1

CTC
−1
1

E(0). (3.40)

Estimate (1.24) follows from the inequality (3.40). �

4. Proof of Theorem 1.3

Lemma 4.1. Suppose that (1.29) holds, and let u(x, t) be the solution of (1.25).
Then there exist constants C1, C2 > 0 such that

J(T1)− J(T2)

≥ C1

∫ T2

T1

∫
Ω

(ut(x, t)g1(ut(x, t)) + ut(x, ϕ(t))g1(ut(x, ϕ(t))) dx dt,
(4.1)

J(T1)− J(T2)

≤ C2

∫ T2

T1

∫
Ω

(ut(x, t)g1(ut(x, t)) + ut(x, ϕ(t))g1(ut(x, ϕ(t))) dx dt,
(4.2)

where T2 > T1 ≥ 0. Assertion (4.1) implies that J(t) is decreasing.

Proof. Differentiating (1.30), with (1.32), we obtain

J ′(t) =
∫

Ω

(ututt +∇gu · ∇ut) dx+ ηφ′(t)
∫

Ω

ut(x, t)g1(ut(x, t))dx

− η
∫

Ω

ut(x, ϕ(t))g1(ut(x, ϕ(t)))dx.
(4.3)

Note that

φ′(t) =
1

ϕ′(φ(t))
=

1
1− τ ′(φ(t))

≤ 1
1− d

, (4.4)
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by Green’s formula, we deduce that

J ′(t) = ηφ′(t)
∫

Ω

ut(x, t)g1(ut(x, t))dx

− η
∫

Ω

ut(x, ϕ(t))g1(ut(x, ϕ(t)))dx

+
∫

Ω

[−a1utg1(ut)− a2utg2(ut(x, ϕ(t)))]dx

≤
∫

Ω

[
− ηut(x, ϕ(t))g1(ut(x, ϕ(t))) +

√
1− d|a2|

2
g2

2(ut(x, ϕ(t)))
]
dx

+
∫

Ω

(
− a1utg1(ut) +

|a2|
2
√

1− d
u2
t +

η

1− d
utg1(ut)

)
dx .

(4.5)

From (1.27), (1.29) and (1.31), we obtain

J ′(t) ≤ −C1

∫
Ω

[ut(x, t)g1(ut(x, t)) + ut(x, ϕ(t))g1(ut(x, ϕ(t)))]dx, (4.6)

where C1 > 0 satisfies

C1 = min
{
a1 −

|a2|
2
√

1− d
− η

1− d
, η −

√
1− d|a2|

2
}
.

Note that

φ′(t) ≥ 0 ∀t ≥ 0. (4.7)

From the first step of (4.5), with (1.27) we obtain

J ′(t) ≥ −C2

∫
Ω

[ut(x, t)g1(ut(x, t)) + ut(x, ϕ(t))g1(ut(x, ϕ(t)))]dx, (4.8)

where C2 is a positive constant. Then the inequality (4.1)/(4.2) follows directly
from (4.6)/(4.8) integrating from T1 to T2. �

Proof of Theorem 1.3. Let T2 > T1 ≥ 0. Multiplying (1.25) by u and integrating
from T1 to T2, we have

∫ T2

T1

∫
Ω

(
u2
t − |∇gu|

2
g

)
dx dt

= (ut, u)
∣∣T2

T1
+
∫ T2

T1

∫
Ω

u (a1g1(ut(x, t)) + a2g2(ut(x, t− τ(t)))) dx dt.

(4.9)
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Then∫ T2

T1

E0(t)dt

= 2
∫ T2

T1

∫
Ω

u2
t dx dt−

∫ T2

T1

∫
Ω

(
u2
t − |∇gu|2g

)
dx dt

= 2
∫ T2

T1

∫
Ω

u2
t dx dt

− (ut, u)
∣∣T2

T1
−
∫ T2

T1

∫
Ω

u (a1g1(ut) + a2g2(ut(ϕ(t)))) dx dt

≤ 2
∫ T2

T1

∫
Ω

u2
tdx+ C(J(T1) + J(T2))

+ ε

∫ T2

T1

∫
Ω

u2 dx dt+ Cε

∫ T2

T1

∫
Ω

[g2
1(ut(x, t)) + g2

2(ut(x, ϕ(t)))] dx dt.

(4.10)

From (1.27), we have

g1(s) ≥ |s| for s ∈ R. (4.11)

Then, from (4.10) it follows that

∫ T2

T1

E0(t)dt ≤ C̃(J(T1) + J(T2)) + C

∫ T2

T1

∫
Ω

[
g2

1(ut(x, t))

+ ut(x, ϕ(t))g1(ut(x, ϕ(t)))
]
dx dt,

(4.12)

where C̃ is a positive constant.

Proof of (a). From (1.28) and (1.36) we have

g2
1(s) ≤ max{c1, c2}sg1(s) for s ∈ R. (4.13)

Then, from (4.12) it follows that

∫ T2

T1

E0(t)dt ≤ C̃(J(T1) + J(T2)) + C

∫ T2

T1

∫
Ω

[
ut(x, t)g1(ut(x, t))

+ ut(x, ϕ(t))g1(ut(x, ϕ(t)))
]
dx dt.

(4.14)

Since J(t) is decreasing, from (3.6) we deduce that

C̃(J(T1) + J(T2)) + J(T1)

≤ (2C̃ + 1)J(T1)

= (2C̃ + 1)E0(T1) + (2C̃ + 1)η
∫ φ(T1)

T1

∫
Ω

ut(x, ϕ(t))g1(ut(x, ϕ(t)))dΓdt.

(4.15)
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From (1.27), we deduce that

(2C̃ + 1)E0(T1)

=
∫ T1+2 eC+1

T1

E0(t)dt+
∫ T1+2 eC+1

T1

(E0(T1)− E0(t))dt

=
∫ T1+2 eC+1

T1

E0(t)dt+
∫ T1+2 eC+1

T1

∫ t

0

∫
Ω

ut(x, t′)
[
a1g1(ut(x, t′))

+ a2g2(ut(x, ϕ(t′)))
]
] dx dt′dt

≤
∫ T1+2 eC+1

T1

E0(t)dt+ (2C̃ + 1)
(
a1 +

|a2|
2
)

×
∫ T1+2 eC+1

T1

∫
Ω

[ut(x, t)g1(ut(x, t)) + g2
2(ut(x, ϕ(t)))] dx dt

≤
∫ T1+2 eC+1

T1

E0(t)dt+ (2C̃ + 1)
(
a1 +

|a2|
2
) ∫ T1+2 eC+1

T1

∫
Ω

[ut(x, t)g1(ut(x, t))

+ ut(x, ϕ(t))g1(ut(x, ϕ(t)))] dx dt.
(4.16)

Substituting (4.15) and (4.16) into (4.14), for T2 ≥ max{T1 + 2C̃ + 1, φ(T1)}, with
(4.1) we have

J(T1) ≤ C
∫ T2

T1

∫
Ω

[ut(x, t)g1(ut(x, t)) + ut(x, ϕ(t))g1(ut(x, ϕ(t)))] dx dt

≤ CC−1
1 (J(T1)− J(T2)).

(4.17)

Then
J(T2) ≤ λJ(T1), (4.18)

where 0 < λ < 1 is a constant and T2 ≥ max{T1 + 2C̃ + 1, φ(T1)}.
From (1.32), we have

φ′(t) =
1

ϕ′(φ(t))
=

1
1− τ ′(φ(t))

≤ 1
1− d

, ∀t ≥ −τ(0). (4.19)

Then

φ(t) ≤ t+ τ(0)
1− d

− τ(0) ∀t ≥ −τ(0). (4.20)

Let d < d1 < 1 and T0 be positive constants satisfying
d

1− d
(t+ τ(0)) ≤ t

1− d1
=: M(t) ∀t ≥ T0, (4.21)

M(T0)− T0 ≥ 2C̃ + 1, (4.22)

where C̃ is given by (4.12). From (4.20), we have

M(T ) ≥ φ(T ) and M(T ) ≥ T + 2C̃ + 1 ∀T ≥ T0. (4.23)

From (4.18) and (4.23), we have

J
(( 1

1− d1

)k−1
T0

)
≤ λk−1J(T0) ≤ λk−1J(0). (4.24)

Noting that J(t) is decreasing, the estimate (1.37) holds.
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Proof of (b). From (1.38) and (4.20), we have

lim
t→+∞

F (φ(t))
t

= 0. (4.25)

Then estimate (1.39) holds.
We let T1 in (4.12) be a positive constant satisfying T1 ≥ τ(T1), with (1.32) and

(3.6) we deduce that∫ T2

T1

J(t)dt

=
∫ T2

T1

E0(t)dt+ η

∫ T2

T1

∫ φ(t)

t

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ dt

≤
∫ T2

T1

E0(t)dt+ η

∫ T2

T1

∫ φ(t)

t

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ dt

+ η

∫ T1

φ−1(T1)

∫ φ(t)

T1

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ dt

+ η

∫ φ(T2)

T2

∫ φ(T2)

t

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dρ dt

=
∫ T2

T1

E0(t)dt+ η

∫ φ(T2)

T1

∫ ρ

φ−1(ρ)

∫
Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dtdρ

=
∫ T2

T1

E0(t)dt+ η

∫ φ(T2)

T1

(ρ− ϕ(ρ))
∫

Ω

ut(x, ϕ(ρ))g1(ut(x, ϕ(ρ))) dx dt

=
∫ T2

T1

E0(t)dt+ η

∫ φ(T2)

T1

τ(t)
∫

Ω

ut(x, ϕ(t))g1(ut(x, ϕ(t))) dx dt.

(4.26)

Substituting (4.2) and (4.26) into (4.12), we have∫ T2

T1

J(t)dt ≤ C
∫ φ(T2)

T1

∫
Ω

[
g2

1(ut(x, t))

+ F (t)ut(x, ϕ(t))g1(ut(x, ϕ(t)))
]
dx dt+ C̃J(T2),

(4.27)

where C̃ is a positive constant.
Since J(t) is decreasing, we deduce that∫ T2

T1

J(t)dt ≥ (T2 − T1)J(T2). (4.28)

Substituting (4.28) into (4.27), for T2 ≥ T1 + 2C̃, we have

(T2 − T1)J(T2)

≤ C
∫ φ(T2)

T1

∫
Ω

[g2
1(ut(x, t)) + F (t)ut(x, ϕ(t))g1(ut(x, ϕ(t)))] dx dt

≤ C
∫ φ(T2)

T1

∫
{x∈Ω|ut(x,t)|≤1}

[g2
1(ut(x, t)) + u2

t (x, t)] dx dt

+ C

∫ φ(T2)

T1

∫
Ω

F (t)[ut(x, t)g1(ut(x, t) + ut(x, ϕ(t))g1(ut(x, ϕ(t)))] dx dt
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≤ C
∫ φ(T2)

T1

∫
{x∈Ω|ut(x,t)|≤1}

h(utg1(ut)) dx dt

+ CF (φ(T2))
∫ φ(T2)

T1

∫
Ω

[ut(x, t)g1(ut(x, t) + ut(x, ϕ(t))g1(ut(x, ϕ(t)))] dx dt

≤ C
∫ φ(T2)

T1

∫
Ω

h(utg1(ut)) dx dt+ CF (φ(T2))(J(T1)− J(φ(T2))

≤ C(φ(T2)− T1) meas(Ω)

× h
( 1

(φ(T2)− T1) meas(Ω)

∫ φ(T2)

T1

∫
Ω

utg1(ut) dx dt
)

+ CF (φ(T2))J(T1)

≤ C(φ(T2)− T1) meas(Ω)h
( 1

(φ(T2)− T1) meas(Ω)
J(T1)

)
+ CF (φ(T2))J(T1).

Noting that T1 is a constant, for sufficiently large T2, with (4.20) we have

J(T2) ≤ C1h
( C2

φ(T2)
J(0)

)
+ C1

F
(
φ(T2)

)
T2

J(0).

Since J(t) is decreasing, estimate (1.40) holds. �
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