Jiri Benedikt, Petr Girg, Lukas Kotrla, Peter Takac
Abstract:
We describe the historical process of derivation of
the p-Laplace operator from a nonlinear Darcy law and
the continuity equation.
The story begins with nonlinear flows in channels and ditches.
As the nonlinear Darcy law we use the power law discovered by
Smreker and verified in experiments by Missbach
for flows through porous media in one space dimension.
These results were generalized by Christianovitch and Leibenson
to porous media in higher space dimensions.
We provide a brief description of Missbach's experiments.
Submitted October 22, 2017. Published January 13, 2018.
Math Subject Classifications: 76S05, 35Q35.
Key Words: Porous medium; filtration; nonlinear Darcy law;
pressure-to-velocity power law; p-Laplacian.
Show me the PDF file (364 KB), TEX file for this article.
Jiri Benedikt Department of Mathematics and NTIS Faculty of Applied Scences, University of West Bohemia Univerzitni 8, CZ-306\,14 Plzen, Czech Republic email: benedikt@kma.zcu.cz | |
Petr Girg Department of Mathematics and NTIS Faculty of Applied Scences, University of West Bohemia Univerzitni 8, CZ-306 14~Plzen, Czech Republic email: pgirg@kma.zcu.cz | |
Lukas Kotrla Department of Mathematics and NTIS Faculty of Applied Scences, University of West Bohemia Univerzitni 8, CZ-306 14 Plzen, Czech Republic email: kotrla@ntis.zcu.cz | |
Peter Takac Institut fur Mathematik, Universitat Rostock Germany email: peter.takac@uni-rostock.de |
Return to the EJDE web page