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Abstract. In this article, we study the existence of monotone bounded solu-

tions and of oscillatory solutions to a second-order differential equation with
asymptotic conditions. Such asymptotic conditions arise in the study of the

ocean flow in arctic gyres. Our approach relies on functional-analytic tech-

niques.

1. Introduction

In this article, we study the existence of monotone bounded solutions and of
oscillatory solutions for the second-order differential equation

x′′ + a(t)f(x) = h(t), t ≥ t0, (1.1)

where the real-valued function f : R → R is continuous, a : [t0,+∞) → [0,∞) and
h : [t0,+∞) → R are continuous. From the view of physics, it is interesting to
consider the asymptotic conditions

lim
t→∞

x(t) = ψ0 and lim
t→∞
{x′(t) exp(t)} = 0, (1.2)

where ψ0 ∈ R is a constant.
As a special form of equation (1.1), the equation

x′′ =
F (x)

cosh2(t)
− 2ω sinh(t)

cosh3(t)
, t ≥ t0, (1.3)

with the asymptotic conditions

lim
t→∞

x(t) = ψ0 and lim
t→∞
{x′(t) cosh(t)} = 0 , (1.4)

is a recently derived model for arctic gyres with a vanishing azimuthal velocity (see
the discussions in [10] and the discussions in [1]). Recently, Chu has studied (1.3)-
(1.4) in a systematic way in the recent papers [1, 2, 3, 4]. Note that the second
condition in (1.4) is equivalent to the second one in (1.2). We point out that the
specific form of (1.4) and of the associated differential equation is due to physically
relevant considerations (see the discussion [5]).
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To prove the existence of monotone solutions and oscillatory solutions of (1.1)-
(1.2), we will apply Schauder fixed point theorem. To do this, we transform the
problem (1.1)-(1.2) into an integral equation. In fact, if x(t) is a solution of the
problem (1.1)-(1.2), integrating the equation (1.1) on [t,∞), we have

x′(t) = −
∫ ∞
t

h(s)ds+
∫ ∞
t

a(s)f(x(s))ds, t ≥ t0, (1.5)

then integrating (1.5) on [t,∞), we obtain

x(t) = ψ0 +
∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds, t ≥ t0. (1.6)

To make the integral equation (1.6) equivalent to problem (1.1)-(1.2), we assume
that

lim
t→∞
{exp(t)a(t)} = 0, lim

t→∞
{exp(t)h(t)} = 0. (1.7)

Indeed, suppose that x : [t0,∞) → R is a continuous function satisfying (1.6), and
limt→∞ x(t) = ψ0. It is easy to show that x satisfies (1.5) and the second condition
in (1.2), since

lim
t→∞

{
exp(t)

∫ ∞
t

h(s)ds
}

= lim
t→∞
{exp(t)h(t)} = 0,

lim
t→∞

{
exp(t)

∫ ∞
t

a(s)f(x(s))ds
}

= lim
t→∞
{exp(t)a(t)f(x(t))} = 0.

Therefore, in this paper, we shall study the equivalent integral equation (1.6) of the
problem (1.1)-(1.2) under condition (1.7).

2. Monotone solutions

In this section, we study the existence of monotone bounded solutions for the
integral equation (1.6) under suitable conditions.

Theorem 2.1. Assume that a, h : [t0,+∞)→ [0,∞) are continuous with∫ ∞
t0

h(s)ds > 0. (2.1)

Suppose further that the limit

J = lim
t→∞

a(t)
h(t)

(2.2)

exists and J 6= 0, and there exists a constant γ > 0 such that

max
x∈[ψ0−γ,ψ0+γ]

f(x) <
1
J
. (2.3)

Then there exists some Tγ ≥ t0 such that (1.6) has at least one decreasing bounded
continuous solution x : [Tγ ,∞) → R satisfying limt→∞ x(t) = ψ0. More precisely,
we have that

x(t) > ψ0, x′(t) < 0, for all t > Tγ . (2.4)

Proof. Set
Mγ = max

x∈[ψ0−γ,ψ0+γ]
|f(x)|.
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Obviously, 0 ≤Mγ <∞ since f is continuous. From (1.7), we have∫ ∞
t0

sa(s)ds <∞ and
∫ ∞
t0

sh(s)ds <∞. (2.5)

By (2.5), we can choose T0 ≥ max{t0, 0} large enough such that

Mγ

∫ ∞
T0

sa(s)ds <
γ

2
and

∫ ∞
T0

sh(s)ds <
γ

2
.

Define the closed and convex subset

X0 =
{
x ∈ C([T0,∞),R) : lim

t→∞
x(t) = ψ0

}
of the Banach space X of all bounded functions x ∈ C([T0,∞),R), endowed with
the supremum norm ‖x‖ = supt≥T0

{|x(t)|}. Set

Ω =
{
x ∈ X0 : ψ0 − γ ≤ x(t) ≤ ψ0 + γ, t ≥ T0

}
.

Let T : Ω→ X0 be the operator defined as

[T (x)](t) = ψ0 +
∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds, t ≥ T0. (2.6)

Note that ∣∣ ∫ ∞
t

(s− t)h(s) ds
∣∣ ≤ ∫ ∞

t

sh(s) ds, t ≥ T0 ,∣∣ ∫ ∞
t

(s− t)a(s)f(x(s)) ds
∣∣ ≤Mγ

∫ ∞
t

sa(s) ds, t ≥ T0 ,

which confirms that T : Ω→ X0. Also, for any x ∈ Ω, we have limt→∞[T (x)](t) =
ψ0 since

lim
t→∞

∫ ∞
t

sh(s) ds = 0, lim
t→∞

∫ ∞
t

sa(s) ds = 0.

We shall apply the Schauder fixed point theorem [20] to prove that there exists a
fixed point for the operator T in the nonempty closed bounded convex set Ω, and
then we prove that (2.4) holds. It is divided into four steps.
Step 1. We prove that T (Ω) ⊂ Ω. For any x ∈ Ω and t ≥ T0, we have

|[T (x)](t)− ψ0| =
∣∣∣ ∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds
∣∣∣

≤
∫ ∞
t

(s− t)h(s)ds+
∫ ∞
t

(s− t)|a(s)f(x(s))|ds

≤
∫ ∞
t

sh(s)ds+
∫ ∞
t

Mγsa(s)ds

≤
∫ ∞
T0

sh(s)ds+Mγ

∫ ∞
T0

sa(s)ds ≤ γ,

which shows that T : Ω→ Ω is well-defined.
Step 2. We prove that T : Ω→ Ω is continuous. For a given ε > 0, there exists a
T∗ ≥ T0 such that

Mγ

∫ ∞
T∗

sa(s)ds <
ε

3
.
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By the fact that f : [ψ0−γ, ψ0 +γ]→ R is continuous, there exists a constant δ > 0
such that for all x, y ∈ [ψ0 − γ, ψ0 + γ] with |x− y| < δ, we have

|f(x)− f(y)| < 2ε
3T 2
∗ a∗

, for all t ∈ [t0, T∗],

where a∗ = maxt∈[T0,T∗] a(t). Therefore, for all x1, x2 ∈ Ω with ‖x1 − x2‖ < δ, we
obtain

|[T (x1)](t)− [T (x2)](t)| =
∣∣ ∫ ∞
t

(s− t)a(s)[f(x2(s))− f(x1(s))]
∣∣

≤
∫ ∞
t

(s− t)a(s)|f(x2(s))− f(x1(s))|ds

≤
∫ T∗

T0

(s− T0)a(s)|f(x2(s))− f(x1(s))|ds

+
∫ ∞
T∗

(s− T∗)a(s)|f(x2(s))− f(x1(s))|ds

= I1 + I2.

Since

I1 ≤
2ε

3T 2
∗ a∗

a∗

∫ T∗

T0

(s− T0)ds =
2ε

3T 2
∗

(T∗ − T0)2

2
<
ε

3
,

I2 ≤
∫ ∞
T∗

sa(s)
{
|f(x1(s))|+ |f(x2(s))|

}
ds

≤ 2Mγ

∫ ∞
T∗

sa(s)ds <
2ε
3
,

we have
‖[T (x1)]− [T (x2)]‖ ≤ ε.

Therefore, T : Ω→ Ω is a continuous.
Step 3. We prove that T (Ω) is relatively compact in X. Since T (Ω) ⊂ Ω, we know
that T (Ω) is uniform bounded. Differentiating two sides of (2.6) with respect to t,
we obtain

[T (x)]′(t) = −
∫ ∞
t

h(s)ds+
∫ ∞
t

a(s)f(x(s))ds, t ≥ T0.

For all t ≥ T0, we have

|[T (x)]′(t)| ≤
∣∣ ∫ ∞
t

h(s) ds
∣∣+
∣∣ ∫ ∞
t

a(s)f(x(s)) ds
∣∣

≤
∫ ∞
t

h(s) ds+Mγ

∫ ∞
t

a(s) ds

≤
∫ ∞
T0

h(s) ds+Mγ

∫ ∞
T0

a(s) ds,

which means that for all x ∈ Ω, we have∣∣∣[T (x)]′(t)
∣∣∣ ≤ K, t ≥ T0,

where

K =
∫ ∞
T0

h(s) ds+Mγ

∫ ∞
T0

a(s) ds.
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Let {xn} be an arbitrary sequence in Ω. Then we have

|[T (xn)]′(t)| ≤ K, t ≥ T0, n ≥ 1.

Applying the mean value theorem, we obtain

|[T (xn)](t1)− [T (xn)](t2)| ≤ K|t1 − t2|, t1, t2 ≥ T0, n ≥ 1,

which implies that {[T (xn)]} is equicontinuous in X.
Furthermore, since

lim
t→∞

[
ψ0 +

∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds
]

= ψ0,

so for every ε > 0, there exists tε > T0 such that

|[T (xn)](t)− ψ0| ≤ ε, t ≥ tε, n ≥ 1.

Therefore, {[T (xn)]} is equiconvergent in X.
By using the Arzela-Ascoli theorem [20], we obtain that {[T (xn)]} is relatively

compact in X.
We have proved that all assumptions of the Schauder fixed point theorem are

satisfied. Therefore, the operator T has a fixed point x in Ω, and this fixed point
corresponds to a bounded solution of (1.6) on [T0,∞).
Step 4. We show that the fixed point is decreasing. Let x be the fixed point of T .
Define

H(t) =

∫∞
t

(s− t)a(s)f(x(s))ds∫∞
t

(s− t)h(s)ds
, t > T0.

Then

H(t) ≤ max
x∈[ψ0−γ,ψ0+γ]

f(x) ·
∫∞
t

(s− t)a(s)ds∫∞
t

(s− t)h(s)ds
.

Since

lim
t→∞

∫∞
t

(s− t)a(s)ds∫∞
t

(s− t)h(s)ds
= lim
t→∞

∫∞
t
a(s)ds∫∞

t
h(s)ds

= lim
t→∞

a(t)
h(t)

= J,

using the condition (2.3), we know that there exists T1 ≥ T0 such that H(t) < 1
for t > T1, which yields∫ ∞

t

(s− t)a(s)f(x(s))ds <
∫ ∞
t

(s− t)h(s)ds, t > T1,

and hence for all t > T1, we have

x(t) = ψ0 +
∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds > ψ0.

Define

L(t) =

∫∞
t
a(s)f(x(s))ds∫∞
t
h(s)ds

, t > T0.

Then

L(t) ≤ max
x∈[ψ0−γ,ψ0+γ]

f(x) ·
∫∞
t
a(s)ds∫∞

t
h(s)ds

.

Since (2.3) holds, there exists T2 ≥ T0 such that L(t) < 1 for t > T2, which implies

x′(t) = −
∫ ∞
t

h(s)ds+
∫ ∞
t

a(s)f(x(s))ds < 0, t > T2.

Let Tγ = max{T1, T2}, then (2.4) holds. �
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Example 2.2. Consider the equation

x′′ +
1

cosh2(t)
x

8ψ0
= e−2t, t ≥ t0. (2.7)

It is easy to see that

J = lim
t→∞

1
cosh2(t)

e−t
= 4. (2.8)

We suppose that ψ0 > 0, choose any γ ∈ [0, ψ0), then it is easy to check that

max
x∈[ψ0−γ,ψ0+γ]

x

8ψ0
<

1
4
.

We know that the solution of (2.7) is

x(t) = ψ0 +
∫ ∞
t

(s− t)e−sds−
∫ ∞
t

(s− t)x(s)
8ψ0

1
cosh2(s)

ds, t ≥ t0. (2.9)

Obviously, x(t) > ψ0 for t ≥ t0. Indeed, limt→∞{x(t)} = ψ0 and

x′(t) = −
∫ ∞
t

e−sds+
∫ ∞
t

x(s)
8ψ0

1
cosh2(s)

ds < 0.

Therefore, x(t) decreases towards ψ0 as t decreases towards infinity.

In fact, we can prove another result in a similar way.

Theorem 2.3. Assume that a, h : [t0,+∞) → [0,∞) are continuous and (2.1),
(2.2) hold. Suppose further that there exists a constant η > 0 such that

min
x∈[ψ0−η,ψ0+η]

f(x) >
1
J
. (2.10)

Then there exists some Tη ≥ t0 such that there exists a increasing bounded continu-
ous solution x : [Tη,∞)→ R to the equation (1.6), and limt→∞{x(t)} = ψ0. More
precisely, we have

x(t) < ψ0, x′(t) > 0, for all t > Tη. (2.11)

Proof. Proceeding as in Steps 1–3 in the proof of Theorem 2.1, we know that
the equation (1.6) has at least one bounded continuous solution x : [Tη,∞) → R
satisfying limt→∞{x(t)} = ψ0.

We only need to prove the solution above is increasing. Define

H(t) =

∫∞
t

(s− t)a(s)f(x(s))ds∫∞
t

(s− t)h(s)ds
, t > T0.

Then

H(t) ≥ min
x∈[ψ0−η,ψ0+η]

f(x)

∫∞
t

(s− t)a(s)ds∫∞
t

(s− t)h(s)ds
.

Since

lim
t→∞

∫∞
t

(s− t)a(s)ds∫∞
t

(s− t)h(s)ds
= lim
t→∞

∫∞
t
a(s)ds∫∞

t
h(s)ds

= lim
t→∞

a(t)
h(t)

= J,

by (2.10), we know that there exists T1 ≥ T0 such that H(t) > 1 for t > T1, which
yields that ∫ ∞

t

(s− t)a(s)f(x(s))ds >
∫ ∞
t

(s− t)h(s)ds, t > T1,
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and hence for all t > T1, we have

x(t) = ψ0 +
∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds < ψ0.

Define

L(t) =

∫∞
t
a(s)f(x(s))ds∫∞
t
h(s)ds

, t > T0.

Then

L(t) ≥ min
x∈[ψ0−η,ψ0+η]

f(x)

∫∞
t
a(s)ds∫∞

t
h(s)ds

.

Since (2.10) holds, there exists T2 ≥ T0 such that L(t) > 1 for t > T2, which implies

x′(t) = −
∫ ∞
t

h(s)ds+
∫ ∞
t

a(s)f(x(s))ds > 0, t > T2.

Let Tη = max{T1, T2}, then (2.11) holds. �

Example 2.4. Consider the equation

x′′ +
1

sinh2(t)
x

4ψ0
= e−2t, t ≥ t0. (2.12)

Then we know that

J = lim
t→∞

1
sinh2(t)

e−2t
= 4. (2.13)

Assume that ψ0 > 0, take any γ > 0, then we have

max
x∈[ψ0−γ,ψ0+γ]

x

4ψ0
>

1
4
.

We know that the solution of (2.12) is

x(t) = ψ0 +
∫ ∞
t

(s− t)e−2sds−
∫ ∞
t

(s− t)x(s)
4ψ0

1
sinh2(s)

ds, t ≥ t0. (2.14)

Obviously, x(t) < ψ0 for t ≥ t0. Indeed, limt→∞{x(t)} = ψ0, and

x′(t) = −
∫ ∞
t

e−2sds+
∫ ∞
t

x(s)
4ψ0

1
sinh2(s)

ds > 0.

Therefore, x(t) increases towards ψ0 as t increases towards infinity.

3. Oscillatory solutions

In this section, we study the existence of oscillatory solutions for the integral
equation (1.6) under suitable conditions. Define a function H : [t0,∞)→ R as

H(t) =
∫ ∞
t

(s− t)h(s)ds.

For a fixed λ > t0, we denote the upper bound of H by

‖H‖ = sup
t≥λ>t0

|H(t)|.

Fix a positive real number R > ‖H‖ and define

MR = sup
x∈[−R,R]

|f(x)|, g(t) = MR

∫ ∞
t

a(s)ds, t ≥ t0,
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G(t) =
∫ ∞
t

g(s)ds.

Now we state and prove the main result of this section.

Theorem 3.1. Assume that G(t0) < +∞ and

lim sup
t→+∞

H(t)
G(t)

> 1, lim inf
t→+∞

H(t)
G(t)

< −1. (3.1)

Then for every ε with 0 < ε < R − ‖H‖, there exist a real number T (ε) > 0,
a positive integer N(ε), and two increasing divergent sequences of positive num-
bers {tn}n≥1, {sn}n≥1, such that (1.6) has a solution x(t) defined on [T (ε),+∞)
satisfying limt→∞ x(t) = ψ0 and

x(tn) > ψ0 and x(sn) < ψ0, for all n ≥ N(ε).

Proof. To prove the above result, by (1.6), we just need to prove that the equation

x(t) =
∫ ∞
t

(s− t)h(s)ds−
∫ ∞
t

(s− t)a(s)f(x(s))ds, t ≥ t0, (3.2)

has a solution x(t) such that limt→∞ x(t) = 0 and

x(tn) > 0 and x(sn) < 0.

Given a real number λ > t0, choose an ε with 0 < ε < R − ‖H‖. Since G(t0) <
+∞, there exists a number T (ε) > λ such that G(t) < ε for all t ≥ T (ε). Define
the closed and convex subset

Xε = {x ∈ C([T (ε),+∞),R) : lim
t→∞

x(t) = 0}

of the Banach space X of all functions x ∈ C([T (ε),+∞),R), endowed with the
supremum ‖ · ‖. Set

Ω = {x ∈ Xε : ‖x−H‖ ≤ ε}.
Define an operator F : Ω→ Ω as

[F(x)](t) = H(t)−
∫ ∞
t

∫ ∞
s

a(τ)f(x(τ))dτds, t ≥ T (ε). (3.3)

Note that

|[F(x)](t)−H(t)| ≤
∫ ∞
t

M‖H‖+ε

∫ ∞
s

a(τ)dτds ≤ G(t) < ε, t ≥ T (ε). (3.4)

Therefore, the operator F : Ω→ Ω is well-defined.
We shall apply the Schauder fixed point theorem to prove that there exists a

fixed point for the operator F in the nonempty closed bounded convex set Ω.
First, we prove that the operator F is uniformly continuous. For a given constant

ξ > 0, there exists a T (ξ) > T (ε) such that

G(t) <
ξ

3
, t ≥ T (ξ).

Furthermore, there exists a δ(ξ) > 0 such that

|a(t)f(x1)− a(t)f(x2)| < ξ

3(T (ξ))2
,
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holds for all t ∈ [T (ε), T (ξ)] and x1, x2 ∈ [−‖H‖−ε, ‖H‖+ε] with ‖x1−x2‖ < δ(ξ).
Now for all x1, x2 ∈ Ω satisfying ‖x1 − x2‖ < δ(ξ), we have

|[F(x1)](t)− [F(x2)](t)| ≤
∫ ∞
T (ε)

∫ ∞
s

|a(τ)f(x2(τ))− a(τ)f(x1(τ))|dτds

=
∫ ∞
T (ε)

(s− T (ε))|a(s)f(x2(s))− a(s)f(x1(s))|ds

≤ |T (ξ)− T (ε)|
∫ T (ξ)

T (ε)

|a(s)f(x2(s))− a(s)f(x1(s))|ds

+
∫ ∞
T (ξ)

∫ ∞
s

|a(τ)f(x2(τ))|dτds

+
∫ ∞
T (ξ)

∫ ∞
s

|a(τ)f(x1(τ))|dτds

= I1 + I2 + I3.

Note that

I1 < [T (ξ)− T (ε)]2
ξ

3(T (ξ))2
<
ξ

3
, I2 + I3 <

2
3
ξ.

Then we conclude that
|F(x1)](t)−F(x2)](t)| < ξ.

Therefore F is uniformly continuous.
Next, we apply the Arzela-Ascoli theorem to prove that the set F(Ω) is relatively

compact. Since F(Ω) ⊂ Ω, we know that F(Ω) is uniformly bounded. For any two
real numbers t1, t2 with t2 ≥ t1 ≥ T (ε), we have

|[F(x)](t2)− [F(x)](t1)| ≤ |H(t2)−H(t1)|+
∫ t2

t1

∫ ∞
s

|a(τ)f(x(τ))|dτds

≤
∫ t2

t1

∫ ∞
s

|h(τ)|dτds+
∫ t2

t1

g(s)ds, x ∈ Ω,

which shows that F(Ω) is equicontinuous.
From the definition of F , we have

|F(x)](t)| ≤ |H(t)|+G(t), t ≥ T (ε), for all x ∈ Ω. (3.5)

By (3.5) and limt→∞H(t) = 0, we know that the set F(Ω) is equiconvergent.
Therefore F(Ω) is relatively compact.

Up to now, all conditions of the Schauder fixed point theorem are established.
Therefore, the operator F has a fixed point in Ω, that is, the equation (3.2) has a
solution x(t), which satisfies limt→∞ x(t) = 0.

Finally, we prove that the solution x(t) is oscillatory. From (3.4), we have

|x(t)−H(t)| = |[F(x)](t)−H(t)| ≤ G(t), t ≥ T (ε),

which yields

H(t)−G(t) ≤ x(t) ≤ H(t) +G(t), for all t ≥ T (ε). (3.6)

By (3.1), we know that there exist a positive integer N(ε) and two sequences of
positive numbers {tn}n≥1, {sn}n≥1, tn, sn →∞ as n→∞, such that

H(tn)−G(tn) > 0 and H(sn) +G(sn) < 0, for all n ≥ N(ε),
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it follows from (3.6) that

x(tn) > 0 and x(sn) < 0, for all n ≥ N(ε).

The proof is complete. �
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