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CHARACTERIZATION OF DOMAINS OF SYMMETRIC AND
SELF-ADJOINT ORDINARY DIFFERENTIAL OPERATORS

AIPING WANG, ANTON ZETTL

Abstract. We characterize the two point boundary conditions which deter-
mine symmetric ordinary differential operators of any order, even or odd, with

complex coefficients and arbitrary deficiency index, in a Hilbert space. The

self-adjoint characterizations are a special case.

1. Introduction

We consider the equation

My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞, (1.1)

where M is a general symmetric ordinary quasi-differential expression of any order,
even or odd.

For the case when M is regular Möller and Zettl [10] characterized the two-point
boundary conditions which generate symmetric operator realizations of equation
(1.1) in the Hilbert space H = L2(J,w). Here we extend this result to singular
M of even or odd order with complex coefficients and arbitrary deficiency index.
Self-adjoint operators have recently been characterized by Wang et al in [14] when
one endpoint is regular and by Hao et al in [6, 7] when both endpoints are singular.
The symmetric characterizations in [10], and the self-adjoint characterizations in
[6, 7] are a special case of our main result.

Our proof is in the spirit of the proofs in [6, 10, 14], but there are some significant
differences between even and odd order differential operators and real and complex
coefficients. In particular, although our construction of the symmetric operators
uses LC solutions for real values of the spectral parameter λ, these solutions cannot
be chosen to be real valued in contrast to the even order case with real coefficients.
Also the extension of the heavy dose of linear algebra analysis using nonsquare
matrices introduced in [10] for regular problems is extended to singular problems.
In particular, this involves an extension of the Naimark Patching Lemma and the
use of Lagrange brackets in place of quasi-derivatives.

The organization of the paper is as follows: This Introduction is followed by a
brief discussion of the basic theory of first order systems of differential equations
and their relationship to very general n-th order scalar equations in Section 2.
Section 3 discusses the minimal and maximal operators, Section 4 the Lagrange
Identity, Section 5 the construction of LC solutions and the decomposition of the
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maximal domain. The characterization of symmetric operators is given in Section
6 and illustrated with examples in Section 7.

2. Preliminaries

In this section we summarize some basic facts about general symmetric quasi-
differential equations of even and odd order with real or complex coefficients for the
convenience of the reader. For a comprehensive discussion of these equations and
their relationship to the classical symmetric (formally self-adjoint) case discussed
in the well known books by Coddington and Levinson [1], Dunford and Schwartz
[2] and [3, 4, 11, 19] and for the ‘special’ symmetric quasi-differential expressions
studied in Naimark [12], as well as additional references, historical remarks and
other comments, notation, definitions, etc., the reader is referred to the recent
survey article by Sun and Zettl [21].

These expressions generate symmetric differential operators in the Hilbert space
L2(J,w) and it is these operators which are studied here. Let J = (a, b) be an
interval with −∞ ≤ a < b ≤ ∞ and let n > 1 be a positive integer (even or odd).

Notation. Let R denote the real numbers, N2 = {2, 3, 4, . . . }, C the complex
numbers, Mn,k(X) the n×k matrices with entries from X, Mn(X) = Mn,k(X) when
n = k, Mn,1(X) be also denoted byXn, Mn,k(X) be abbreviated byMn,k whenX =
C; L(J,R) and L(J,C) the Lebesgue integrable real and complex valued functions
on J , respectively, Lloc(J,R) and Lloc(J,C) the real and complex valued functions
which are Lebesgue integrable on all compact subintervals of J , respectively. We
also use Lloc(J) = Lloc(J,C) and L(J) = L(J,C). ACloc(J) denotes the complex
valued functions which are absolutely continuous on compact subintervals of J and
AC(J) denotes the absolutely continuous functions on J . D(S) denotes the domain
of the operator S.

Definition 2.1. For w ∈ Lloc(J,R), w > 0 a.e. in J , L2(J,w) denotes the Hilbert
space of functions f : J → C satisfying

∫
J
|f |2w <∞ with inner product (f, g)w =∫

J
fgw. Such a w is called a ‘weight function’.

Let

Zn(J) :=
{
Q = (qrs)nr,s=1 : qr,r+1 6= 0 a.e. on J, q−1

r,r+1 ∈ Lloc(J),

1 ≤ r ≤ n− 1, qrs = 0 a.e. on J, 2 ≤ r + 1 < s ≤ n;

qrs ∈ Lloc(J), s 6= r + 1, 1 ≤ r ≤ n− 1
}
.

(2.1)

For Q ∈ Zn(J), define

V0 := {y : J → C, y is measurable},

y[0] := y (y ∈ V0).

Inductively, for r = 1, . . . , n, we define

Vr = {y ∈ Vr−1 : y[r−1] ∈ ACloc(J)},

y[r] = q−1
r,r+1{y[r−1]′ −

r∑
s=1

qrsy
[s−1]} (y ∈ Vr),

where qn,n+1 := 1. Then we set

My = MQy := iny[n] on J (y ∈ Vn, i =
√
−1). (2.2)
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The expression M = MQ is called the quasi-differential expression associated with
Q. For Vn we also use the notations D(MQ) and D(Q). The function y[r] (0 ≤ r ≤
n) is called the r-th quasi-derivative of y. Since the quasi-derivative depends on Q,
we sometimes write y[r]

Q instead of y[r].

Remark 2.2. Note that the operator M : D(Q) → Lloc(J) is linear. Also note
that the differential expression MQ in equation (2.2) requires only local integrability
assumptions on the coefficients (2.1).

The initial value problem associated with Y ′ = QY + F has a unique solution.

Proposition 2.3. Suppose Q ∈ Zn(J). For each F ∈ (Lloc(J))n, each α in J and
each C ∈ Cn there is a unique Y ∈ (ACloc(J))n such that

Y ′ = QY + F and Y (α) = C.

For a proof of the above proposition, see [20, Chapter 1]. From Proposition 2.3,
we immediately infer the following result.

Corollary 2.4. For each f ∈ Lloc(J), each α ∈ J and c0, . . . , cn−1 ∈ C there is a
unique y ∈ D(Q) such that

y[n] = f and y[r](α) = cr (r = 0, . . . , n− 1).

If f ∈ L(J), J is bounded and all components of Q are in L(J), then y ∈ AC(J).

Definition 2.5 (Regular endpoints). Let Q ∈ Zn(J), J = (a, b). The expression
M = MQ is said to be regular at a if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(a, c), r = 1, . . . , n− 1;

qrs ∈ L(a, c), 1 ≤ r, s ≤ n, s 6= r + 1.

Similarly the endpoint b is regular if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(c, b), r = 1, . . . , n− 1;

qrs ∈ L(c, b), 1 ≤ r, s ≤ n, s 6= r + 1.

Note that, from (2.1) it follows that if the above hold for some c ∈ J then they
hold for any c ∈ J . We say that M is regular on J , or just M is regular, if M is
regular at both endpoints.

An endpoint is called singular if it is not regular.

Remark 2.6. In much of the literature when an endpoint of the underlying interval
is infinite the problem is automatically classified as singular; note that in Definition
2.5 a = −∞ or b = ∞ is allowed. For any J observe that M is regular on any
compact subinterval of J . Although we focus on the singular case because there
the results are new but the results hold when each endpoint is either regular or
singular.

Next we give the definition of symmetric quasi-differential expressions. For ex-
amples and illustrations see [21].

Remark 2.7. The symplectic matrix

Ek = ((−1)rδr,k+1−s)kr,s=1, k ∈ N2 (2.3)

plays an important role in the construction of symmetric quasi-differential expres-
sions as well as in the characterization of symmetric differential operators.
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Definition 2.8. Let Q ∈ Zn(J) and let M = MQ be defined as in (2.2). Assume
that

Q = −E−1
n Q∗En. (2.4)

Then we call Q a Lagrange symmetric matrix and M = MQ is called a symmetric
differential expression.

3. Minimal and maximal operators

In this section we recall the minimal and maximal operators and their basic
properties.

Definition 3.1. Let Q ∈ Zn(J) satisfy (2.4) and let M = MQ be the corresponding
symmetric differential expression. The maximal operator Smax generated by M is
defined by

Dmax =
{
y ∈ L2(J,w) : y[0], y[1], . . . , y[n−1] are absolutely continuous

in J , and w−1My ∈ L2(J,w)
}
,

Smaxy = w−1My, y ∈ Dmax.

The minimal operator Smin is defined by

Smin = S∗max.

Lemma 3.2. Suppose M is regular at c. Then for any y ∈ Dmax the limits

y[r](c) = lim
t→c

y[r](c)

exist and are finite, r = 0, . . . , n−1. In particular this holds at any regular endpoint
and at each interior point of J . At an endpoint the limit is the appropriate one
sided limit.

For a proof of the above lemma see [12, Lemma 2, p.63].
Let a < c < b. Below we will also consider (2.2) and the operators generated

by it on the intervals (a, c) and (c, b). Note that if Q ∈ Zn(J), then it follows that
Q ∈ Zn(a, c), Q ∈ Zn(c, b) and we can study equation (2.2) on (a, c) and (c, b) as
well as on J = (a, b). Also (2.4) holds on (a, c) and on (c, b). In particular, the
minimal and maximal operators are defined on these two subintervals and we can
also study the operator theory generated by (2.2) in the Hilbert spaces L2((a, c), w)
and L2((c, b), w). Below we will use the notation Smin(I), Smax(I) for the minimal
and maximal operators on the interval I for I = (a, c), I = (c, b), I = (a, b) = J .
The interval J = (a, b) may be omitted when it is clear from the context. So we
make the following definition.

Definition 3.3. Let a < c < b. Let d+
a , d+

b denote the dimension of the solu-
tion space of My = i wy lying in L2((a, c), w) and L2((c, b), w), respectively, and
let d−a , d

−
b denote the dimension of the solution space of My = −i wy lying in

L2((a, c), w) and L2((c, b), w), respectively. Then d+
a and d−a are called the posi-

tive deficiency index and the negative deficiency index of Smin(a, c), respectively.
Similarly for d+

b and d−b . Also d+, d− denote the deficiency indices of Smin(a, b);
these are the dimensions of the solution spaces of My = iwy, My = −iwy lying in
L2((a, b), w). If d+

a = d−a , then the common value is denoted by da and is called the
deficiency index of Smin(a, c), or the deficiency index at a. Similarly for db. Note
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that da, db are independent of c. If d+ = d−, then we denote the common value by
d and call it the deficiency index of Smin(a, b) or just of Smin.

The relationships between da, db and d are well known and given in the next
lemma which is well known, see for example the book [18].

Lemma 3.4. For d+
a , d

+
b , d

−
a , d

−
b , d

+, d−, da, db defined as Definition 3.3, we have
(1) d+ = d+

a + d+
b − n, d− = d−a + d−b − n;

(2) if d+
a = d−a = da, d

+
b = d−b = db, then [n+1

2 ] ≤ da, db ≤ n;
(3) the minimal operator Smin has self-adjoint extensions in H if and only if

d = d+ = d−. If d = 0 then Smin is self-adjoint with no proper self-
adjoint extension. In all other cases Smin has an uncountable number of
self-adjoint extensions, i.e. there are an uncountable number of operators
S in H satisfying

Smin ⊂ S = S∗ ⊂ Smax.

4. Lagrange identity

In the study of boundary value problems the Lagrange identity is fundamental.

Lemma 4.1 (Lagrange identity [11]). Let Q ∈ Zn(J) satisfy (2.4) and let M = MQ

be the corresponding differential expression. Let the quasi-derivatives y, y[1], . . . ,
y[n−1] be defined as above. Then for any y, z ∈ D(Q), we have

zMy − (Mz)y = [y, z]′, (4.1)

where

[y, z] = in
n−1∑
r=0

(−1)n+1−r z̄[n−r−1]y[r].

Here [y, z] or just [·, ·] is called a Lagrange bracket.

Lemma 4.2. For any y, z in Dmax we have∫ b

a

{zMy − yMz} = [y, z](b)− [y, z](a),

where [y, z](b) = limt→b− [y, z](t), and [y, z](a) = limt→a+ [y, z](t), t ∈ (a, b).

The above lemma follows by integrating (4.1). The finite limits guaranteed by
Lemma 4.2 play a fundamental role in the characterization of the symmetric and
self-adjoint domains.

Corollary 4.3. If M y = λwy and M z = λwz on some interval (a, b), then [y, z]
is constant on (a, b). In particular, if λ is real and M y = λw y, Mz = λwz on
some interval (a, b), then [y, z] is constant on (a, b).

The above corollary follows directly from (4.1). For real λ, the solutions of (1.1)
are not, in general, real-valued. However, the Lagrange bracket of two linearly inde-
pendent solutions of (1.1) for real λ is a constant. For n even and real coefficients,
if there are d linearly independent solutions of (1.1) in H, then there are d linearly
independent real-valued solutions in H. This is one of the important differences
between the equation (1.1) studied here and the equations studied in [14, 6].

Following Everitt and Zettl [3] we call the next lemma, the Naimark Patching
Lemma or just the Patching Lemma.
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Lemma 4.4. Let Q ∈ Zn(J) and assume that M is regular on J . Let

α0, . . . , αn−1, β0, . . . , βn−1 ∈ C.
Then there is a function y ∈ Dmax such that

y[r](a) = αr, y[r](b) = βr (r = 0, . . . , n− 1).

Corollary 4.5. Let a < c < h < b and α0, . . . , αn−1, β0, . . . , βn−1 ∈ C. Then there
is a y ∈ Dmax such that y has compact support in J and satisfies:

y[r](c) = αr, y[r](h) = βr (r = 0, . . . , n− 1).

Proof. The proof in Naimark [12] can easily be adapted to prove the above corollary.
�

Corollary 4.6. Let a1 < · · · < ak ∈ J , where a1 and ak can also be regular
endpoints. Let αjr ∈ C (j = 1, . . . , k; r = 0, . . . , n − 1). Then there is a y ∈ Dmax

such that
y[r](aj) = αjr (j = 1, . . . , k; r = 0, . . . , n− 1).

The above corollary follows from repeated applications of Corollary 4.5.

Lemma 4.7. For da, db given in Definition 3.3, we have
(1) If ra(λ) denotes the number of linearly independent solutions of (1.1) lying

in L2((a, c), w) for λ ∈ R, then ra(λ) ≤ da. Similarly rb(λ) ≤ db.
(2) If ra(λ) < da or rb(λ) < db for some λ ∈ R, then λ is in the essential

spectrum of every self-adjoint extension of Smin.

For a proof of the above lemma see [7, 8].

5. LC solutions and the decomposition of the maximal domain

In this section we recall some properties of the maximal and minimal operators,
construct limit-circle (LC) solutions and discuss the decomposition of the maximal
domain used below in Section 6 to prove our main theorem. The next theorem is
well known.

Theorem 5.1. Let M = MQ, Q ∈ Zn(J), n > 1, satisfy (2.4) and let w be a weight
function. Then Dmax(Q) is dense in H. Let Smin = Smin(Q) = S∗max(Q) = S∗max.
Then Smin is a closed symmetric operator in H with dense domain and S∗min = Smax.

Proof. The method of Naimark [12, Chapter V] can be adapted to prove this the-
orem with minor modifications. See also [3]. �

For the rest of this article we assume that the hypothesis holds.
(H1) Let a < c < b and assume that the equation (1.1) on (a, c) has da linearly

independent solutions, denoted by u1, u2, . . . , uda , in L2((a, c), w) for some
real λ = λa and that (1.1) has db linearly independent solutions, denoted
by v1, v2, . . . , vdb

, in L2((c, b), w) for some real λ = λb. Note that da and
db are independent of c.

Regarding hypothesis (H1), note that d+
a = d−a = da, d+

b = d−b = db and
d+ = d− = d. Recall that ra(λ) denotes the number of linearly independent
solutions of (1.1) on (a, c) which lie in L2((a, c), w) for real λ. For any real λ it is
known [7, 8] that ra(λ) ≤ da and if ra(λ) < da then λ is in the essential spectrum
of every self-adjoint extension of Smin(a, c) and of Smin(a, b). Thus if there does
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not exist a real λa such that (1.1) on (a, c) has da linearly independent solutions in
L2((a, c), w) then the essential spectrum of all self-adjoint extensions Smin(a, c) and
of Smin(a, b) covers the whole real line. Similarly for the endpoint b. If the essential
spectrum of every self-adjoint realization of (1.1) in L2((a, b), w) covers the whole
real line then any eigenvalue, if there is one, is embedded in the essential spectrum.
In this case the dependence of such eigenvalues on the boundary condition seems
to be ‘coincidental’ and nothing seems to be known, aside from examples, about
this dependence.

The next theorem constructs LC solutions at each endpoint.

Theorem 5.2. Suppose that Q ∈ Zn(J,C), J = (a, b), −∞ ≤ a < b ≤ ∞, is
Lagrange symmetric, M = MQ and w is a weight function. Let a < c < b and
assume (H1) holds. Consider the equation

My = λwy on J.

Then
(1) For ma = 2da − n the solutions u1, . . . , uda

can be ordered such that the
ma ×ma matrix Û = ([ui, uj ](a))1≤i,j≤ma

is given by

Û =

 [u1, u1](a) . . . [uma , u1](a)
. . . . . . . . .

[u1, uma
](a) . . . [uma

, uma
](a)

 = −inEma

and is therefore nonsingular.
(2) For mb = 2db−n the solutions v1, . . . , vdb

on (c, b) can be ordered such that
the mb ×mb matrix V̂ = ([vi, vj ](b))1≤i,j≤mb

is given by

V̂ =

 [v1, v1](b) . . . [vmb
, v1](b)

. . . . . . . . .
[v1, vmb

](b) . . . [vmb
, vmb

](b)

 = −inEmb

and is therefore nonsingular.
(3) For every y ∈ Dmax(a, b) we have [y, uj ](a) = 0 for j = ma + 1, . . . , da.
(4) For every y ∈ Dmax(a, b) we have [y, vj ](b) = 0 for j = mb + 1, . . . , db.
(5) For 1 ≤ i, j ≤ da, we have [ui,uj ](a) = [ui,uj ](c).
(6) For 1 ≤ i, j ≤ db, we have [vi,vj ](b) = [vi,vj ](c).
(7) The solutions u1, . . . , uda

can be extended to (a, b) such that the extended
functions, also denoted by u1, . . . , uda

, satisfy uj ∈ Dmax(a, b) and uj is
identically zero in a left neighborhood of b, j = 1, . . . , da.

(8) The solutions v1, . . . , vdb
can be extended to (a, b) such that the extended

functions, also denoted by v1, . . . , vdb
, satisfy vj ∈ Dmax(a, b) and vj is

identically zero in a right neighborhood of a, j = 1, . . . , db.

A proof of the above theorem can be found in [7, Theorem 1].

Definition 5.3. The solutions u1, . . . , uma
and v1, . . . , vmb

are called LC solutions
at a and b, respectively. The solutions uma+1 , . . . , uda and vmb+1, . . . , vdb

are called
LP solutions at a and b, respectively. The definitions of LC solutions and LP
solutions were proposed by Wang et al in [14].

Remark 5.4. Only the LC solutions are used in the construction of the bound-
ary conditions which characterize the self-adjoint and symmetric operators in the
Hilbert space L2(J,w). The LP solutions and the solutions not in this space make
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no contribution to the construction of the self-adjoint and symmetric boundary
conditions.

Our proof of the symmetric operator characterization uses the decomposition of
the maximal domain in terms of LC solutions given by the next theorem.

Theorem 5.5 ([7]). Let the notation and hypotheses of Theorem 5.2 hold. Then

Dmax(a, b) = Dmin(a, b)u span{u1, . . . , uma}u span{v1, . . . , vmb
}. (5.1)

6. Symmetric operators

In this section we state and prove our main result: the characterization of two-
point boundary conditions which determine symmetric operators in the Hilbert
space L2(J,w). The proof depends on several lemmas; some of these are stated as
Theorems because we believe they are of independent interest.

Definition 6.1. Let the hypothesis and notation of Theorem 5.2 hold. For any
y ∈ Dmax define

Ya,b =
[
Y (a)
Y (b)

]
, Y (a) =

 [y, u1](a)
. . .

[y, uma
](a)

 , Y (b) =

 [y, v1](b)
. . .

[y, vmb
](b)

 (6.1)

and recall that the Lagrange brackets [y, uj ](a) and [y, vj ](b) exist as finite limits
by Lemma 4.2.

Definition 6.2. A matrix U ∈ Ml,2d with rank l, 0 ≤ l ≤ 2d, 2d = ma + mb is
called a boundary condition matrix. And for y ∈ Dmax and Ya,b given by (6.1) the
equation

UYa,b = 0 (6.2)
is called a boundary condition. The null space of U is denoted by N (U) and R(U)
denotes its range, U∗ is its adjoint.

Note that any boundary condition (6.2) can be reduced by elementary matrix
operations to the case that the rank of U is the number of its rows.

Definition 6.3. Suppose U ∈ Ml,2d is a boundary condition matrix. Define an
operator S(U) in L2(J,w) by

D(S(U)) =
{
y ∈ Dmax : UYa,b = 0

}
,

S(U)y = My for y ∈ D(S(U)).
(6.3)

Remark 6.4. If l = 0, then U = 0 and S(U) = Smax. If l = 2d, and I2d denotes
the 2d× 2d identity matrix, then S(I2d) = Smin by Theorem 6.7 below and for any
nonsingular boundary condition matrix U we have

S(U) = S(I2d) = Smin.

Hence for any boundary condition matrix U , D(S(U)) is a linear submanifold of
Dmax and we have

Smin ⊂ S(U) ⊂ Smax

and consequently, since Smax is a closed finite dimensional extension of Smin, it
follows that every operator S(U) is a closed finite dimensional extension of Smin.
For which matrices U is S(U) a symmetric operator in L2(J,w)? This is the question
we answer below.
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We start by recalling the well known abstract von Neumann charaterization of
the domain of the adjoint of a densely defined closed symmetric operator in Hilbert
space.

Lemma 6.5. Let T be a closed densely defined symmetric operator on a complex
Hilbert space H, and let N+ and N− be the deficiency spaces of T . Then we have

D(T ∗) = D(T )uN+ uN−

An operator S is a closed symmetric extension of T if and only if there exist
closed subspaces F+ of N+ and F− of N− and an isometric mapping V of F+ onto
F− such that

D(S) = D(T ) + {g + V g : g ∈ F+}.

Furthermore, S is self-adjoint if and only if F+ = N+ and F− = N−.

Proof. For the definition of deficiency spaces and a proof of the lemma see any
classical book on operator theory, e.g. [2, 12, 17]. �

When applied to the minimal operator Smin = Smin(Q), where Q ∈ Zn(J) is
Lagrange symmetric, the von Neumann formula yields the following result.

Lemma 6.6.

D(Smax) = D(Smin)uNλ uNλ, Im(λ) 6= 0,

where
Nλ = {y ∈ D(Smax) : MQy = λw y, Im(λ) 6= 0}.

Since the solution bases of MQ y = λw y have dimension d when Im(λ) 6= 0,
where d is the deficiency index, it is clear that Dmax is a 2d dimensional extension
of Dmin. Therefore Smin has self-adjoint extensions and every self-adjoint exten-
sion is a d dimensional extension. Furthermore, every d dimensional symmetric
extension of Smin is self-adjoint. Moreover, every symmetric extension of Smin is
an m dimensional extension with

0 ≤ m ≤ d

and an l = 2d−m dimensional restriction of Smax with

d ≤ l ≤ 2d.

The decomposition of Dmax given by Lemma 6.6 is well known [12, 17], and the
furthermore and moreover statements follow from Lemma 6.5.

By Lemma 6.6 the operator S(U) is not symmetric if l < d. But its adjoint oper-
ator (S(U))∗ may be symmetric. For example, when d 6= 0, Smax is not symmetric
but its adjoint Smin = S∗max is symmetric. When d = 0, then Smin = Smax and Smax

is symmetric and self-adjoint. So we will continue to study S(U) for U ∈Ml,2d with
rank l for 0 ≤ l ≤ 2d.

The next theorem extends the well known characterization of the domain of the
minimal operator

Dmin = {y ∈ Dmax : y[i](a) = 0 = y[i](b), i = 0, 1, 2, . . . , n− 1}

for regular problems to singular ones.
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Theorem 6.7. Let the notation and hypotheses of Theorem 5.2 hold. Then

Dmin =
{
y ∈ Dmax : [y, uj ](a) = 0, for j = 1, . . . ,ma;

[y, vj ](b) = 0, for j = 1, . . . ,mb

}
.

Proof. Recall that Smin = S∗max and S∗min = Smax and that in the decomposition of
Dmax given by Theorem 5.5 the uj are identically 0 in a neighborhood of b and the
vj are identically zero in a neighborhood of a. From the definitions of the maximal
and minimal domains and the Lagrange Identity we get

[y, z](b)− [y, z](a) = 0 for z ∈ Dmax and all y ∈ Dmin,

[y, z](b)− [y, z](a) = 0 for y ∈ Dmin and all z ∈ Dmax.

Suppose that y ∈ Dmax with [y, uj ](a) = 0, for j = 1, . . . ,ma and [y, vj ](b) = 0,
for j = 1, . . . ,mb. Let z = z0 + c1u1 + · · ·+ cmauma + h1v1 + · · ·+ hmb

vmb
where

z0 ∈ Dmin. Then

[y, z](b)− [y, z](a) =
mb∑
j=1

h̄j [y, vj ](b)−
ma∑
j=1

c̄j [y, uj ](a) = 0

and hence y ∈ Dmin.
For the converse we assume that y ∈ Dmin, then for all z ∈ Dmax, [y, z](b) −

[y, z](a) = 0. Therefore for the functions uj , j = 1, 2, . . . ,ma, [y, uj ](b)−[y, uj ](a) =
0, i.e. [y, uj ](a) = 0. Similarly, [y, vj ](b) = 0, for j = 1, . . . ,mb. �

The next lemma extends the ‘Naimark Patching Lemma’ 4.4 from regular to
singular problems. It says that in our search for solutions of the algebraic equation
UYa,b = 0 the whole space C2d is available, i.e. the range of Ya,b as y runs through
Dmax is the whole space C2d.

Lemma 6.8 (Singular patching lemma). For any complex numbers α1, α2, . . . , αma ,
β1, β2, . . . , βmb

, there exists y ∈ Dmax such that

(a) = α1, [y, u2](a) = α2, . . . , [y, uma
](a) = αma

,

[y, v1](b) = β1, [y, v2](b) = β2, . . . , [y, vmb
](b) = βmb

.
(6.4)

Proof. Consider the equation [u1, u1](a) . . . [uma
, u1](a)

. . . . . . . . .
[u1, uma

](a) . . . [uma
, uma

](a)

 c1
. . .
cma

 =

 α1

. . .
αma

 ,

namely

Û

 c1
. . .
cma

 =

 α1

. . .
αma

 . (6.5)

Since the Û defined in Theorem 5.2 is nonsingular, 6.5 has a unique solution
c1, . . . , cma . Similarly, since V̂ is nonsingular, the following equation [v1, v1](b) . . . [vmb

, v1](b)
. . . . . . . . .

[v1, vmb
](b) . . . [vmb

, vmb
](b)

 h1

. . .
hmb

 =

 β1

. . .
βmb

 , (6.6)
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i.e.

V̂

 h1

. . .
hmb

 =

 β1

. . .
βmb


has a unique solution h1, . . . , hmb

. Set

y = y0 + c1u1 + · · ·+ cmauma + h1v1 + · · ·+ hmb
vmb

,

where y0 ∈ Dmin. Obviously y ∈ Dmax(a, b) and then

[y, u1](a) = c1[u1, u1](a) + c2[u2, u1](a) + · · ·+ cma
[uma

, u1](a) = α1,

[y, u2](a) = c1[u1, u2](a) + c2[u2, u2](a) + · · ·+ cma
[uma

, u2](a) = α2,

. . .

[y, uma ](a) = c1[u1, uma ](a) + c2[u2, uma ](a) + · · ·+ cma [uma , uma ](a) = αma .

Similarly,

[y, v1](b) = β1, [y, v2](b) = β2, . . . , [y, vmb
](b) = βmb

.

This completes the proof. �

For the benefit of the reader, we include the next two lemmas that show some
basic results from linear algebra which are used below. We do not have specific
references, but the discussions on pages 7-17 of Horn and Johnson [5] are helpful,
and so is Kato [9, Chapter 1].

Lemma 6.9. If S is a subset of Cn, n ∈ N2, then
(1) S⊥ is a subspace of Cn.
(2) (S⊥)⊥ = span of S.
(3) (S⊥)⊥ = S, if S is a subspace.
(4) n = dimS⊥ + dim(S⊥)⊥.
(5) Suppose A ∈ Ml,m. Then R(A) = (N (A∗))⊥ i.e. Ax = y has a solution

(not necessarily unique) if and only if y∗z = 0 for all z ∈ Cl such that
A∗z = 0.

Lemma 6.10. Let G be any invertible p × p matrix and F an l × p matrix with
rankF = l. Then the following assertions are equivalent:

(i) N (F ) ⊂ R(GF ∗);
(ii) rank(FGF ∗) ≤ 2l − p;
(iii) rank(FGF ∗) = 2l − p;
(iv) N (F ) = GF ∗

(
N (FGF ∗)

)
.

The next lemma ‘connects’ the Lagrange identity with the boundary condition
6.2).

Lemma 6.11. Assume that U ∈ Ml,2d, rankU = l, d ≤ l ≤ 2d. Let y, z ∈ Dmax

and define Ya,b, Za,b by (6.1). Let

P = in
(
Ema 0

0 −Emb

)
(6.7)

and note that P−1 = −P = P ∗. Then S(U) is symmetric if and only if

Z∗a,bPYa,b = 0, for all y, z ∈ D(S(U)). (6.8)
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Proof. By Lemma 4.2 for any y, z ∈ Dmax, we have∫ b

a

{zMy − yMz} = [y, z](b)− [y, z](a).

Therefore, it follows from the definition of S(U) given in (6.3) that S(U) is sym-
metric if and only if for all y, z ∈ D(S(U)),∫ b

a

{zS(U)y − yS(U)z} =
∫ b

a

{zMy − yMz} = [y, z](b)− [y, z](a) = 0.

By (5.1), functions y, z ∈ Dmax can be represented as

y = y0 + c1u1 + c2u2 + · · ·+ cmauma + h1v1 + h2v2 + · · ·+ hmb
vmb

,

z = z0 + ĉ1u1 + ĉ2u2 + · · ·+ ĉmauma + ĥ1v1 + ĥ2v2 + · · ·+ ĥmb
vmb

,

where y0, z0 ∈ Dmin and cj , ĉj ∈ C, j = 1, . . . ,ma; hj , ĥj ∈ C, j = 1, . . . ,mb. From
(6.6), Lemma 6.8 and the definition of V̂ it follows that

[y, z](b) = (ĥ1, ĥ2, . . . , ĥmb
)V̂

 h1

. . .
hmb


=
(
[z, v1](b), . . . , [z, vmb

](b)
)
(V̂ −1)∗V̂ V̂ −1

 [y, v1](b)
. . .

[y, vmb
](b)


= −in

(
[z, v1](b), . . . , [z, vmb

](b)
)
Emb

 [y, v1](b)
. . .

[y, vmb
](b)

 .

Similarly, (6.6), Lemma 6.8 and the definition of Û lead to

[y, z](a) = (ĉ1, ĉ2, . . . , ĉma
)Û

 c1
. . .
cma


= −in([z, u1](a), . . . , [z, uma

](a))Ema

 [y, u1](a)
. . .

[y, uma ](a)

 .

Therefore,

[y, z](b)− [y, z](a) =

=
(
[z, u1](a), . . . , [z, uma ](a), [z, v1](b), . . . , [z, vmb

](b)
)
P


[y, u1](a)

. . .
[y, uma

](a)
[y, v1](b)
. . .

[y, vmb
](b)

 .

Hence, the operator S(U) is symmetric if and only if

[y, z](b)− [y, z](a) = 0 for all y, z ∈ D(S(U)),

i.e.
Z∗a,bPYa,b = 0 for all y, z ∈ D(S(U)).

�
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Lemma 6.12. Each of the following statements is equivalent to (6.8):
(1) For all Y, Z ∈ N (U), Z∗PY = 0;
(2) N (U)⊥P (N (U));
(3) P (N (U)) ⊂ N (U)⊥ = R(U∗);
(4) N (U) ⊂ R(P−1U∗) = R(PU∗).

Proof. Statements (1) and (2) are the same statements, just written differently.
The equivalence of (2) and (3) follows from Lemma 6.9. Whereas the equivalence
of (3) and (4) immediately follows from the fact that P is an invertible matrix and
P−1 = −P . �

Theorem 6.13. Let U be an l × 2d matrix with rankU = l, where d ≤ l ≤ 2d,
d = da + db − n. Then the operator S(U) is symmetric if and only if

N (U) ⊂ R(PU∗),

where P is defined by (6.7).

Proof. This follows from the Singular patching lemma 6.8, Lemma 6.11 and Lemma
6.12. �

The result given by the next lemma is not new, it is [7, Theorem 3]. The
decomposition (5.1) of the maximal domain plays an important role in our proof of
Theorem 6.18. It is based on the construction of LC solutions and the decomposition
of the maximal domain due to Wang et al [14], which, in turn, was influenced by a
method of Sun [13]. We give this lemma here because of its relationship to Theorem
6.18 and because our proof is different.

Lemma 6.14. Suppose U ∈ Ml,2d. Let U = (A : B) where A ∈ Ml,ma
consists

of the first ma columns of U in the same order as they are in U and B ∈ Ml,mb

consists of the other mb columns in the same order as in U (recall that ma +mb =
2d) and assume that rankU = l. Then the operator S(U) is self-adjoint if and only
if

l = d and AEma
A∗ −BEmb

B∗ = 0.

Proof. It follows from Lemma 6.6 and Theorem 6.13 that S(U) is self-adjoint if and
only if S(U) is a d dimensional symmetric extension of the minimal operator Smin,
i.e. if and only if l = d and N (U) ⊂ R(PU∗). When l = d, one has dim(N (U)) = d
and dim(R(PU∗)) = d. Hence N (U) ⊂ R(PU∗) is equivalent to R(PU∗) ⊂ N (U),
and this is equivalent to UPU∗ = 0, i.e. AEma

A∗ −BEmb
B∗ = 0. �

Next we study matrices U such that (S(U))∗ is symmetric.

Theorem 6.15. Let U ∈Ml,2d, 0 ≤ l ≤ 2d and assume that rankU = l. Then

D((S(U))∗) = {z ∈ Dmax : Za,b =


[z, u1](a)

. . .
[z, uma

](a)
[z, v1](b)
. . .

[z, vmb
](b)

 ∈ R(PU∗)}.

Proof. Let z ∈ Dmax. Then z ∈ D((S(U))∗) if and only if

(Smaxy, z) = (y, Smaxz), for all y ∈ D(S(U)).
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This is equivalent to Z∗a,bPYa,b = 0 for all y ∈ D(S(U)). Therefore z ∈ D((S(U))∗)
if and only if Y ∗a,bP

∗Za,b = 0, i.e. P ∗Za,b ∈ N (U)⊥ = R(U∗). This completes the
proof. �

Lemma 6.16. Let U ∈ Ml,2d and assume rankU = l and 0 ≤ l ≤ d. Then the
following assertions are equivalent:

(1) (S(U))∗ is symmetric;
(2) N (U) ⊃ R(PU∗);
(3) UPU∗ = 0.

Proof. From Lemma 6.11 and Theorem 6.15, it follows that (S(U))∗ is symmetric
if and only if

Z∗a,bPYa,b = 0, for all y, z ∈ D((S(U))∗), (6.9)

where Ya,b, Za,b ∈ R(PU∗) are defined as in (6.1). By Lemma 6.8 and Theorem
6.15, (6.9) is equivalent to Z∗PY = 0 for all Z, Y ∈ R(PU∗). Since P 2 = −I,
this is equivalent to R(PU∗) ⊥ R(U∗). From Lemma 6.9 we know that R(U∗) =
(N (U))⊥, so that R(PU∗) ⊥ R(U∗) is equivalent to (2), which proves (1)⇐⇒ (2).
The equivalence of (2) and (3) can be obtained immediately. �

Lemma 6.17. Let U ∈ Ml,2d and assume that rankU = l and d ≤ l ≤ 2d =
ma +mb. Then the following statements are equivalent:

(1) S(U) is a symmetric extension of the minimal operator Smin;
(2) N (U) ⊂ R(PU∗);
(3) There exists a d× 2d matrix Ũ satisfying rank Ũ = d, N (U) ⊂ N (Ũ) and

ŨP Ũ∗ = 0;
(4) There exists a d× l matrix Ṽ satisfying rank Ṽ = d and Ṽ UPU∗Ṽ ∗ = 0;
(5) rank(UPU∗) = 2l − (ma +mb) = 2(l − d);
(6) rank(UPU∗) ≤ 2l − (ma +mb) = 2(l − d);
(7) N (U) = PU∗(N (UPU∗)).

Proof. The equivalence of (1) and (2) is given in Theorem 6.13.
(1) ⇒ (3): Note that every symmetric extension of Smin is a restriction of a

self-adjoint extension of Smin. By (1), S(U) is a symmetric extension of Smin, and
by Lemma 6.14, S(Ũ) is self-adjoint. Therefore (3) holds.

(3)⇒ (2): By matrix algebra and condition (3), we obtain that N (U) ⊂ N (Ũ) =
R(PŨ∗) . It follows from N (U) ⊂ N (Ũ) that

R(Ũ∗) = N (Ũ)⊥ ⊂ N (U)⊥ = R(U∗).

Thus R(PŨ∗) ⊂ R(PU∗), and then it follows that N (U) ⊂ R(PU∗). This shows
that (2) holds.

(3) ⇒ (4): Since N (U) ⊂ N (Ũ) , we have R(U∗) ⊃ R(Ũ∗). Therefore there
exists a d × l matrix Ṽ such that Ũ∗ = U∗Ṽ ∗, i.e. Ũ = Ṽ U . From ŨP Ũ∗ = 0,
it follows that Ṽ UPU∗Ṽ ∗ = ŨP Ũ∗ = 0. By rankU = l, one has rank Ṽ =
rank(Ṽ U) = rank Ũ = d.

(4) ⇒ (3): Set Ũ = Ṽ U . Then ŨP Ũ∗ = Ṽ UPU∗Ṽ ∗ = 0. It follows from
rankU = l that rank Ũ = rank(Ṽ U) = rank Ṽ = d. For any Y ∈ N(U), ŨY =
Ṽ UY = 0 which shows that N (U) ⊂ N (Ũ).

The equivalence of (2), (5), (6) and (7) can be obtained by from the Linear
Algebra Lemma 6.10. �
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Based on the above lemmas and theorems we now obtain our main result: the
characterization of symmetric operators in the Hilbert space L2(J,w) determined
by two-point boundary conditions.

Theorem 6.18. Suppose M is a symmetric differential expression on the interval
(a, b), −∞ ≤ a < b ≤ ∞, of order n ∈ N2. Let a < c < b. Assume that the
deficiency indices of M on (a, c), (c, b) are da, db, respectively, and hypothesis (H1)
holds. Let u1, u2, . . . , uma

, ma = 2da−n, and v1, v2, . . . , vmb
, mb = 2db−n, be LC

solutions on (a, c), (c, b) as constructed by Theorem 5.2, respectively, and extended
to maximal domain functions in Dmax = Dmax(a, b) as in Theorem 5.2. Define Ya,b
by (6.1). Assume U ∈Ml,2d has rank l, 0 ≤ l ≤ ma +mb = 2d and let U = (A : B)
with A ∈ Ml,ma

consisting of the first ma columns of U in the same order as they
are in U and B ∈Ml,mb

consisting of the next mb columns of U in the same order
as they are in U . Define the operator S(U) in L2(J,w) by (6.3) and let

C = C(A,B) = AEma
A∗ −BEmb

B∗, and let r = rankC.

Then we have

(1) If l < da + db − n = d, then S(U) is not symmetric.
(2) If l = da+db−n = d, then S(U) is self-adjoint (and hence also symmetric)

if and only if r = 0.
(3) Let l = d+ s, 0 < s ≤ d. Then S(U) is symmetric if and only if r = 2s.

Proof. Part (1) follows from the abstract von Neumann formula stated by Lemma
6.5 and Lemma 6.6.

Part (2) is given by Lemma 6.14.
Part (3): d < l ≤ 2d. From Lemma 6.17 it follows that S(U) is symmetric if and

only if rankC = rankUPU∗ = 2(l − d) = 2s. �

7. Examples of symmetric operators

In this section, based on Theorem 6.18, we construct examples of symmetric
operators for the symmetric expressions M of order 5 based on Section 2 above:
Let Q ∈ Z5(J) satisfy (2.4) and let M = MQ.

Let l = rankU . By (1) of Theorem 6.18 S(U) is not symmetric when l < d. When
l = d Lemma 6.14 characterizes the self-adjoint (and therefore also symmetric)
operators S(U).

Example 7.1. Let the hypotheses and notation of Theorem 6.18 hold. It follows
from Lemma 3.4 that the deficiency indices da and db satisfy 3 ≤ da, db ≤ 5.

Assume that da = 4, db = 5, then d = 4, ma = 3 and mb = 5. In this case, the
endpoint a is singular and the endpoint b is regular or limit-circle (LC). The LC
solutions at a are u1, u2, u3 and the LC solutions at b are v1, v2, . . . , v5. If b is a
regular endpoint for this M then, in the discussion below, simply replace [y, v1](b),
[y, v2](b), [y, v3](b), [y, v4](b), [y, v5](b) with y(b), y[1](b), y[2](b), y[3](b), y[4](b).

It follows from Theorem 6.18 that if l = d + s = 4 + s, 0 < s < 4, then S(U)
is symmetric if and only if r = rank(AEma

A∗ − BEmb
B∗) = 2s. We construct

examples for each s = 1, 2, 3.
(1) If s = 1, then l = 5 and r = 2.
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(i) Let

A =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0

 , B =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 .

Then l = rankU = rank(A : B) = 5 and r = rank(AE3A
∗ − BE5B

∗) = 2. There-
fore, by Theorem 6.18, the operator S(U) determined by the following boundary
condition is symmetric:

[y, u1](a) = 0, [y, u2](a) = 0,

[y, v1](b) = 0, [y, v2](b) = 0, [y, v3](b) = 0.

Note that the boundary conditions are strictly separated.
(ii) Let

A =


0 0 1
0 1 0
1 0 0
0 0 0
0 0 0

 , B =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 .

Then l = rankU = rank(A : B) = 5 and r = rank(AE3A
∗ − BE5B

∗) = 2. By
Theorem 6.18, the operator S(U) is symmetric with mixed boundary condition:

[y, u2](a) = 0, [y, v3](b) = 0, [y, v4](b) = 0,

[y, u1](a) + [y, v5](b) = 0, [y, u3](a) + [y, v1](b) = 0.

(2) If s = 2, then l = 6 and r = 4.
(i) Let

A =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0

 , B =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

A direct computation shows that l = rankU = rank(A : B) = 6 and r =
rank(AE3A

∗ − BE5B
∗) = 4. Therefore, the following boundary conditions de-

termine a symmetric operator S(U):

[y, u1](a) = 0, [y, u2](a) = 0, [y, v1](b) = 0,

[y, v2](b) = 0, [y, v3](b) = 0, [y, v4](b) = 0.

(ii) Choose

A =


0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0

 , B =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 .
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Then l = rankU = rank(A : B) = 6 and r = rank(AE3A
∗−BE5B

∗) = 4. Therefore
S(U) determined by the following mixed boundary condition is symmetric:

[y, u2](a) = 0, [y, v2](b) = 0,

[y, v3](b) = 0, [y, v4](b) = 0,

[y, u1](a) + [y, v5](b) = 0, [y, u3](a) + [y, v1](b) = 0.

(3) If s = 3, then l = 7 and r = 6.
(i) Choose

A =



1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, B =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

By a direct computation we have: l = rankU = 7 and r = rank(AE3A
∗−BE5B

∗) =
6. Therefore the operator S(U) determined by the following boundary condition is
symmetric:

[y, u1](a) = 0, [y, u2](a) = 0,

[y, vi](b) = 0, i = 1, 2, 3, 4, 5.

Note that this is a symmetric operator with strictly separated boundary conditions:
there are 2 conditions at the endpoint a, 5 at b and no coupled condition.

Example 7.2. (ii) Let

A =



0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, B =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


.

Then one has l = rankU = 7 and r = rank(AE3A
∗ − BE5B

∗) = 6. By Theorem
6.18, the following mixed boundary condition determines a symmetric operator:

[y, u2](a) = 0, [y, u3](a) = 0,

[y, v1](b) = 0, [y, v2](b) = 0,

[y, v3](b) = 0, [y, v4](b) = 0,

[y, u1](a) = i[y, v5](b).

Note that here there are 2 separated conditions at a; 4 separated conditions at b
and 1 nonreal coupled condition.
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