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EXTREMAL VALUES FOR A KIRCHHOFF TYPE PROBLEM

WITH FAST INCREASING WEIGHT AND CRITICAL
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Abstract. In this article, we study the Kirchhoff type problem

−
“
a+ ε

Z
R3
K(x)|∇u|2dx

”
div(K(x)∇u) = λK(x)f(x)|u|q−2u+K(x)|u|4u,

where x ∈ R3, 1 < q < 2, K(x) = exp(|x|α/4) with α ≥ 2, ε > 0 is small
enough, and the parameters a, λ > 0. Under some assumptions on f(x),

we establish the existence of two nonnegative nontrivial solutions and obtain

uniform lower estimates for extremal values of the problem via variational
methods.

1. Introduction and statement of main results

In this article, we consider the existence of multiple solutions and estimates of
extremal values for the Kirchhoff type problem

−
(
a+ ε

∫
R3
K(x)|∇u|2dx

)
div(K(x)∇u) = λK(x)f(x)|u|q−2u+K(x)|u|4u, (1.1)

where x ∈ R3, 1 < q < 2, K(x) = exp(|x|α/4) with α ≥ 2, ε > 0 is small enough,
the potential f has indefinite sign, and the parameters a, λ are positive.

It is commonly known that Kirchhoff type problems are presented by Kirchhoff in
[11] as an extension of the classical d’Alembert wave equation for free vibrations of
elastic strings. Kirchhoff type problems are often viewed as nonlocal because of the
appearance of the term

∫
K|∇u|2dx. This provokes some mathematical difficulties

which make the study of such problems particularly interesting. When K ≡ 1, the
general Kirchhoff type problem with critical exponent

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = λf(x, u) + u5, x ∈ Ω, (1.2)

has been studied extensively. For the case Ω ⊂ R3 is a bounded domain, some
interesting works can be founded in [5, 12, 17, 22]. In particular, Sun and Liu [22]
studied that f(x, u) = uq, where 0 < q < 1, and proved the existence of at least one
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positive solution when 0 < λ < T for some T = T (a) > 0. There are also several
existence results for (1.2) on unbounded domain, that is Ω = R3. For this case, we
refer the interested readers to [1, 15, 16, 14, 24].

As pointed in [4, 9], one of the motivations for investigating problem (1.1) is that
for α = q = 2, ε = 0 and f(x) = 1/5, (1.1) arises naturally when one tries to seek
self-similar solutions of the form

w(t, x) = t−1/5u(xt−1/2)

to the evolution equation

wt −∆w = |w|4w on (0,∞)× R3.

For a more detailed description, see [4, 9].
Recently, Furtado et al. [7] studied the equation

− div(K∇u) = a(x)K|u|q−2u+ b(x)K|u|2
∗−2u, x ∈ RN , (1.3)

where 2∗ = 2N/(N − 2), N ≥ 3, and 1 < q < 2. Under certain assumptions on
the potentials a and b, the authors obtained two nonnegative nontrivial solutions
for (1.3). Subsequently, based on the result of [7], Qian and Chen [20] obtained
another two sign-changing solutions of (1.3) with some slightly stronger conditions
on a and b. More results of related problem, please see [2, 6, 8, 7, 18, 19] and the
references therein.

We also mention that, by using minimization argument and Mountain Pass The-
orem, Lei et al. [13] obtained two positive solutions for (1.1) when K ≡ 1 and R3 is
replaced by a bounded domain Ω ⊂ R3 and λ is sufficiently small. However, in [13],
the authors did not show any information on estimates of extremal values for the
problem, which is just our purpose here. More precisely, our aim in this paper is to
prove the existence and multiplicity of nonnegative solutions of (1.1), and establish
uniform lower estimates for extremal values.

Let H denote the Hilbert space obtained as the completion of C∞c (R3) with
respect to the norm

‖u‖ =
(∫

R3
K|∇u|2dx

)1/2

.

Define the weighted Lebesgue spaces

LsK(R3) =
{
u measurable in R3 :

∫
R3
K|u|sdx <∞

}
with the norm

‖u‖s =
(∫

R3
K|u|sdx

)1/s

.

From [6], we know that the embedding H ↪→ LrK(R3) is continuous for 2 ≤ r ≤ 6,
and compact for 2 ≤ r < 6. This enables us to define for any r ∈ [2, 6]

Sr = inf
{∫

R3
K|∇u|2dx : u ∈ H,

∫
R3
K|u|rdx = 1

}
. (1.4)

In particular, if r = 6, we put S = S6 for simplicity. It is worth mentioning that
this constant is equal to the best constant of the embedding D1,2(R3) ↪→ L6(R3),
see [2]. For each r > 1, we shall denote by r′ its Hölder conjugated exponent,
namely 1/r + 1/r′ = 1. In this paper, we will always assume f satisfies:

(A1) f ∈ LσqK (R3) for some (2/q) ≤ σ′q < (6/q);
(A2) the set Ω+

f := {x ∈ R3 : f > 0} has an interior point.
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By (A1) and the above embedding, it is easy to see the functional

I(u) =
a

2
‖u‖2 +

ε

4
‖u‖4 − λ

q

∫
R3
Kf |u|qdx− 1

6

∫
R3
K|u|6dx

is well defined on H and I ∈ C1(H,R). As we all know, there exists a one to one
correspondence between the critical points and the weak solutions of (1.1). Here,
we say u ∈ H is a weak solution of (1.1), if for all φ ∈ H, it holds

(a+ ε‖u‖2)
∫

R3
K∇u∇φdx− λ

∫
R3
Kf |u|q−2uφdx−

∫
R3
K|u|4uφdx = 0.

Define the Nehari-type set of (1.1),

Λ = {u ∈ H : 〈I ′(u), u〉 = 0},

and then split Λ into three subsets of Λ,

Λ0 = {u ∈ Λ : a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)‖u‖66 = 0},
Λ+ = {u ∈ Λ : a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)‖u‖66 > 0},
Λ− = {u ∈ Λ : a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)‖u‖66 < 0}.

Set

Tq,f,a =
4

6− q
1

‖f‖σq

(2− q
6− q

) 2−q
4
a

6−q
4 S

q/2
qσ′q

S
3(2−q)

4 .

Our main results are stated belows.

Theorem 1.1. Assume that a > 0, 1 < q < 2 and ε > 0 is sufficiently small.
Under assumptions (A1) and (A2), if λ ∈ (0, Tq,f,a), then problem (1.1) has at
least two nonnegative nontrivial solutions u∗ ∈ Λ+, ũ∗ ∈ Λ− with ‖u∗‖ < ‖ũ∗‖.

Let

λ∗ = sup
{
λ > 0 : (1.1) has at least two nonnegative nontrivial solutions

}
.

Then, as a consequence of Theorem 1.1, we have the following lower bound for λ∗.

Theorem 1.2. Assume that a > 0, 1 < q < 2 and ε > 0 is sufficiently small.
Under assumptions (A1) and (A2), we have

λ∗ > Tq,f,a =
4

6− q
1

‖f‖σq

(2− q
6− q

) 2−q
4
a

6−q
4 S

q/2
qσ′q

S
3(2−q)

4 .

Inspired by [23, 21], we consider the following two minimization problems

c1 = inf
Λ0∪Λ+

I, c2 = inf
Λ−

I

and expect to find two solutions, one in Λ+ and one in Λ−. As we now face the
critical problem (1.1) in a unbounded domain, our main difficulty is to prove that
the energy level belongs to the range where (PS) condition hold. Due to the presence
of the term

∫
K|∇u|2dx, the methods employed in [23, 21] cannot be directly used

here. In fact, for the first solution, we may easily show that c1 < 0 and then
obtain compactness condition by standard argument with some modification. For
the second one, we cannot proceed as in the preceding proof, since we can only
provide that

c2 < I(u∗) +
1
3

√
a3S3,
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where u∗ is the first solution and u∗ ∈ Λ+. We also remark that the method used
in [13] by letting λ sufficiently small do not apply here, since our aim is to establish
uniform estimates of extremal values for λ. We overcome this new difficulty by
developing some techniques applied in [10, 3].

This article is organized as follows. In the next section, we give some notation
and preliminaries. Then we prove our main results in Section 3.

2. Notation and Preliminaries

Throughout this paper, we write
∫
u instead of

∫
R3 u(x)dx. The dual space of

a Hilbert space H will be denoted by H−1. Br(x) denotes the ball centered at x
with radius r > 0. Let→ and ⇀ denote strong convergence and weak convergence,
respectively. All limitations hold as n → ∞ unless otherwise stated. C and Ci
denote various positive constants whose values may vary from line to line.

For any u ∈ H and u 6= 0, set

tmax =
[ (2− q)‖u‖2

(6− q)
∫
K|u|6

]1/4
.

Then, the following lemma holds.

Lemma 2.1. Let λ ∈ (0, Tq,f,a). For any u ∈ H and u 6= 0, there is a unique t+ =
t+(u) > tmax > 0 such that t+u ∈ Λ− and I(t+u) = maxt≥tmax I(tu). Moreover, if∫
Kf |u|q > 0, there is a unique 0 < t− = t−(u) < tmax such that t−u ∈ Λ+ and

I(t−u) = min0≤t≤t+ I(tu).

Proof. A simple calculation shows that
∂I

∂t
(tu) = tq−1

(
t2−qa‖u‖2 + t4−qε‖u‖4 − λ

∫
Kf |u|q − t6−q

∫
K|u|6

)
.

For any u ∈ H, u 6= 0, define

ψ(t) = t2−qa‖u‖2 + t4−qε‖u‖4 − t6−q
∫
K|u|6, for all t > 0,

ψ1(t) = t2−qa‖u‖2 − t6−q
∫
K|u|6, for all t > 0.

Since 1 < q < 2, it is easy to see that limt→0+ ψ1(t) = 0 and limt→+∞ ψ1(t) = −∞.
Moreover, ψ1(t) is concave and achieves its maximum at the point tmax. Now we
notice that

ψ1(tmax) =
( 4

6− q

)(2− q
6− q

) 2−q
4
[ (a‖u‖2)6−q

(
∫
K|u|6)2−q

]1/4
and consequently from (1.4) we obtain

ψ(tmax) ≥ ψ1(tmax) ≥
( 4

6− q

)(2− q
6− q

) 2−q
4
a

6−q
4 S

3(2−q)
4 ‖u‖q.

Therefore if
∫
Kf |u|q ≤ 0, then there is a unique t+ > tmax such that ψ(t+) =∫

Kf |u|q and ψ′(t+) < 0. Equivalently t+u ∈ Λ− and I(t+u) ≥ I(tu), for all
t ≥ tmax.

In the case
∫
Kf |u|q > 0, using (A1) and Hölder’s inequality, we deduce that for

λ ∈ (0, Tq,f,a)

λ

∫
Kf |u|q ≤ λ‖f‖σq‖u‖

q
qσ′q
≤ λ‖f‖σqS

−q/2
qσ′q
‖u‖q < ψ(tmax).
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This implies that there are t+ > tmax > t− > 0 such that

ψ(t+) =
∫
Kf |u|q = ψ(t−),

ψ′(t+) < 0 < ψ′(t−).

That is, t+u ∈ Λ− and t−u ∈ Λ+. Additionally, I(t+u) ≥ I(tu), for all t ≥ tmax
and I(t−u) ≤ I(tu), for all t ∈ [0, t+]. �

Lemma 2.2. If λ ∈ (0, Tq,f,a), then Λ0 = {0}.

Proof. Suppose to the contrary that there is 0 6= w ∈ Λ0 such that a(2− q)‖w‖2 +
ε(4− q)‖w‖4 − (6− q)‖w‖66 = 0. Since w ∈ Λ0 ⊂ Λ, we have −4a‖w‖2 − 2ε‖w‖4 +
λ(6− q)

∫
Kf |w|q = 0 and even further

λ

∫
Kf |w|q =

4a
6− q

‖w‖2 +
2ε

6− q
‖w‖4. (2.1)

On the other hand, noticing that

a(2− q)‖w‖2 < a(2− q)‖w‖2 + ε(4− q)‖w‖4 = (6− q)‖w‖66,

we obtain ∫
K|w|6 > 2− q

6− q
a‖w‖2. (2.2)

From this, (2.1) and (2.2), one has( 4
6− q

)(2− q
6− q

)
2−q
4

[ (a‖w‖2)6−q

(
∫
K|w|6)2−q

]1/4
− λ

∫
Kf |w|q

≤
( 4

6− q

)(2− q
6− q

) 2−q
4
[ (a‖w‖2)4

( 2−q
6−q )2−q

]1/4
− 4a

6− q
‖w‖2 − 2ε

6− q
‖w‖4

= − 2ε
6− q

‖w‖4 < 0

which is impossible since λ ∈ (0, Tq,f,a). �

Lemma 2.3. Let λ ∈ (0, Tq,f,a), then there is a gap structure in Λ:

‖ũ‖ > A(0) > A(λ) > ‖u‖, for all u ∈ Λ+, ũ ∈ Λ−,

where

A(0) =
(2− q

6− q

)1/4

a1/4S3/4, A(λ) =
(6− q

4a
λ‖f‖σq

) 1
2−q

S
−q

2(2−q)
qσ′q

.

Proof. For ũ ∈ Λ−, one has

a(2− q)‖ũ‖2 ≤ a(2− q)‖ũ‖2 + ε(4− q)‖ũ‖4 < (6− q)
∫
K|ũ|6 ≤ (6− q)S−3‖ũ‖6

which implies ‖ũ‖ > A(0).
Similarly, for u ∈ Λ+, from Hölder’s inequality it follows that

4a‖u‖2 ≤ 4a‖u‖2 + 2ε‖u‖4 < λ(6− q)
∫
Kf |u|q ≤ λ(6− q)‖f‖σqS

−q/2
qσ′q
‖u‖q

and consequently ‖u‖ < A(λ).
It is easy to checked that A(0) > A(λ), if λ ∈ (0, Tq,f,a). �
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Lemma 2.4. Given u ∈ Λ±, there exist ρu > 0 and a continuous function gρu :
Bρu(0)→ R+ defined for w ∈ H, w ∈ Bρu(0) satisfying

gρu(0) = 1, gρu(w)(u− w) ∈ Λ±,

〈g′ρu(0), φ〉 =
(2a+ 4ε‖u‖2)

∫
K∇u∇φ− 6

∫
K|u|4uφ− qλ

∫
Kf |u|q−2uφ

a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)
∫
K|u|6

.

Proof. We only prove the case u ∈ Λ−. The case u ∈ Λ+ can be proved by a similar
argument. Fix u ∈ Λ− and define F : R+ ×H → R by

F (t, w) = t2−qa‖u− w‖2 + t4−qε‖u− w‖4 − t6−q
∫
K|u− w|6 − λ

∫
Kf |u− w|q.

Since u ∈ Λ− ⊂ Λ, we obtain F (1, 0) = 0 and

Ft(1, 0) = a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)
∫
K|u|6 < 0.

Applying implicit function theorem for F at the point (1, 0), we can deduce that
there exists ρ̄u > 0 such that for w ∈ H, ‖w‖ < ρ̄u, the equation F (t, w) = 0 has a
unique continuous solution t = gρu(w) > 0 with gρu(0) = 1. Since F (gρu(w), w) = 0
for w ∈ H, ‖w‖ < ρ̄u, one gets

g2−q
ρu (w)a‖u− w‖2 + g4−q

ρu (w)ε‖u− w‖4 − g6−q
ρu (w)‖u− w‖66 − λ

∫
Kf |u− w|q

=
[
a‖gρu(w)(u− w)‖2 + ε‖gρu(w)(u− w)‖4 −

∫
K|gρu(w)(u− w)|6

− λ
∫
Kf |gρu(w)(u− w)|q

]
/
[
gqρu(w)

]
= 0;

that is, gρu(w)(u− w) ∈ Λ for all w ∈ H and ‖w‖ < ρ̄u. Since Ft(1, 0) < 0 and

Ft(gρu(w), w) = a(2− q)g1−q
ρu (w)‖u− w‖2 + ε(4− q)g3−q

ρu (w)‖u− w‖2

− (6− q)g5−q
ρu (w)

∫
K|u− w|6

=
(
a(2− q)‖gρu(w)(u− w)‖2 + ε(4− q)‖gρu(w)(u− w)‖4

− (6− q)‖gρu(w)(u− w)‖66
)
/g1+q
ρu (w),

we can take ρu > 0 small enough (ρu < ρ̄u) such that for w ∈ H, ‖w‖ < ρu,

a(2−q)‖gρu(w)(u−w)‖2 + ε(4−q)‖gρu(w)(u−w)‖4− (6−q)‖gρu(w)(u−w)‖6 < 0,

which yields gρu(w)(u − w) ∈ Λ−, for all w ∈ H, ‖w‖ < ρu. Furthermore, for any
φ ∈ H, r > 0, one has

F (1, 0 + rφ)− F (1, 0)

= a‖u− rφ‖2 + ε‖u− rφ‖4 −
∫
K|u− rφ|6 −

∫
Kf |u− rφ|q

− a‖u‖2 − ε‖u‖4 +
∫
K|u|6 +

∫
Kf |u|q

= −a
∫
K(2r∇u∇φ− r2|∇φ|2)− ε

[
2
∫
K|∇u|2

∫
K(2r∇u∇φ− r2|∇φ|2)

−
(∫

K(2r∇u∇φ− r2|∇φ|2)
)2]
−
∫
K
(
|u− rφ|6 − |u|6

)
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−
∫
Kf
(
|u− rφ|q − |u|q

)
and hence

〈Fw, φ〉|t=1,w=0

= lim
r→0

F (1, 0 + rφ)− F (1, 0)
r

= −(2a+ 4ε‖u‖2)
∫
K∇u∇φ+ 6

∫
K|u|4uφ+ qλ

∫
Kf |u|q−2uφ.

Thus,

〈g′ρu(0), φ〉 = −〈Fw, φ〉
Ft

∣∣∣
t=1,w=0

=
(2a+ 4ε‖u‖2)

∫
K∇u∇φ− 6

∫
K|u|4uφ− qλ

∫
Kf |u|q−2uφ

a(2− q)‖u‖2 + ε(4− q)‖u‖4 − (6− q)
∫
K|u|6

.

This completes the proof. �

Lemma 2.5. Let λ ∈ (0, Tq,f,a). Then
(i) the functional I is coercive and bounded from below on Λ;
(ii) c1 = infΛ+∪Λ0 I = infΛ+ I ∈ (−∞, 0).

Proof. (i) For u ∈ Λ, it follows from Hölder’s inequality and (1.4) that

I(u) =
a

2
‖u‖2 +

ε

4
‖u‖4 − λ

q

∫
Kf |u|q − 1

6

∫
K|u|6

=
a

3
‖u‖2 +

ε

12
‖u‖4 − λ6− q

6q

∫
Kf |u|q

≥ a

3
‖u‖2 +

ε

12
‖u‖4 − λ6− q

6q
‖f‖σqS

−q/2
qσ′q
‖u‖q.

Hence the coercivity and lower boundedness of I hold.
(ii) For u ∈ Λ+, one has

I(u) =
a

2
‖u‖2 +

ε

4
‖u‖4 − λ

q

∫
Kf |u|q − 1

6

∫
K|u|6

= a
(1

2
− 1
q

)
‖u‖2 + ε

(1
4
− 1
q

)
‖u‖4 +

(1
q
− 1

6

)∫
K|u|6

= −2− q
2q

a‖u‖2 − 4− q
4q

ε‖u‖4 +
6− q

6q

∫
K|u|6

<
−a(2− q)‖u‖2 − ε(4− q)‖u‖4 + (6− q)

∫
K|u|6

6q
< 0.

Combining this with Lemma 2.2, we obtain infΛ+∪Λ0 I = infΛ+ I < 0. By (i), we
can further obtain infΛ+∪Λ0 I 6= −∞. In conclusion, infΛ+∪Λ0 I ∈ (−∞, 0). �

Lemma 2.6. Let λ ∈ (0, Tq,f,a), then Λ0 ∪ Λ+ and Λ− are closed.

Proof. Let {ũn} be a sequence in Λ− with ũn → ũ0 in H. Then it follows from
{ũn} ⊂ Λ− ⊂ Λ that

a‖ũ0‖2 + ε‖ũ0‖4 = lim
n→∞

[a‖ũn‖2 + ε‖ũn‖4]
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= lim
n→∞

[
λ

∫
Kf |ũn|q +

∫
K|ũn|6

]
=λ
∫
Kf |ũ0|q +

∫
K|ũ0|6

and

a(2− q)‖ũ0‖2 + ε(4− q)‖ũ0‖4 − (6− q)
∫
K|ũ0|6

= lim
n→∞

[
a(2− q)‖ũn‖2 + ε(4− q)‖ũn‖4 − (6− q)

∫
K|ũn|6

]
≤ 0,

that is, ũ0 ∈ Λ− ∪ Λ0. Moreover, for λ ∈ (0, Tq,f,a), we deduce from Lemmas 2.2
and 2.3 that ũ0 /∈ Λ0. In turn, ũ0 ∈ Λ− and hence, Λ− is closed for λ ∈ (0, Tq,f,a).
The same argument can show that Λ0 ∪ Λ+ is closed and thus we complete the
proof. �

3. Proof of main results

3.1. Existence of the first solution. Thanks to Lemmas 2.5 and 2.6, we can
apply Ekeland variational principle to construct a minimizing sequence {un} ⊂
Λ+ ∪ Λ0 with the following properties:

(1) I(un)→ c1,
(2) I(z) ≥ I(un)− 1

n‖un − z‖ for all z ∈ Λ+ ∪ Λ0.

Since I(|u|) = I(u), we can assume that un ≥ 0 on R3. Again using Lemma 2.5, it
follows that {un} is bounded in H, and thus we may assume

un ⇀ u∗ in H,

un → u∗ in LrK(R3), 2 ≤ r < 6,

un → u∗ a.e. on R3.

In what follows we prove that u∗ is a nonnegative nontrivial solution of (1.1). The
proof will be complete in five steps.
Step 1. u∗ 6≡ 0. If, to the contrary, that u∗ ≡ 0. By the properties of {un} and
limn→∞

∫
Kf |un|q =

∫
Kf |u∗|q (see [7]), one has

c1 = I(un) + o(1) =
a

2
‖un‖2 +

ε

4
‖un‖4 −

1
6

∫
K|un|6 + o(1). (3.1)

Noting that un ∈ Λ+ for n large enough, we obtain

a(2− q)‖un‖2 + ε(4− q)‖un‖4 − (6− q)
∫
K|un|6 > 0. (3.2)

In view of (3.1), (3.2) that c1 < 0, we have

0 <
6(6− q)− 2(2− q)

2
a‖un‖2 +

6(6− q)− 4(2− q)
4

ε‖un‖4 < 6(6− q)c1 +o(1) < 0

which gives a contradiction. This completes the proof of step 1.
Step 2. There is a positive number C1 > 0 such that

4a‖un‖2 + 2ε‖un‖4 − λ(6− q)
∫
Kf |un|q < −C1. (3.3)



EJDE-2018/144 EXISTENCE OF MULTIPLE SOLUTIONS 9

Obviously, to prove (3.3), it suffices to show that

4a lim inf
n→∞

‖un‖2 + 2ε lim inf
n→∞

‖un‖4 − λ(6− q)
∫
Kf |u∗|q < 0. (3.4)

Since un ∈ Λ+ ∪ Λ0, we have

4a‖un‖2 + 2ε‖un‖4 − λ(6− q)
∫
Kf |un|q ≤ 0

and so

4a lim inf
n→∞

‖un‖2 + 2ε lim inf
n→∞

‖un‖4 ≤ λ(6− q)
∫
Kf |u∗|q , (3.5)

4a lim sup
n→∞

‖un‖2 + 2ε lim sup
n→∞

‖un‖4 ≤ λ(6− q)
∫
Kf |u∗|q. (3.6)

Combining (3.4) and (3.5), we can argue indirectly and suppose that

4a lim inf
n→∞

‖un‖2 + 2ε lim inf
n→∞

‖un‖4 = λ(6− q)
∫
Kf |u∗|q.

This and (3.6) imply that there exists a positive constant A1 > 0 such that ‖un‖2 →
A1, where A1 satisfies

4aA1 + 2εA2
1 = λ(6− q)

∫
Kf |u∗|q. (3.7)

Furthermore, it follows from un ∈ Λ that∫
K|un|6 = a‖un‖2 + ε‖un‖4 − λ

∫
Kf |un|q →

2− q
6− q

aA1 +
4− q
6− q

εA2
1. (3.8)

By (3.7) and (3.8), we obtain that if λ ∈ (0, Tq,f,a), then

0 <
( 4

6− q

)(2− q
6− q

) 2−q
4
[ (a‖un‖2)6−q

(
∫
K|un|6)2−q

]1/4
− λ

∫
Kf |un|q

→
( 4

6− q

)(2− q
6− q

) 2−q
4
[ (aA2

1)6−q(
2−q
6−qaA1 + 4−q

6−q εA
2
1

)2−q

]1/4
− 4a

6− q
A1 +

2ε
6− q

A2
1

<
( 4

6− q

)(2− q
6− q

) 2−q
4
[ (aA2

1)6−q

( 2−q
6−qaA1)2−q

]1/4
− 4a

6− q
A1 +

2ε
6− q

A2
1

= − 2ε
6− q

A2
1 < 0

which leads to a contradiction. Thus, (3.3) holds and the proof of step 2 is complete.

Step 3. I ′(un) → 0 in H−1. Let 0 < ρ < ρn ≡ ρun , gn ≡ gun , where ρun and
gun are defined according to Lemma 2.4. Let vρ = ρu with ‖u‖ = 1. Fix n and let
zρ = gn(vρ)(un − vρ). Since zρ ∈ Λ+, by the properties of {un},

I(zρ)− I(un) ≥ − 1
n
‖zρ − un‖.

It then from Mean value Theorem it follows that

〈I ′(un), zρ − un〉+ o(‖zρ − un‖) ≥ −
1
n
‖zρ − un‖.
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Thus,

〈I ′λ(un),−vρ +
(
gn(vρ)− 1

)
(un − vρ)〉 ≥ −

1
n
‖zρ − un‖+ o(‖zρ − un‖)

which yields

−ρ〈I ′(un), u〉+
(
gn(vρ)− 1

)
〈I ′λ(un), un − vρ〉 ≥ −

1
n
‖zρ − un‖+ o(‖zρ − un‖).

Therefore,

〈I ′(un), u〉 ≤ 1
n

‖zρ − un‖
ρ

+
o(‖zρ − un‖)

ρ
+
gn(vρ)− 1

ρ
〈I ′λ(un), un − vρ〉. (3.9)

By step 2, Lemma 2.4 and the boundedness of {un}, it is easily verified that

lim
ρ→0

|gn(vρ)− 1|
ρ

≤ ‖g′n(0)‖ ≤ C

for some positive constant C > 0, independent of n. For fixed n, since ‖zρ− un‖ ≤
ρ+ |gn(vρ)− 1|C2, 〈I ′(un), un〉 = 0 and (un − vρ)→ un as ρ→ 0, by letting ρ→ 0
in (3.9) we can deduce that

〈I ′(un), u〉 ≤ C

n
,

which shows that I ′(un)→ 0. This completes the proof of step 3.

Step 4. un → u∗ in H. Write vn = un − u∗ and we claim that ‖vn‖ → 0.
Otherwise, up to a subsequence (still denoted by {vn}), we may suppose ‖vn‖ → l
with l > 0. From step 3, we have that 〈I ′(un), u∗〉 = o(1) and hence

0 = a‖u∗‖2 + ε(l2 + ‖u∗‖2)‖u∗‖2 − λ
∫
Kf |u∗|q −

∫
K|u∗|6. (3.10)

Moreover, by 〈I ′(un), un〉 = 0, we can use Brezis-Lieb Lemma to obtain

0 = a(‖vn‖2 + ‖u∗‖2) + ε(‖vn‖4 + 2‖vn‖2‖u∗‖2 + ‖u∗‖4)

− λ
∫
Kf |u∗|q −

∫
K|vn|6 −

∫
K|u∗|6 + o(1).

(3.11)

Combining (3.10) and (3.11), we obtain

o(1) = a‖vn‖2 + ε‖vn‖4 + ε‖vn‖2‖u∗‖2 −
∫
K|vn|6 (3.12)

and so, from (1.4) it follows that

a‖vn‖2 ≤ a‖vn‖2 + ε‖vn‖4 + ε‖vn‖2‖u∗‖2 =
∫
K|vn|6 + o(1) ≤ S−3‖vn‖6 + o(1).

Taking the limit as n→∞, we obtain that

l2 ≥
√
aS3. (3.13)
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By (3.10) and Hölder’s inequality, we obtain

I(u∗) =
a

2
‖u∗‖2 +

ε

4
‖u∗‖4 −

λ

q

∫
Kf |u∗|q −

1
6

∫
K|u∗|6

=
a

3
‖u∗‖2 +

ε

12
‖u∗‖4 − λ

6− q
6q

∫
Kf |u∗|q −

ε

6
l2‖u∗‖2

≥ a

3
‖u∗‖2 − λ

6− q
6q
‖f‖σqS

−q/2
qσ′q
‖u∗‖q −

ε

6
l2‖u∗‖2

≥ −a(2− q)
3q

[ (6− q)‖f‖σqS
−q/2
qσ′q

4a

] 2
2−q

λ
2

2−q − ε

6
l2‖u∗‖2.

(3.14)

Set

T̄q,f,a =
4

6− q
1

‖f‖σq

( q

2− q

) 2−q
2
a

6−q
4 S

q/2
qσ′q

S
3(2−q)

4 .

Obviously, Tq,f,a < T̄q,f,a. If λ ∈ (0, T̄q,f,a), using (3.12)-(3.14), we deduce

c1 + o(1) = I(un)

=
a

2
‖un‖2 +

ε

4
‖un‖4 −

λ

q

∫
Kf |un|q −

1
6

∫
K|un|6

=
a

2
‖u∗‖2 +

ε

4
‖u∗‖4 −

λ

q

∫
Kf |u∗|q −

1
6

∫
K|u∗|6

+
a

2
‖vn‖2 +

ε

4
‖vn‖4 +

ε

2
‖vn‖2‖u∗‖2 −

1
6

∫
K|vn|6 + o(1)

= I(u∗) +
a

2
‖vn‖2 +

ε

4
‖vn‖4 +

ε

2
‖vn‖2‖u∗‖2 −

1
6

∫
K|vn|6 + o(1)

= I(u∗) +
a

3
‖vn‖2 +

ε

12
‖vn‖4 +

ε

3
‖vn‖2‖u∗‖2 + o(1)

≥ I(u∗) +
a

3
l2 +

ε

6
l2‖u∗‖2 + o(1)

≥ I(u∗) +

√
a3S3

3
+
ε

6
l2‖u∗‖2 + o(1) > 0

contradicting Lemma 2.5. Thus, the claim follows, that is, un → u∗ in H. This
finishes the proof of step 4.
Step 5. u∗ is a nonnegative nontrivial solution of (1.1) and u∗ ∈ Λ+. By steps 3
and 4, we have that 〈I ′(u∗), φ〉 = 0 for all φ ∈ H. That is, u∗ is a solution of (1.1).
Hence, u∗ ∈ Λ. From Lemma 2.3, it follows that

‖u∗‖ ≤ lim inf
n→∞

‖un‖ < A(λ)

and so u∗ /∈ Λ−. By Lemma 2.2 and step 1, we obtain u∗ /∈ Λ0. In turn, we
conclude u∗ ∈ Λ+. Moreover, we have u∗ ≥ 0 since un ≥ 0 and un → u∗ a.e. on R3.

3.2. Existence of a second solution. In this section, we will establish the ex-
istence of a second solution in Λ−. By condition (A2), we may suppose that 0 ∈
int(Ω+

f ). Moreover, there exists η > 0 satisfying B2η(0) ⊂ Ω+
f . Let ϕ(x) ∈ C∞0 (R3)

be a cut-off function satisfying ϕ(x) ≡ 1 in Bη(0), ϕ(x) ≡ 0 outside B2η(0) and
0 ≤ ϕ ≤ 1. Define

uε(x) = K−1/2ϕ(x)
( 1
ε+ |x|2

)1/2

,
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and set

vε(x) =
uε(x)
‖uε‖6

.

Lemma 3.1. Let λ ∈ (0, Tq,f,a) and w1 be a nonnegative nontrivial solution of
(1.1). Then for ε > 0 small we have:

(i) ∫
Kfwq−1

1 vε =


O
(
ε1/4

)
, if 1 < σ′q < 3,

O
(
ε

3
2σ′q
− 1

4 | ln ε|1/σ
′
q
)
, if σ′q = 3,

O
(
ε

3
2σ′q
− 1

4
)
, if 3 < σ′q < 6,

(ii)
∫
K|∇vε|2 = S +O

(
ε1/2

)
,

(iii)
∫
Kw5

1vε = O
(
ε1/4

)
,

(iv)
∫
Kv5

ε ≥ Cε1/4 +O(ε5/4).

Proof. For the proofs of (ii) and (iii), please see [2, 20]. To prove (i), we refer to
[20, Lemma 2.2] for the following estimates∫

Kvrε =


O
(
εr/4

)
, if 1 < r < 3,

O
(
ε3/2 − r/4| ln ε|

)
, if r = 3,

O
(
ε3/2−r/4), if 3 < r < 6.

Hölder’s inequality provides∫
Kfwq−1

1 vε ≤ C‖f‖σq
(∫

K|vε|σ
′
q

)1/σ′q
≤ C1

(∫
K|vε|σ

′
q

)1/σ′q
.

This and the above estimates imply that (i) holds .
For the proof of (iv), we have∫

K|uε|5 =
∫
KK−5/2ϕ5(x)
(ε+ |x|2)5/2

≥ C
∫

ϕ5(x)
(ε+ |x|2)5/2

= C
(∫ 1

(ε+ |x|2)5/2
+
∫

ϕ5(x)− 1
(ε+ |x|2)5/2

)
= C

(
ε−1

∫
1

(1 + |x|2)5/2
+
∫

ϕ5(x)− 1
(ε+ |x|2)5/2

)
= C1ε

−1 +O(1).

According to [2], we have

‖uε‖66 =
∫
K|uε|6 = ε−3/2B0 +O(1)

where
B0 =

∫
1

(1 + |x|2)3
,

and thus∫
K|vε|5 =

∫
K|uε|5

‖uε‖56
≥ C1ε

−1 +O(1)
C2ε−5/4 +O(ε1/4)

= C3ε
1/4 +O

(
ε5/4

)
.

Hence, (iv) follows. This completes the proof of Lemma 3.1. �
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Set E1 = {u : u = 0 or ‖u‖ < t+(u/‖u‖)} and E2 = {u : ‖u‖ > t+(u/‖u‖)}.
Obviously, H − Λ = E1 ∪ E1 and Λ+ ⊂ E1.

Lemma 3.2. Let λ ∈ (0, Tq,f,a), then we have

c2 ≤ sup
t>0

I(u∗ + tvε) < I(u∗) +
1
3

√
a3S3.

where u∗ is the first solution obtained in section 3.1.

Proof. First, we prove that c2 ≤ supt>0 I(u∗ + tvε). Let R > 1 and set wε =
u∗ +Rvε. Since u∗ is a solution of (1.1), it follows from Lemma 3.1 that

‖wε‖2 = ‖u∗‖2 + 2R
∫
K∇u∗∇vε +R2

∫
K|∇vε|2

= ‖u∗‖2 + 2R
(
λ

∫
Kfuq−1

∗ vε +
∫
Ku5
∗vε

− ε
∫
K|∇u∗|2

∫
K∇u∗∇vε

)
+R2

∫
K|∇vε|2

= ‖u∗‖2 + ξ(ε) +O(ε1/4) +O(ε) +R2
(
S +O(ε1/2)

)
,

(3.15)

where

ξ(ε) =


O(ε1/4), if 1 < σ′q < 3,

O
(
ε

3
2σ′q
− 1

4 | ln ε|1/σ
′
q
)
, if σ′q = 3,

O
(
ε

3
2σ′q
− 1

4
)
, if 3 < σ′q < 6.

Note that there exists C > 0 such that

(r + s)6 − r6 − s6 − 6r5s ≥ Crs5. (3.16)

Thus, we obtain∫
K|wε|6 ≥

∫
K|u∗|6 +R6

∫
K|vε|6 + 6R

∫
Ku5
∗vε + CR5

∫
Ku∗v

5
ε . (3.17)

We distinguish two cases. In the case R2S < ‖u∗‖2, using (3.15) and (3.17) we
obtain for ε sufficiently small,

‖wε‖2 =
∫
K|∇(u∗ +Rvε)|2 ≤ 2‖u∗‖2 + ξ(ε) ≤ 2‖u∗‖2 + 1,∫

K|wε|6 ≥
∫
K|u∗|6

respectively, which yield ∫
K| wε
‖wε‖

|6 ≥ ‖u∗‖66(
2‖u∗‖2 + 1

)3 .
In case the R2S ≥ ‖u∗‖2, by using ‖vε‖66 = 1 and (3.15) and (3.17), we obtain for
ε small enough ∫

K|∇(u∗ +Rvε)|2 ≤ 2R2S + ξ(ε) ≤ R2(2S + 1),∫
K|wε|6 ≥ R6

∫
K|vε|6 = R6,
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which yield ∫
K| wε
‖wε‖

|6 ≥ R6

R6
(
2S + 1

)3 =
1(

2S + 1
)3 .

In conclusion, there is ε0 small enough such that∫
K| wε
‖wε‖

|6 ≥ min
{ ‖u∗‖66(

2‖u∗‖2 + 1
)3 , 1(

2S + 1
)3}, for all ε ∈ (0, ε0). (3.18)

Set tε = t+
(
wε
‖wε‖

)
and let ψ(t) be defined as in Lemma 2.1. To proceed, take

u = wε
‖wε‖ in the definition of ψ(t). By (3.18) and the structure of I, it is easy to see

that tε is bounded from above. Namely, t+
(
wε
‖wε‖

)
≤ C2, for all ε ∈ (0, ε0). Hence

there exists ε1 > 0 sufficiently small (ε1 < ε0) such that

‖wε‖2 ≥ ‖u∗‖2 +
SR2

2
, for all ε ∈ (0, ε1)

and thus there is R0 > 1 satisfying

‖wε‖2 > C2 ≥ t+
( wε
‖wε‖

)
, for all ε ∈ (0, ε1), R ≥ R0,

which implies u∗ + R0vε ∈ E2. Since u∗ ∈ E1 and H − Λ− = E1 ∪ E2, by the
continuity of t+(u) we conclude that u∗ + tR0vε for t ∈ (0, 1) must intersect Λ−

and so
c2 ≤ sup

t>0
I(u∗ + tvε).

It remains to prove that

sup
t>0

I(u∗ + tvε) < I(u∗) +
1
3

√
a3S3.

By Hölder’s inequality, (3.16), Lemma 2.3 and the fact u∗ is a solution, one gets

I(u∗ + tvε)

=
a

2
‖u∗ + tvε‖2 +

ε

4
‖u∗ + tvε‖4 −

1
6
‖u∗ + tvε‖66 −

λ

q

∫
Kf |u∗ + tvε|q

=
a

2
‖u∗‖2 + at

∫
K∇u∗∇vε +

a

2
t2‖vε‖2 +

ε

4
‖u∗‖4 + εt2(

∫
K∇u∗∇vε)2

+
ε

4
t4‖vε‖4 + εt‖u∗‖2

∫
K∇u∗∇vε +

ε

2
t2‖u∗‖2‖vε‖2 + εt3‖vε‖2

∫
K∇u∗∇vε

− 1
6
‖u∗ + tvε‖66 −

λ

q

∫
Kf |u∗ + tvε|q

= I(u∗) +
a

2
t2‖vε‖2 + εt2

(∫
K∇u∗∇vε

)2

+
ε

4
t4‖vε‖4 +

ε

2
t2‖u∗‖2‖vε‖2

+ εt3‖vε‖2
∫
K∇u∗∇vε −

1
6

∫
K[|u∗ + tvε|6 − |u∗|6 − 6tu5

∗vε]

− λ

q

∫
Kf [|u∗ + tvε|q − |u∗|q − qtuq−1

∗ vε]

≤ I(u∗) +
a

2
t2‖vε‖2 + εt2‖u∗‖2‖vε‖2 +

ε

4
t4‖vε‖4 +

ε

2
t2‖u∗‖2‖vε‖2

+ εt3‖vε‖2‖u∗‖‖vε‖ −
1
6

∫
K[|u∗ + tvε|6 − |u∗|6 − 6tu5

∗vε]



EJDE-2018/144 EXISTENCE OF MULTIPLE SOLUTIONS 15

≤ I(u∗) +
a

2
t2‖vε‖2 +

3
2
εt2‖u∗‖2‖vε‖2 +

ε

4
t4‖vε‖4 + εt3‖vε‖2‖u∗‖‖vε‖

− t6

6

∫
K|vε|6 −

3
6
t5
∫
Ku∗|vε|5

≤ I(u∗) +
a

2
t2‖vε‖2 +

3
2
εt2A(λ)2‖vε‖2 +

ε

4
t4‖vε‖4 + εt3A(λ)‖vε‖3

− t6

6
− C4t

5

∫
K|vε|5.

Let

h(t) =
a

2
t2‖vε‖2 +

3
2
εt2A(λ)2‖vε‖2 +

ε

4
t4‖vε‖4 + εt3A(λ)‖vε‖3

− t6

6
− C4t

5

∫
K|vε|5.

Clearly, limt→0+ h(t) = 0 and limt→+∞ h(t) = −∞. Note that I(u∗ + tvε) ≤
I(u∗) + h(t). Thus, to complete the proof of Lemma 3.2, it suffices to prove that

sup
t1≤t≤t2

I(u∗ + tvε) < I(u∗) +
1
3

√
a3S3

for some 0 < t1 < t2 < ∞. Let ε = ε, by Lemma 3.1, for ε sufficiently small we
have

sup
t1≤t≤t2

I(u∗ + tvε) ≤ I(u∗) + sup
t>0

{a
2
t2‖vε‖2 −

t6

6
}

+
3
2
εt22A(λ)2‖vε‖2

+
ε

4
t42‖vε‖4 + εt32A(λ)‖vε‖3 − C4t

5
1

∫
K|vε|5

= I(u∗) +
1
3

√
a3‖vε‖3 +O(ε)− C5ε

1/4 +O(ε
5
4 )

= I(u∗) +
1
3

√
a3S3 +O(ε1/2) +O(ε)− C5ε

1/4 +O(ε5/4)

< I(u∗) +
1
3

√
a3S3.

The proof of Lemma 3.2 is complete. �

As in section 3.1, we may use once more Ekeland variational principle to establish
another minimizing sequence {ũn} ⊂ Λ− such that

(1) I(ũn)→ c2,
(2) I(z) ≥ I(ũn)− 1

n‖ũn − z‖ for all z ∈ Λ−.

Since I(|u|) = I(u), we can assume that ũn ≥ 0 on R3. By Lemma 2.5, it follows
that {ũn} is bounded in H, and thus we suppose that

ũn ⇀ ũ∗ in H,

ũn → ũ∗ in LrK(R3), 2 ≤ r < 6,

ũn → ũ∗ a.e. on R3.

With the previous preparations, we can now prove that ũ∗ is a nonnegative non-
trivial solution for (1.1) and ũ∗ ∈ Λ−. To this purpose, we divide the argument in
five steps.
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1. ũ∗ 6≡ 0. Suppose to the contrary that ũ∗ ≡ 0. Since ũn ∈ Λ− ⊂ Λ, one gets

a‖ũn‖2 + ε‖ũn‖4 − λ
∫
Kf |ũn|q −

∫
K|ũn|6 = 0.

As ũ∗ ≡ 0, we have
∫
Kf |ũn|q = o(1). It then follows from (1.4) that

a‖ũn‖2 ≤ a‖ũn‖2 + ε‖ũn‖4 =
∫
K|ũn|6 + o(1) ≤ S−3‖ũn‖6 + o(1). (3.19)

Assume that ‖ũn‖2 → ι2. Since {ũn} ⊂ Λ−, from Lemma 2.3 we have that ι2 > 0.
Letting n→∞ in (3.19), we have ι2 ≥

√
aS3 and so

c2 = lim
n→∞

I(ũn)

= lim
n→∞

[a
2
‖ũn‖2 +

ε

4
‖ũn‖4 −

λ

q

∫
Kf |ũn|q −

1
6

∫
K|ũn|6

]
= lim
n→∞

[a
3
‖ũn‖2 +

ε

12
‖ũn‖4 − λ

6− q
6q

∫
Kf |ũn|q

]
=
a

3
ι2 +

ε

12
ι4

≥ a

3
ι2 ≥ 1

3

√
a3S3

which is a contradiction to Lemma 3.2. This completes the proof of step 1.
2. There is a positive constant C6 > 0 such that

4a‖ũn‖2 + 2ε‖ũn‖4 − λ(6− q)
∫
Kf |ũn|q > C6. (3.20)

Clearly, to prove (3.20), it suffices to show that

4a lim inf
n→∞

‖ũn‖2 + 2ε lim inf
n→∞

‖ũn‖4 − λ(6− q)
∫
Kf |ũ∗|q > 0. (3.21)

From ũn ∈ Λ−, we obtain

4a‖ũn‖2 + 2ε‖ũn‖4 − λ(6− q)
∫
Kf |ũn|q > 0. (3.22)

Arguing by contradiction we suppose that

4a lim inf
n→∞

‖ũn‖2 + 2ε lim inf
n→∞

‖ũn‖4 = λ(6− q)
∫
Kf |ũ∗|q.

This and Lemma 2.3 imply that
∫
Kf |ũ∗|q > 0. Consequently,

lim inf
n→∞

[4a‖ũn‖2 + 2ε‖ũn‖4

λ(6− q)
∫
Kf |ũn|q

]
=

lim infn→∞[4a‖ũn‖2 + 2ε‖ũn‖4]
λ(6− q)

∫
Kf |ũ∗|q

= 1. (3.23)

Then from (3.22) it follows that

4a‖ũn‖2 + 2ε‖ũn‖4

λ(6− q)
∫
Kf |ũn|q

> 1, (3.24)

for n large enough. Combining with (3.23) and (3.24), there is a subsequence {ũnk}
of {ũn} satisfying

4a‖ũnk‖2 + 2ε‖ũnk‖4

λ(6− q)
∫
Kf |ũnk |q

→ 1, as k →∞.
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Namely,

4a‖ũnk‖2 + 2ε‖ũnk‖4 → λ(6− q)
∫
Kf |ũ∗|q, as k →∞.

Thus, we can assume ‖ũnk‖2 → A2 as k →∞ such that

4aA2 + 2εA2
2 = λ(6− q)

∫
Kf |ũ∗|q. (3.25)

Moreover, from ũnk ∈ Λ we have∫
K|ũnk |6 = a‖ũnk‖2 + ε‖ũnk‖4 − λ

∫
Kf |ũ∗|q →

2− q
6− q

aA2 +
4− q
6− q

εA2
2. (3.26)

Applying (3.25) and (3.26), the same argument as in step 2 we arrive at a contra-
diction. This completes the proof of step 2.
Step 3. I ′(ũn)→ 0 in H−1. The proof is similar to step 3 in the previous section.

Step 4. ũn → ũ∗ in H. Assume that

‖ũn − ũ∗‖2 → β2,

∫
K|ũn − ũ∗|6 → γ6.

If β = 0, we are done. Hence, suppose β > 0. Define

σ(t) = I(tũ∗) =
a

2
t2‖ũ∗‖2 +

ε

4
t4‖ũ∗‖4 −

λ

q
tq
∫
Kf |ũ∗|q −

1
6
t6
∫
K|ũ∗|6,

δ(t) =
a

2
t2β2 +

ε

4
t4β4 +

2εβ2‖ũ∗‖2

4
t4 − γ6

6
t6,

δ1(t) =
a

2
t2β2 − γ6

6
t6,

and θ(t) = σ(t) + δ(t), then I(tũn) → θ(t). Inspired by [10, 3], we consider the
following three cases:

(i) t+(ũ∗) ≤ 1,
(ii) t+(ũ∗) > 1 and γ > 0,
(iii) t+(ũ∗) > 1 and γ = 0.
Case (i). From step 2 and t+(ũ∗) ≤ 1, we have σ′(1) ≤ 0. Since {ũn} ⊂ Λ−, we

obtain that θ′(1) = 0. In turn, δ′(1) ≥ 0. Hence δ
(
t+(ũ∗)

)
> 0 and consequently

c2 = θ(1) ≥ θ
(
t+(ũ∗)

)
= I
(
t+(ũ∗)ũ∗

)
+ δ
(
t+(ũ∗)

)
> I
(
t+(ũ∗)ũ∗

)
≥ c2,

which is impossible.
Case (ii). Let t∗ =

(
aβ2

γ6

)1/4. It is easily verified that δ1(t) achieves its maximum
at t∗, and δ′1(t) > 0 for 0 < t < t∗ and δ′1(t) < 0 for t > t∗. Also, δ1(t∗) =√
a3β6

3γ3 ≥
√
a3S3

3 . We claim that t∗ < t+(ũ∗). Otherwise, 1 < t+(ũ∗) < t∗. Since
0 > θ′(t) = σ′(t) + δ′(t) for all t > 1, we obtain σ′(t) ≤ −δ′(t) ≤ −δ′1(t) < 0 for
t ∈ (1, t∗), which is a contradiction to 1 < t+(ũ∗) < t∗ and σ′

(
t+(ũ∗)

)
= 0. Hence

the claim is true and so

c2 = θ(1) ≥ θ(t∗) ≥ I
(
t∗ũ∗

)
+ δ1(t∗) ≥ I

(
t−(ũ∗)ũ∗

)
+

√
a3S3

3
≥ I(ũ∗) +

√
a3S3

3
,

which contradicts Lemma 3.2.
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Case (iii). Since γ = 0 and θ′(1) = 0 and θ′′(1) ≤ 0, we have σ′(1) = −δ′(1) =
−aβ2− εβ4− 2εβ2‖ũ∗‖2 < 0 and σ′′(1) = θ′′(1)− δ′′(1) ≤ −δ′′(1) = −aβ2− 3εβ4−
6εβ4‖ũ∗‖2 < 0, which is absurd in contrast to t+(ũ∗) > 1.

Thus, ũn → ũ∗ in H and step 4 follows. This completes the proof of step 4.
Step 5. ũ∗ is a nonnegative nontrivial solution of (1.1) and ũ∗ ∈ Λ−. We can
proceed exactly as in the proof of Step 5 in the previous section and conclude that
ũ∗ is a nonnegative nontrivial solution for (1.1). In addition, it is clear that ũ∗ ∈ Λ−

by Lemma 2.6 and step 4. The proof of step 5 is complete.
Finally, we can conclude from Lemma 2.3 that problem (1.1) has at least two

nonnegative nontrivial solutions u∗ ∈ Λ+, ũ∗ ∈ Λ− with ‖u∗‖ < ‖ũ∗‖ when λ ∈
(0, Tq,f,a). At this point, Theorem 1.2 is a immediate consequence of Theorem 1.1
and the definition for λ∗.
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