
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 134, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ASYMPTOTIC FORMULA FOR DETECTING INCLUSIONS VIA
BOUNDARY MEASUREMENTS

KHALIFA KHELIFI, MOHAMED ABDELWAHED,

NEJMEDDINE CHORFI, MAATOUG HASSINE

Communicated by Vicentiu D. Radulescu

Abstract. In this article, we are concerned with a geometric inverse problem

related to the Laplace operator in a three-dimensional domain. The aim is to

derive an asymptotic formula for detecting an inclusion via boundary measure-
ment. The topological sensitivity method is applied to calculate a high-order

topological asymptotic expansion of the semi-norm Kohn-Vogelius functional,

when a Dirichlet perturbation is introduced in the initial domain.

1. Introduction

The detection of an object from boundary measurements is used in several ap-
plications such as in fluid mechanics, electrical impedance tomography, electromag-
netic casting, non-destructive testing [2, 11, 12, 15].

On the theoretical level, these applications correspond to geometric inverse prob-
lems. Among the methods to solve this type of problems, there exist a method
based on the Kohn-Vogelius formulation and the topological sensitivity method
[5, 6, 10, 12, 17, 18, 20, 21, 30]. The majority of works interested to this method
are based on the first-order asymptotic expansion of the Kohn-Vogelius functional
[3, 4, 8, 9, 10, 12, 13, 14, 19, 22, 23]. This method is sufficient in the case of small
unknown object far from the boundary.

In general application case the size of the object to detect is finite. For this
reason, we consider high-order terms in the asymptotic expansion of the Kohn-
Vogelius functional formula.

In this article we apply the topological sensitivity method and the Kohn-Vogelius
formulation, to derive a high-order asymptotic formula connecting the known bound-
ary data and the unknown inclusion properties; its location , size and shape. More
precisely in this paper we derive a high-order topological asymptotic expansion
of the semi-norm Kohn-Vogelius functional associated to the Laplace operator in
three-dimensional domain, when a Dirichlet perturbation is introduced in the initial
domain.
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The proposed approach permit to calculate the topological gradient for any or-
der for the semi-norm Kohn-Vogelius functional. We present a general approach
applicable to various problems such as elasticity, Stokes equations, Navier-Stokes
equation, Maxwell’s equations, etc.

The remaining of this paper are organized as follows. We begin by presenting
the inverse problem and the Kohn-Vogelius formulation in section 2. In section 3
we present the topological sensitivity method. In section 4, we establish a some
preliminary results, where we derive an asymptotic formula describing the variation
of the solutions of Neumann and Dirichlet problems when a Dirichlet perturbation
is introduced in the initial domain. Section 5 presents the main result of the paper.
Finally, section 6 contains the proofs of the different results. The paper ends by
some concluding remarks.

2. Inverse problem and the Kohn-Vogelius formulation

The geometric inverse Laplace problem related to the Laplace operator in three-
dimensional domain is considered in this paper. Let Ω ⊂ R3 denote a bounded
domain with smooth boundary ∂Ω and satisfies ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅,
Γ2 6= ∅.

We suppose that there exist a sub-domain D∗ of Ω with a smooth boundary
∂D∗. The studied inverse problem can be formulated:

For regular given data F, V and ψm, find the unknown domain D∗ such that ψ
is solution of the following over determined problem

−∆ψ = F in Ω\D∗,
∇ψ · n = V on Γ1,

ψ = ψm on Γ1,

ψ = 0 on Γ2,

ψ = 0 on ∂D∗.

To derive an asymptotic formula connecting the boundary measurements and the
location of the unknown domain D∗, we propose in this work a new technique
based on the Kohn-Vogelius formulation and the topological sensitivity technique.
The Kohn-Vogelius formulation is a self regularization method which transforms
the geometric inverse problem to a shape optimization problem. It leads to define
two problems for any given domain D ⊂ Ω. The first one, named the Neumann
problem, is associated with the Neumann datum V :

−∆ψn = F in Ω\D
∇ψn · n = V on Γ1

ψn = 0 on Γ2

ψn = 0 on ∂D.

(2.1)

The second one is associated to the measured ψm, which will be named as the
Dirichlet problem:

−∆ψd = F in Ω\D
ψd = ψm on Γ1

ψd = 0 on Γ2

ψd = 0 on ∂D.

(2.2)
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We remark that if the domains D and D∗ coincide then ψn = ψd. According to
this observation, Kohn and Vogelius [25] proposed to change the inverse problem
to the minimization of a function measuring the difference between the Dirichlet
and Neumann solutions. We define the Kohn-Vogelius semi-norm function

J (Ω\D) =
∫

Ω\D
|∇ψn −∇ψd|2 dx,

where ψn (resp. ψd) is solution to the Neumann (resp. Dirichlet) perturbed prob-
lem.

3. Topological sensitivity method

To calculate a high-order topological asymptotic expansion of the semi-norm
Kohn-Vogelius functional J , we apply the topological sensitivity method. It con-
sists in calculating the variation of J regarding to a small perturbation Bz,ε at the
point z of the domain Ω. For z ∈ Ω and ε > 0, we define Bz,ε = z + εB, where
B ⊂ R3 is a bounded fixed regular domain which contains the origin. We define
the perturbed domain Ωz,ε = Ω \Bz,ε Let us consider the following overdetermined
boundary value problem

−∆ψε = F in Ω\Bz,ε,

∇ψε · n = V on Γ1,

ψε = ψm on Γ1,

ψε = 0 on Γ2,

ψε = 0 on ∂Bz,ε.

(3.1)

We assume here that there exists Bz∗,ε = z∗ + εB ⊂ Ω such that there exists a
solution to problem (3.1). Consequently, the following geometric inverse problem
is considered:

Find Bz,ε ⊂ Ω such that the solution ψε satisfies the overdetermined
system (3.1).

The Kohn-Vogelius functional for the perturbed domain is defined by

J (Ωz,ε) =
∫

Ωz,ε

|∇ψn,ε −∇ψd,ε|2dx,

where ψn,ε is the solution to the perturbed Neumann problem

−∆ψn,ε = F in Ω\Bz,ε,

ψn,ε = 0 on ∂Bz,ε,

∇ψn,εn = V on Γ1,

ψn,ε = 0 on Γ2.

(3.2)

and ψd,ε is the solution to the perturbed Dirichlet problem

−∆ψd,ε = F in Ω\Bz,ε,

ψd,ε = 0 on ∂Bz,ε,

ψd,ε = ψm on Γ1,

ψd,ε = 0 on Γ2.

(3.3)

We remark that if ε = 0, Ωz,0 = Ω and ψ0 satisfies

−∆ψ0 = F in Ω,
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∇ψ0 · n = V on Γ1,

ψ0 = ψm on Γ1,

ψ0 = 0 on Γ2,

ψn,0 is solution to
−∆ψn,0 = F in Ω
∇ψn,0n = V on Γ1

ψn,0 = 0 on Γ2,

(3.4)

and ψd,0 is solution to
−∆ψd,0 = F in Ω
ψd,0 = ψm on Γ1

ψd,0 = 0 on Γ2.

(3.5)

As mentioned in the introduction the majority of works interested to this method
are based on the first-order asymptotic expansions of the functional J presented
by

J (Ωz,ε) = J (Ω) + f(ε)δJ (z) + o(f(ε)),
where δJ is the topological gradient and f is a positive scalar function with
limε→0 f(ε) = 0. Then, for small ε the solution of the minimization problem

min
Bz,ε⊂Ω

J (Ω \ ωz,ε),

is given by Bz∗,ε, with z∗ ∈ Ω where δJ is the most negative. This is due to the fact
that if δJ (z∗) < δJ (z), we obtain J (Ωz∗,ε) < J (Ωz,ε). The purpose of this work is
to obtain an asymptotic expansion of higher order for the Kohn-Vogelius functional
J to detect an object of finite size and valid when the topological gradient δJ
vanishes at some critical points inside Ω, under the form:

J (Ωz,ε) = J (Ω) +
I∑
i=1

fi(ε)δiJ (z) + o(fI(ε)),

where fi, 1 ≤ i ≤ I are scalar positives functions verifying fi+1(ε) = o(fi(ε)) and
vanish with ε. δiJ is the ith topological derivative of the Kohn-Vogelius functional
J .

To derive the expected expansion, we establish in the next section some prelim-
inary results. The main results of this analysis will be presented in section 5.

4. Some preliminary results

The aim of this section is to present an asymptotic formula describing the vari-
ation of the solutions ψn,ε and ψd,ε caused by the perturbation of Ω by Bz,ε.

In conductivity imperfections identification context, an asymptotic expansion
describing the variation of the solutions for I = 1 was derived in [14, 19] for the
Laplace equation. Another application was studied using Stokes system [1] for the
detection of obstacles in a flow via the asymptotic expansion of the velocity filed.

In this work, to derive the desired formula, we need to find an asymptotic ex-
pansion of the exterior problem solution for the Laplace equation defined in R3 \B.
Let Φ ∈ H1/2(∂B), denoting by H the solution to

−∆H = 0 in R3 \B,
H → 0 at ∞,



EJDE-2018/134 ASYMPTOTIC FORMULA FOR DETECTING INCLUSIONS 5

H = Φ on ∂B,

Resorting to the simple layer potential representation [16, 28], H can be written as

H(y) =
∫
∂ω

E(y − t) q(t)ds(t), ∀y ∈ R3 \B, (4.1)

where E is the Laplace equation fundamental solution in R3:

E(y) =
1

4π‖y‖
,

and q is the boundary integral equation unique solution∫
∂B

E(y − t)q(t)ds(t) = Φ(y), ∀y ∈ ∂B. (4.2)

By the change of variable x = z + εy and using the perturbation Bz,ε is not close
to the boundary ∂Ω, we have

H((x− z)/ε) = ε

∫
∂B

E(x− z− ε t) q(t)ds(t), ∀x ∈ R3 \Bz,ε.

Denoting by ϕx−z,t the function

ϕx−z,t : ε 7−→ ϕx−z,t(ε) = εE((x− z)− εt), ∀ε > 0.

Using the fact that ϕx−z,t is smooth regarding ε and satisfies the following behavior

ϕx−z,t(ε) =
I∑
p=1

εp

p!
ϕ

(p)
x−z,t(0) +O(εI+1),

where ϕ(p)
x−z,t(0) is the pth derivative of ϕx−z,t at ε = 0. Then the following lemma

gives an asymptotic expansion of the function

x 7→ H(
x− z
ε

).

Lemma 4.1. For any I ≥ 0, we have

H((x− z)/ε) =
I∑
p=1

εpH(p)(x− z) +O(εI+1), ∀x ∈ R3 \Bz,ε,

where H(p) is the smooth function defined by

H(p)(x− z) =
1
p!

∫
∂B

ϕ
(p)
x−z,t(0)q(t)ds(t).

Remark 4.2. The first-order asymptotic expansion of the exterior problem solution
for the Laplace equation is proved by Guilaume and Sid Idris [21, page 1049].

4.1. Asymptotic formula of the Neumann problem solution. To present
an asymptotic formula describing the variation of the Neumann Problem solution
ψn,ε, we define the sequences functions (Ψn,i)0≤i≤I and (Wn,i)0≤i≤I , where for all
0 ≤ i ≤ I, Ψn,i are smooth function defined in the initial domain Ω, obtained as
the solution to a interior problem with Neumann boundary condition on Γ1 and
Wn,i are smooth function defined in R3 \ B, obtained as the solution to a exterior
problems. More precisely:
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For i = 0: Ψn,0 = ψn,0 and Wn,0 is the solution to

−∆Wn,0 = 0 in R3 \B,
Wn,0 → 0 at ∞

Wn,0 = −ψn,0(z) on ∂B.

(4.3)

For i = 1: Ψn,1 is the solution to

−∆Ψn,1 = 0 in Ω,

∇Ψn,1 · n = −∇W (1)
n,0(x− z) · n on Γ1,

Ψn,1 = −W (1)
n,0(x− z) on Γ2,

(4.4)

with W
(1)
n,0 is defined by Lemma 4.1 in the particular case i = 0, φ = −ψn,0(z) and

p = 1.
The function Wn,1 depends on Ψn,0 and Ψn,1, it is solution of the exterior prob-

lem
−∆Wn,1 = 0 in R3 \B,

Wn,1 → 0 at ∞
Wn,1 = −Ψn,1(z)−DΨn,0(z)(y) on ∂B.

(4.5)

For 1 ≤ i ≤ I: The function Ψn,i depends on Wn,j for 0 ≤ j ≤ i−1 and is solution
of the interior problem

−∆Ψn,i = 0 in Ω,

∇Ψn,i · n = −
i∑

p=1

∇W (p)
n,i−p(x− z) · n on Γ1,

Ψn,i = −
i∑

p=1

W
(p)
n,i−p(x− z) on Γ2,

(4.6)

with W
(p)
n,j is defined by Lemma 4.1.

The function Wn,i depends on Ψn,j for 0 ≤ j ≤ i and is solution of the exterior
problem

−∆Wn,i = 0 in R3 \B,
Wn,i → 0 at ∞

Wn,i = −Ψn,i(z)−
i∑

p=1

1
p!
DpΨn,i−p(z)(yp) on ∂B,

(4.7)

where DpΨn,i−p(z) is the pth derivative of Ψn,i−p (the harmonic function) at z ∈ Ω
and yp = (y, . . . ,y) ∈ (R3)p.

We are now ready to present an asymptotic formula describing the variation of
the solution ψn,ε raised from the perturbation of Ω by Bz,ε.Ω.

Theorem 4.3. In the perturbed domain Ωz,ε, the solution ψεn of the Neumann
Laplace equation has the asymptotic expansion

ψn,ε(x) =
I∑
i=0

εi[Ψn,i(x) +Wn,i(
x− z
ε

)] +O(εI+1) in Ωz,ε.
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4.2. Asymptotic formula of the Dirichlet problem solution. Similarly to the
asymptotic of the Neumann solution, to present an asymptotic formula describing
the variation of the Dirichlet Problem solution ψd,ε, we define the sequences func-
tions (Ψd,i)0≤i≤I and (Wd,i)0≤i≤I , where for all 0 ≤ i ≤ I, Ψd,i are smooth function
defined in the initial domain Ω, obtained as the solution to a interior problem with
Dirichlet boundary condition on Γ1 and Wd,i are smooth function defined in R3 \B,
obtained as the solution to a exterior problems. More precisely, the sequences func-
tions (Ψd,i)0≤i≤I and (Wd,i)0≤i≤I , are defined as follow:

For i = 0: Ψd,0 = ψd,0 and Wd,0 is the solution to

−∆Wd,0 = 0 in R3 \B,
Wd,0 → 0 at ∞

Wd,0 = −ψd,0(z) on ∂B.

(4.8)

For i = 1: Ψd,1 is the solution to

−∆Ψd,1 = 0 in Ω,

Ψd,1 = −W (1)
d,0 (x− z) on ∂Ω,

(4.9)

with W
(1)
d,0 is defined by Lemma 4.1 in the particular case i = 0, φ = −ψd,0(z) and

p = 1.
The function Wd,1 depends on Ψd,0 and Ψd,1, and is solution of the exterior

problem

−∆Wd,1 = 0 in R3 \B,
Wd,1 → 0 at ∞

Wd,1 = −Ψd,1(z)−DΨd,0(z)(y) on ∂B.

(4.10)

For 1 ≤ i ≤ I: The function Ψd,i depends on Wd,j for 0 ≤ j ≤ i− 1 and is solution
of the interior problem

−∆Ψd,i = 0 in Ω,

Ψd,i = −
i∑

p=1

W
(p)
d,i−p(x− z) on ∂Ω,

(4.11)

with W
(p)
d,j defined in Lemma 4.1.

The function Wd,i depends on Ψd,j for 0 ≤ j ≤ i and is solution of the exterior
problem

−∆Wd,i = 0 in R3 \B,
Wd,i → 0 at ∞

Wd,i = −Ψd,i(z)−
i∑

p=1

1
p!
DpΨd,i−p(z)(yp) on ∂B.

(4.12)

We are now ready to present an asymptotic formula giving the variation of ψd,ε
raised from the perturbation of Ω by Bz,ε.
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Theorem 4.4. In the perturbed domain Ωz,ε, the solution ψd,ε of the Dirichlet
Laplace equation has the asymptotic expansion

ψd,ε(x) =
I∑
i=0

εi[Ψd,i(x) +Wd,i(
x− z
ε

)] +O(εI+1) in Ωz,ε.

5. Asymptotic formula

The main result is presented in this section. A high-order topological asymp-
totic expansion is derived for the semi-norm Kohn-Vogelius functional J , when a
Dirichlet perturbation is introduced in the initial domain. The functional J can
be decomposed as

J (Ωz,ε) =
∫

Ωz,ε

|∇ψd,ε|2dx +
∫

Ωz,ε

|∇ψn,ε|2dx− 2
∫

Ωz,ε

∇ψd,ε.∇ψn,εdx

= Jd(Ωz,ε) + Jn(Ωz,ε) + Jdn(Ωz,ε),

where

Jd(Ωz,ε) =
∫

Ωz,ε

|∇ψd,ε|2dx,

Jn(Ωz,ε) =
∫

Ωz,ε

|∇ψn,ε|2dx,

Jd,n(Ωz,ε) = −2
∫

Ωz,ε

∇ψd,ε.∇ψn,εdx.

The Dirichlet term Jd has the following variation

Jd(Ωz,ε)− Jd(Ω) =
∫

Ωz,ε

|∇ψd,ε|2dx−
∫

Ω

|∇ψd,0|2dx

=
∫

Ωz,ε

∇(ψd,ε + ψd,0) · ∇(ψd,ε − ψd,0)dx−
∫
Bz,ε

|∇ψd,0|2dx.

By the Green formula, from the problems (3.3) and (3.3) with ε = 0, we deduce∫
Ωz,ε

∇(ψd,ε + ud,0) · ∇(ψd,ε − ψd,0)dx

= −
∫
∂Bz,ε

∇(ψd,ε + ud,0) · nψd,0ds + 2
∫

Ωz,ε

F (ψd,ε − ψd,0)dx.

From problem (3.3) with ε = 0 we derive∫
Bz,ε

|∇ψd,0|2dx = −
∫
∂Bz,ε

∇ψd,0 · nψd,0 ds +
∫
Bz,ε

F ψd,0 dx , (5.1)

then, we obtain

Jd(Ωz,ε)− Jd(Ω)

= −
∫
∂Bz,ε

∇ψd,ε · nψd,0 ds + 2
∫

Ωz,ε

F (ψd,ε − ψd,0) dx −
∫
Bz,ε

Fψd,0 dx

= −
∫
∂Bz,ε

∇(ψd,ε − ψd,0) · nψd,0 ds−
∫
∂Bz,ε

∇ψd,0 · nψd,0 ds

+ 2
∫

Ωz,ε

F (ψd,ε − ψd,0) dx −
∫
Bz,ε

Fψd,0 dx .
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Then, from (5.1) it follows that

Jd(Ωz,ε)− Jd(Ω) = −
∫
∂Bz,ε

(∇ψd,ε −∇ψd,0).nψd,0 ds +
∫
Bz,ε

|∇ψd,0|2 dx

+ 2
∫

Ωz,ε

F (ψd,ε − ψd,0) dx − 2
∫
Bz,ε

F ψd,0 dx .

Similarly, the Neumann term Jn has the variation

Jn(Ωz,ε)− Jn(Ω) =
∫

Ωz,ε

|∇ψn,ε|2dx−
∫

Ω

|∇ψn,0|2dx

=
∫
∂Bz,ε

(∇ψn,ε −∇ψn,0).nψn,0 ds −
∫
Bz,ε

|∇ψn,0|2 dx.

The Dirichlet/Neumann term Jd,n has the variation

Jd,n(Ωz,ε)− Jd,n(Ω) =
∫

Ωz,ε

∇ψd,ε.∇ψn,ε dx −
∫

Ω

∇ψd,0.∇ψn,0 dx

=
∫

Ωz,ε

F (ψd,ε − ψd,0) dx −
∫
Bz,ε

F ψd,0 dx .

Then the functional J has the variation

J (Ωz,ε)− J (Ω) =
∫
Bz,ε

|∇ψd,0|2dx−
∫
Bz,ε

|∇ψn,0|2dx

−
∫
∂Bz,ε

(∇ψd,ε −∇ψd,0).nψd,0ds

+
∫
∂Bz,ε

(∇ψn,ε −∇ψn,0).nψn,0ds.

From Theorem 4.3, we have∫
∂Bz,ε

(∇ψn,ε −∇ψn,0).nψn,0ds

=
I∑
i=1

εi
∫
∂Bz,ε

∇Ψn,i(x).n(x)ψn,0(x)ds

+
I∑
i=0

εi
∫
∂Bz,ε

∇xWn,i((x− z)/ε)) · nψn,0ds+O(εI+1),

and using Theorem 4.4, we have∫
∂Bz,ε

(∇ψd,ε −∇ψd,0).nψd,0ds

=
I∑
i=1

εi
∫
∂Bz,ε

∇Ψd,i(x).n(x)ψd,0(x)ds

+
I∑
i=0

εi
∫
∂Bz,ε

∇xWd,i(
x− z
ε

) · nψd,0ds+O(εI+1).
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Consequently, the functional J has the following variation

J (Ωz,ε)− J (Ω) =
I∑
i=0

εi
∫
∂Bz,ε

∇xWn,i(
x− z
ε

) · nψn,0ds

−
I∑
i=0

εi
∫
∂Bz,ε

∇xWd,i(
x− z
ε

) · nψd,0ds

+
I∑
i=1

εi
∫
∂Bz,ε

∇Ψn,i(x) · n(x)ψn,0(x)ds

−
I∑
i=1

εi
∫
∂Bz,ε

∇Ψd,i(x) · n(x)ψd,0(x)ds

+
∫
Bz,ε

|∇ψd,0|2dx−
∫
Bz,ε

|∇ψn,0|2dx +O(εI+1).

(5.2)

To present the desired asymptotic expansion of the Kohn-Vogelius functional J ,
for all z ∈ Ω we consider the following notation:

T in,1(z) =
i∑

p=0

1
p!

∫
∂B

∇yWn,i−p(y) · n(y)[∇(p)ψn,0(z)(yp)]ds(y),

T id,1(z) = −
i∑

p=0

1
p!

∫
∂B

∇yWd,i−p(y) · n(y)[∇(p)ψd,0(z)(yp)]ds(y),

T in,2(z) =
i∑

p=0

p∑
q=0

1
q!(p− q)!

∫
∂B

[∇(q+1)Ψn,i−p+1(z)(yq)] · n(y)

× [∇(p−q)ψn,0(z)(yp−q)]ds(y),

T id,2(z) = −
i∑

p=0

p∑
q=0

1
q!(p− q)!

∫
∂B

[∇(q+1)Ψd,i−p+1(z)(yq)] · n(y)

× [∇(p−q)ψd,0(z)(yp−q)]ds(y),

T id,3(z) =
i∑

p=0

1
p!(i− p)!

∫
B

∇(p+1)ψd,0(z)(yp) · ∇(i−p+1)ψd,0(z)(yi−p)dy,

T in,3(z) = −
i∑

p=0

1
p!(i− p)!

∫
B

∇(p+1)ψn,0(z)(yp) · ∇(i−p+1)ψn,0(z)(yi−p)dy.

We can know derive the topological asymptotic expansion of the Kohn-Vogelius cost
functional J by giving the variation J (Ωz,ε) − J (Ω) regarding to the geometric
perturbation of the domain at any point. The main result is described by the
following theorem.

Theorem 5.1. The topological asymptotic expansion of the Kohn-Vogelius func-
tional J is given by

J (Ωz,ε)− J (Ω) =
I∑
i=1

εiδiJ (z) +O(εI+1),
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where

δiJ (z) =

{
T i−1
n,1 (z)− T i−1

d,1 (z) if i ≤ 2,

T i−1
n,1 (z)− T i−1

d,1 (z) + T i−3
n,2 (z)− T i−3

d,2 + T i−3
n,3 − T

i−3
d,3 (z) if 3 ≤ i ≤ I.

6. Proofs

The aim of this section is to prove Theorems 4.3 and 4.4, and the main result
described in Theorem 5.1.

Proofs of Theorems 4.3 and 4.4. To prove Theorem 4.3, in Ωz,ε we define the
function

Rεn,I = Ψn,0(x) +Wn,0(
x− z
ε

) + ε (Ψn,1(x) +Wn,1(
x− z
ε

)

+ · · ·+ εN (Ψn,I(x) +Wn,I(
x− z
ε

)− ψεn(x).

We can easily show that Rεn,I is harmonic in Ωz,ε.
On ∂Bz,ε we have

Rεn,I(x) = Ψn,0(x) +Wn,0(
x− z
ε

) +
I∑
i=1

εi[Ψn,i(x) +Wn,i(
x− z
ε

)]

=
I∑
i=0

εiΨn,i(x)−
I∑
i=0

εi
[ i∑
p=0

1
p!
DpΨn,i−p(z)((

x− z
ε

)p)
]
.

(6.1)

From the multilinearity of DpΨn,i−p(z), it follows that
I∑
i=1

εi
[ i∑
p=0

1
p!
DpΨn,i−p(z)((

x− z
ε

)p)
]

=
I∑
i=0

i∑
p=0

εi−p

p!
DpΨn,i−p(z)((x− z)p)

=
I∑
i=0

εi
N−i∑
p=0

1
p!
DpΨn,i(z)((x− z)p).

Then, one can deduce

Rεn,I =
I∑
i=0

εi
[
Ψn,i(x)−

I−i∑
p=0

1
p!
DpΨn,i(z)((x− z)p)

]
. (6.2)

Using that ‖x− z‖ = O(ε) on ∂Bz,ε and Taylor’s Theorem [29], we have

Rεn,I(x) = O(εI+1), on ∂Bz,ε.

On Γ2 we have

Rεn,I(x) =
I∑
i=0

εiWn,i(
x− z
ε

)−
I∑
i=1

εi
[ i∑
p=1

W
(p)
n,i−p(x− z)

]
=

I∑
i=0

εiWn,i(
x− z
ε

)−
I−1∑
i=0

εi
[ I−i∑
p=1

εpW
(p)
n,i (x− z)

]
.

This equality can be written as

Rεn,I(x) = εIWn,I(
x− z
ε

) +
I−1∑
i=0

εi
[
Wn,i(

x− z
ε

)−
I−i∑
p=1

εpW
(p)
n,i (x− z)

]
.
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Then, by Lemma 4.1 we obtain

Rεn,I = O(εI+1) on Γ2.

On Γn, using the same analysis we obtain

∇Rεn,I · n = O(εI+1) on Γ1.

Similarly, to prove Theorem 4.4, we define the function Rεd,I in Ωz,ε by

Rεd,I = Ψd,0(x) +Wd,0(
x− z
ε

) + ε (Ψd,1(x) +Wd,1(
x− z
ε

)

+ · · ·+ εI(Ψd,I(x) +Wd,I(
x− z
ε

)− ψεd(x)

and using the same analysis in the proof of Theorem 4.3 we derive Rεd,I = O(εI+1).

6.1. Proofs of the main results in Theorem 5.1. To prove Theorem 5.1, we
have to estimate each term of the equality (5.2).
Estimate for the first and the second terms. By changing x = z + εy, we
have∫
∂Bz,ε

∇xWn,i(
x− z
ε

) · n(x)ψn,0(x)ds = ε

∫
∂B

∇yWn,i(y) · n(y)ψn,0(z + εy)ds(y).

Since ψn,0 is smooth in a neighborhood of z, one obtains

ψn,0(z + εy) = ψn,0(z) +
I−1∑
p=1

εp

p!
∇(p)ψn,0(z)(yp) +O(εI)

=
I−1∑
p=0

εp

p!
∇(p)ψn,0(z)(yp) +O(εI).

Then, we have∫
∂Bz,ε

∇xWn,i(
x− z
ε

) · n(x)ψn,0(x)ds

=
I−1∑
p=0

εp+1

p!

∫
∂B

∇yWn,i(y) · n(y)[∇(p)ψn,0(z)(yp)]ds(y) +O(εI+1).

Consequently,
I∑
i=0

εi
∫
∂Bz,ε

∇xWn,i((x− z)/ε)) · nψn,0ds

=
I∑
i=0

εi
I−1∑
p=0

εp+1

p!

∫
∂B

∇yWn,i(y) · n(y)[∇(p)ψn,0(z)(yp)]ds(y) +O(εI+1)

=
I∑
i=1

εi
i−1∑
p=0

1
p!

∫
∂ω

∇yWn,i−p−1(y) · n(y)[∇(p)ψn,0(z)(yp)]ds(y) +O(εI+1)

=
I∑
i=1

εiT i−1
n,1 (z) +O(εI+1),
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Similarly, we obtain
I∑
i=0

εi
∫
∂Bz,ε

∇xWd,i((x− z)/ε)) · nψd,0ds = −
I∑
i=1

εiT i−1
d,1 (z) +O(εI+1).

Estimate for the third and the fourth terms. By changing x = z + εy, we
have∫
∂Bz,ε

∇Ψn,i(x)·n(x)ψn,0(x) ds = ε2
∫
∂B

∇Ψn,i(z+εy)·n(z+εy)un,0(z+εy)ds(y).

Since ψn,0 is smooth in a neighborhood of z, one obtains

ψn,0(z + εy) = ψn,0(z) +
I−1∑
p=1

εp

p!
∇(p)ψn,0(z)(yp) +O(εI)

=
I−1∑
p=0

εp

p!
∇(p)ψn,0(z)(yp) +O(εI).

Similarly, Ψi is smooth in a neighborhood of z, then

∇Ψn,i(z + εy) =
I−1∑
q=0

εq

q!
∇(q+1)Ψn,i(z)(yq) +O(εI).

Then∫
∂Bz,ε

∇Un,i(x) · n(x)un,0(x)ds

= ε2
∫
∂B

[
I−1∑
q=0

εq

q!
∇(q+1)Un,i(z)(yq)] · n(y)[

I−1∑
p=0

εp

p!
∇(p)un,0(z)(yp)]ds(y) +O(εI+1).

Using the Cauchy product formula, we derive∫
∂Bz,ε

∇Ψn,i(x) · n(x)ψn,0(x)ds

=
I−2∑
p=0

εp+2

p∑
q=0

1
q!(p− q)!

∫
∂B

[∇(q+1)Ψn,i(z)(yq)] · n(y)

× [∇(p−q)ψn,0(z)(yp−q)]ds(y) +O(εI+1).

Consequently,
I∑
i=1

εi
∫
∂Bz,ε

∇Ψn,i(x) · n(x)ψn,0(x)ds

=
I∑
i=1

I−2∑
p=0

εi+p+2

p∑
q=0

1
q!(p− q)!

×
∫
∂B

[∇(q+1)Ψn,i(z)(yq)] · n(y)[∇(p−q)ψn,0(z)(yp−q)]ds(y) +O(εI+1)

=
I∑
i=3

εi
i−3∑
p=0

p∑
q=0

1
q!(p− q)!
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×
∫
∂B

[∇(q+1)Ψn,i−p−2(z)(yq)] · n(y)[∇p−qψn,0(z)(y(p−q))]ds(y) +O(εI+1)

=
I∑
i=3

εiT i−3
n,2 (z) +O(εI+1).

Similarly,
I∑
i=1

εi
∫
∂Bz,ε

∇Ψd,i(x) · n(x)ψd,0(x)ds

=
I∑
i=3

εi
i−3∑
p=0

p∑
q=0

1
q!(p− q)!

×
∫
∂B

[∇(q+1)Ψd,i−p−2(z)(yq)] · n(y)[∇p−qψd,0(z)(y(p−q))]ds(y) +O(εI+1)

= −
I∑
i=3

εiT i−3
d,2 (z) +O(εI+1).

Estimate for the fifth and the sixth terms. Since ψd,0 and ψn,0 are sufficiently
regular in Bz,ε, we have

∇ψd,0(z + εy) = ∇ψd,0(z) +
I−1∑
i=1

εi

i!
∇(i+1)ψd,0(z)(yi) +O(εI)

∇ψn,0(z + εy) = ∇ψn,0(z) +
I−1∑
i=1

εi

i!
∇(i+1)ψn,0(z)(yi) +O(εI).

By the change of variable x = z + εy, we obtain∫
Bz,ε

|∇ψd,0|2dx = ε3
∫
B

|∇ψd,0(z + εy)|2dy

= ε3
∫
B

( I−1∑
i=0

εi

i!
|∇(i+1)ψd,0(z)(yi)

)
|2dy +O(εI+1).

Using the Cauchy product formula, we obtain∫
Bz,ε

|∇ψd,0|2dx

=
I−3∑
i=0

εi+3
( i∑
p=0

1
p!(i− p)!

∫
B

∇(p+1)ψd,0(z)(yp) · ∇(i−p+1)ψd,0(z)(yi−p)dy
)

+O(εI+1)

=
I∑
i=3

εiT i−3
d,3 (z) +O(εI+1).

Similarly,∫
Bz,ε

|∇ψn,0|2dx
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=
I−3∑
i=0

εi+3
( i∑
p=0

1
p!(i− p)!

∫
B

∇(p+1)ψn,0(z)(yp) · ∇(i−p+1)ψn,0(z)(yi−p)dy
)

+O(εI+1)

= −
I∑
i=3

εi T i−3
n,3 (z) +O(εI+1).

Finally, the desired result is obtained by using the above estimates.

Concluding remarks. This work is concerned with a geometric inverse problem
related to the Laplace operator in three-dimensional domain. More precisely, the
topological sensitivity method is applied to calculate a high-order topological as-
ymptotic expansion of the semi-norm Kohn-Vogelius functional, when a Dirichlet
perturbation is introduced in the initial domain.

The obtained expansion of the semi-norm Kohn-Vogelius functional is of higher
interest and improves the detection of objects with any size of perturbation. The
other advantage is when the topological derivative of order one is equal to zero for
some critical points in the initial domain.

Acknowledgments. The authors would like to extend their sincere appreciation
to the Deanship of Scientific Research at King Saud University for funding this
Research group No (RG-1435-026).
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