
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 123, pp. 1–25.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A
PERTURBATION OF CHOQUARD EQUATION

WITH HARDY-LITTLEWOOD-SOBOLEV UPPER
CRITICAL EXPONENT

YU SU, HAIBO CHEN

Communicated by Claudianor O. Alves

Abstract. In this article, we consider the problem

−∆u =
“Z

RN

|u|2
∗
µ

|x− y|µ
dy
”
|u|2
∗
µ−2u+ f(x, u) in RN ,

where N > 3, µ ∈ (0, N) and 2∗µ = 2N−µ
N−2

. Under suitable assumptions on

f(x, u), we establish the existence and non-existence of nontrivial solutions via
the variational method.

1. Introduction

In this article, we consider the problem

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ f(x, u) in RN , (1.1)

where N > 3, µ ∈ (0, N), 2∗µ = 2N−µ
N−2 and f(x, u) is a sign-changing nonlinearity

satisfying certain assumptions. Equation (1.1) is closely related to the nonlinear
Choquard equation as follows:

−∆u+ V (x)u = (|x|µ ∗ |u|p) |u|p−2u in RN , (1.2)

where 2N−µ
N 6 p 6 2N−µ

N−2 . For p = 2 and µ = 1, the equation (1.2) goes back to the
description of the quantum theory of a polaron at rest by Pekar in 1954 [20] and the
modeling of an electron trapped in its own hole in 1976 in the work of Choquard,
as a certain approximation to Hartree-Fock theory of one-component plasma [21].
For p = 2N−1

N−2 and µ = 1, by using the Green function, it is obvious that equation
(1.2) can be regarded as a generalized version of Schrödinger-Newton equation

−∆u+ V (x)u = |u|
N+1
N−2φ in RN ,

−∆φ = |u|
N+1
N−2 in RN .
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The existence and qualitative properties of solutions of Choquard type equations
(1.2) have been widely studied in the previous decades (see [18]). Moroz and Van
Schaftingen [17] considered (1.2) with lower critical exponent 2N−µ

N if the potential
1 − V (x) should not decay to zero at infinity faster than the inverse of |x|2. In
[1], the authors studied (1.2) with critical growth in the sense of Trudinger-Moser
inequality and studied the existence and concentration of the ground states.

In 2016, Gao and Yang [9] firstly investigated the critical Choquard equation

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ λu in Ω, (1.3)

where Ω is a bounded domain of RN , with lipschitz boundary, N > 3, µ ∈ (0, N) and
λ > 0. By using variational methods, they established the existence, multiplicity
and nonexistence of nontrivial solutions to equation (1.3). In equation (1.3), λu is
a linear perturbed term.

In [16], the authors studied the following critical Choquard equation

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ λu−q in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(1.4)

where Ω is a bounded domain of RN (N > 3), µ ∈ (0, N), 0 < q < 1 and λ > 0. By
using variational methods and the Nehari manifold, they established the existence
and multiplicity of nontrivial solutions to (1.4). In equation (1.4), λu−q is a singular
perturbed term.

In [11], the authors studied the critical Choquard equation

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ λf(u) in Ω, (1.5)

where Ω is a bounded domain of RN , N > 3 and µ ∈ (0, N). By using variational
methods, they established the nonexistence, existence and multiplicity of nontrivial
solutions to equation (1.5) with different kinds of perturbed terms.

Very recently, Alves, Gao, Squassina and Yang [2] studied the singularly per-
turbed critical Choquard equation

−ε2∆u+ V (x)u = εµ−3
(∫

RN

Q(y)G(u(y))
|x− y|µ

dy
)
Q(x)g(u) in R3,

where 0 < µ < 3, ε is a positive parameter, V,Q are two continuous real function
on R3 and G is the primitive of g which is of critical growth due to the Hardy-
Littlewood-Sobolev inequality. Under suitable assumptions on g, they first establish
the existence of ground states for the critical Choquard equation with constant
coefficient. They also establish existence and multiplicity of semi-classical solutions
and characterize the concentration behavior by variational methods.

Inspired by [9, 11, 16], we are interested in the problem that how the sign-
changing Hardy term or the sign-changing superlinear nonlocal term will effect the
existence and nonexistence of solutions for the equation (1.1). The main difference
between equation (1.1) and equations (1.3), (1.4) and (1.5) are not only the working
domain RN but also the sign-changing perturbed term f(x, u).

In this paper, we study problem (1.1) with two kinds of perturbation. Our results
are divided into two classes:
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Perturbation with sign-changing Hardy term. For problem (1.1) with a sign-
changing Hardy term f(x, u) = g(x) u

|x|2 ,

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ g(x)

u

|x|2
in RN . (1.6)

We suppose that g satisfies the following hypotheses:
(A7) g ∈ C(RN ), gmax and gmin are well-defined, where gmax := maxx∈RN g(x)

and gmin := minx∈RN g(x);
(A8) the sets Ω1 := {x ∈ RN |g(x) > 0} and Ω2 := {x ∈ RN |g(x) < 0} have

finite positive Lebesgue measure;
(A9) there exist rε and rg such that Ω1 ∪Ω2 ⊂ B(0, rg) \B(0, rε), and g(x) = 0

in RN \ (Ω1 ∪ Ω2), where 0 < rε < rg <∞;
(A10)

∫
Ω1
g(x) dx > 2

( rg
rε

)4N ∫
Ω2

(−g(x)) dx;

(A11) gmax ∈ (0, (N−2)2

4 );
(A12) |x1 − x2| > 2rε for any x1 ∈ Ω1 and x2 ∈ Ω2.

Firstly, we firstly present a nontrivial example. Let 1̃9 := (19, 0, 0) and −1̃9 :=
(−19, 0, 0), and 1̃9,−1̃9 ∈ R3. Then

g(x) =


1
10e
−|x−f19|2 − 1

10e
−1 in B(1̃9, 1),

1
10e
−1 − 1

10e
−104|x−f19|2 in B(−1̃9, 0.01),

0 otherwise.

The function g(x) satisfies hypotheses (A7)–(A12).

Theorem 1.1. Let N ≥ 3 and µ ∈ (0, N), then (1.6) has no weak solution when
g(x) is a differential functional and (x · ∇g(x)) has a fixed sign.

Theorem 1.2. Assume that (A7)–(A11) hold. Let N > 3 and µ ∈ (0, N), then
(1.6) has a ground state solution.

Perturbation with a sign-changing superlinear nonlocal term. We are in-
terested in problem (1.1) with a sign-changing superlinear nonlocal term

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u

+
(∫

RN

g(y)|u|p

|x− y|µ
dy
)
g(x)|u|p−2u in RN .

(1.7)

Theorem 1.3. Assume that (A7)–(A10), (A12) hold. Let N > 3, µ ∈ (0, N) and
p ∈ ( 2N−µ

N , 2N−µ
N−2 ), then problem (1.7) has a nontrivial solution.

We need to point out the main features of problem (1.1) are three-fold: (1)
Because of the Hardy-Littlewood-Sobolev upper critical term, it is difficult to es-
tablish the Pohozaev type of identity on entire space; (2) Since the sign-changing
perturbed term, it is difficult to estimate the Mountain-Pass level c; (3) The loss of
compactness due to the Hardy-Littlewood-Sobolev upper critical exponent which
makes it difficult to verify the (PS) condition.

We refer the readers to [5, 7, 8, 19, 22] for equations involving different kinds
of sign-changing perturbed term, the difference between the present paper and
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previous papers not only the assumptions on perturbed term but also the method
of estimate the Mountain-Pass level c.

The extremal function of best constant plays a key role in estimating the Mountain-
Pass level c. In previous papers, they estimate the Mountain-Pass level c by σ small
enough or large enough (where σ defined in (2.2)). In present paper, we estimate
the Mountain-Pass level c by σ ∈ [rε, rg] (where rε and rg defined in (A9)).

This article is organized as follows: In Section 2, we present notation and useful
preliminary lemmas. In Section 3, we investigate the critical Choquard equation
perturbed by a sign-changing Hardy term; In Section 4, we investigate the critical
Choquard equation perturbed by a sign-changing superlinear nonlocal term.

2. Preliminaries

D1,2(RN ) is the completion of C∞0 (RN ) with respect to the norm

‖u‖2D =
∫

RN
|∇u|2 dx.

It is well known that (N−2)2

4 is the best constant in the Hardy inequality

(N − 2)2

4

∫
RN

u2

|x|2
dx 6

∫
RN
|∇u|2 dx, for any u ∈ D1,2(RN ).

By (A7)–(A11), we derive that

‖u‖2g =
∫

RN

(
|∇u|2 − g(x)

u2

|x|2
)

dx,

is an equivalent norm in D1,2(RN ), since the following inequalities hold:(
1− 4gmax

(N − 2)2

)
‖u‖2D 6 ‖u‖2g 6

(
1− 4gmin

(N − 2)2

)
‖u‖2D.

We recall the Sobolev inequality

S
(∫

RN
|u|2

∗
dx
)2/2∗

6
∫

RN
|∇u|2 dx, for any u ∈ D1,2(RN ),

where S > 0 is the Sobolev constant (see [23]).

Lemma 2.1 (Hardy-Littlewood-Sobolev inequality [14]). Let t, r > 1 and µ ∈
(0, N) with 1

t + 1
r + µ

N = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There exists a sharp
constant C(N,µ, r, t), independent of f, h such that∫

RN

∫
RN

|f(x)||h(y)|
|x− y|µ

dx dy 6 C(N,µ, r, t)‖f‖t‖h‖r.

If t = r = 2N
2N−µ , then

C(N,µ, r, t) = C(N,µ) = π
µ
2

Γ(N2 −
µ
2 )

Γ(N − µ
2 )

(Γ(N2 )
Γ(N)

)−1+ µ
N

.

For µ ∈ (0, N), we define the best constant

SH,L := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|

2 dx

(
∫

RN
∫

RN
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

. (2.1)
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The authors in [9, Lemma 1.2] proved that SH,L is attained in RN by the extremal
function:

wσ(x) = σ
2−N

2 w(
x

σ
), w(x) =

C

(1 + |x|2)
N−2

2

, (2.2)

where C > 0 is a fixed constant. By the definition of convolution, we set

|x|−µ ∗ (|un|2
∗
µ) :=

∫
RN

|un(y)|2
∗
µ

|x− y|µ
dy

|x|−µ ∗ (g|un|p)(RN ) :=
∫

RN

g(y)|un(y)|p

|x− y|µ
dy,

|x|−µ ∗ (g|un|p)(Ωi) :=
∫

Ωi

g(y)|un(y)|p

|x− y|µ
dy, (i = 1, 2).

Lemma 2.2 ([9, Lemma 2.3]). Let N > 3 and 0 < µ < N . If {un} is a bounded
sequence in L

2N
N−2 (RN ) such that un → u almost everywhere in RN as n→∞, then

the following hold,∫
RN

(|x|−µ ∗ (|un|2
∗
µ))|un|2

∗
µ dx−

∫
RN

(|x|−µ ∗ (|un − u|2
∗
µ))|un − u|2

∗
µ dx

→
∫

RN
(|x|−µ ∗ (|u|2

∗
µ))|u|2

∗
µ dx.

3. Perturbation with a sign-changing Hardy term

In this section we study the existence and nonexistence of solutions for the critical
Choquard equation with a sign-changing Hardy term, i.e.

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ g(x)

u

|x|2
, in RN . (3.1)

We introduce the energy functional associated with (1.6) as

I1(u) =
1
2
‖u‖2D −

1
2

∫
RN

g(x)
|u|2

|x|2
dx− 1

2 · 2∗µ

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy.

3.1. Non-existence result. In this subsection, ifN > 3, µ ∈ (0, N) and (x·∇g(x))
has a fixed sign, we prove that problem (1.6) does not have any solution by Pohozaev
type of identity.

Proof of Theorem 1.1. We use the same cut-off function which was used in [6].
More precisely, for ε > 0 and ε1 > 0, we define ψ̃ε,ε1(x) = ψε(x)ψ̄ε1(x), where
ψε(x) = ψ( |x|ε ) and ψ̄ε1(x) = ψ( |x|ε1 ), ψ and ψ̄ are smooth functions in R with
the properties 0 6 ψ, ψ̄ 6 1, with supports of ψ and ψ̄ in (1,∞) and (−∞, 2)
respectively and ψ(t) = 1 for t > 2, and ψ̄(t) = 1 for t 6 1.

Let u be a weak solution of problem (1.6). Then u is smooth away from origin and
hence (x · ∇u)ψ̃ε,ε1 ∈ C2

c (RN ) (see [6]). Multiplying problem (1.6) by (x · ∇u)ψ̃ε,ε1
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and integrating by parts we obtain

−
∫

RN
∆u(x · ∇u)ψ̃ε,ε1 dx

=
∫

RN

(∫
RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u(x · ∇u)ψ̃ε,ε1 dx

+
∫

RN
g(x)

u

|x|2
(x · ∇u)ψ̃ε,ε1 dx,

(3.2)

We can show that

lim
ε1→∞

lim
ε→0
−
∫

RN
∆u(x · ∇u)ψ̃ε,ε1 dx = −

(N − 2
2

)∫
RN
|∇u|2 dx, (3.3)

lim
ε1→∞

lim
ε→0

∫
RN

g(x)
|x|2

u(x · ∇u)ψ̃ε,ε1 dx

= −
(N − 2

2

)∫
RN

g(x)
|x|2

u2 dx− 1
2

∫
RN

(x · ∇g(x))
|x|2

u2 dx.
(3.4)

We just show the critical term,∫
RN

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy
)
|u(x)|2

∗
µ−2u(x)(x · ∇u(x))ψ̃ε,ε1(x) dx

= −
∫

RN
u(x)∇

(
xψ̃ε,ε1(x)

∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−2u(x)

)
dx

= −N
∫

RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
ψ̃ε,ε1(x) dy dx

− (2∗µ − 1)
∫

RN
(x · ∇u(x))ψ̃ε,ε1(x)

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−2
)

dx

+ µ

∫
RN

∫
RN

x · (x− y)ψ̃ε,ε1
|u(y)|2

∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

−
∫

RN

∫
RN

x · (ψε(x)∇ψ̄ε1(x) + ψ̄ε1(x)∇ψε(x))
|u(y)|2

∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

Note that ∇ψ̄ε1(x) and ∇ψε(x) have supports in {ε1 < |x| < 2ε1} and {ε < |x| <
2ε}, respectively. Since |x · (ψε(x)∇ψ̄ε1(x) + ψ̄ε1(x)∇ψε(x))| 6 C, applying the
dominated convergence theorem, we have

lim
ε1→∞

lim
ε→0

∫
RN

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy
)
|u(x)|2

∗
µ−2u(x)(x · ∇u(x))ψ̃ε,ε1(x) dx

= −N
∫

RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

− lim
ε1→∞

lim
ε→0

(2∗µ − 1)
∫

RN
(x · ∇u(x))ψ̃ε,ε1(x)

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−2
)

dx

+ µ

∫
RN

∫
RN

x · (x− y)
|u(y)|2

∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx,

which implies

lim
ε1→∞

lim
ε→0

2∗µ

∫
RN

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy
)
|u(x)|2

∗
µ−2u(x)(x · ∇u(x))ψ̃ε,ε1(x) dx
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= −N
∫

RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

+ µ

∫
RN

∫
RN

x · (x− y)
|u(y)|2

∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx,

Similarly,

lim
ε1→∞

lim
ε→0

2∗µ

∫
RN

(∫
RN

|u(x)|2
∗
µ

|x− y|µ
dx
)
|u(y)|2

∗
µ−2u(y)(y · ∇u(y))ψ̃ε,ε1(y) dy

= −N
∫

RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

+ µ

∫
RN

∫
RN

x · (x− y)
|u(y)|2

∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx.

Hence, we know that

lim
ε1→∞

lim
ε→0

2∗µ

∫
RN

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy
)
|u(x)|2

∗
µ−2u(x)(x · ∇u(x))ψ̃ε,ε1(x) dx

=
µ− 2N
2 · 2∗µ

∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx

= −
(N − 2

2

)∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx.

(3.5)

Therefore, putting (3.3)–(3.5) into (3.2), we obtain

−
(N − 2

2

)(∫
RN
|∇u|2 dx−

∫
RN

g(x)
|x|2

u2 dx
)

= −1
2

∫
RN

(x · ∇g(x))
|x|2

u2 dx−
(N − 2

2

)∫
RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx.

Also from (1.6), we have∫
RN
|∇u|2 dx−

∫
RN

g(x)
|x|2

u2 dx =
∫

RN

∫
RN

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dy dx.

Then we obtain ∫
RN

(x · ∇g(x))
|x|2

u2 dx = 0,

which is not possible if (x · ∇g(x)) has a fixed sign and u 6≡ 0. �

3.2. Existence of a ground state solution. In this subsection, we study the
existence of ground state solution for problem (1.6) onRN . The following Lemma
plays an important role in estimating the Mountain-Pass levels.

Lemma 3.1. Assume that (A7)–(A10) hold. Then for all σ ∈ [rε, rg], we have∫
RN

g(x)
|wσ(x)|2

|x|2
dx > 0.

Proof. By using (2.2), we have

wσ(x) =
Cσ

2−N
2

(1 + | xσ |2)
N−2

2

. (3.6)
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According to (A8), (A9) and (3.6), we obtain∫
RN

g(x)
|wσ(x)|2

|x|2
dx =

∫
RN

g(x)
C2σ2−N

(1 + | xσ |2)N−2|x|2
dx

=
∫

Ω1∪Ω2

g(x)
C2σN−2

(σ2 + |x|2)N−2|x|2
dx.

Since Ω1 ∪Ω2 ⊂ B(0, rg) \B(0, rε), we have |x| ∈ [rε, rg] in Ω1 ∪Ω2. From the fact
that

∫
Ω1
g(x) dx > 0 and

∫
Ω2
g(x) dx < 0, we obtain∫

RN
g(x)
|wσ(x)|2

|x|2
dx >

C2σN−)

(σ2 + r2
g)N−2r2

g

∫
Ω1

g(x) dx+
C2σN−2

(σ2 + r2
ε)N−2r2

ε

∫
Ω2

g(x) dx.

Keeping in mind that
∫

Ω2
g(x) dx < 0 and σ ∈ [rε, rg], we know that∫

RN
g(x)
|wσ(x)|2

|x|2
dx >

C2σN−2

(2r2
g)N−2r2

g

∫
Ω1

g(x) dx+
C2σN−2

(2r2
ε)N−2r2

ε

∫
Ω2

g(x) dx

=
C2σN−2

2N−2r2N−2
g

∫
Ω1

g(x) dx+
C2σN−2

2N−2r2N−2
ε

∫
Ω2

g(x) dx.
(3.7)

By (A10), we have∫
Ω1

g(x) dx > 2
(rg
rε

)4N ∫
Ω2

(−g(x)) dx >
(rg
rε

)2N−2
∫

Ω2

(−g(x)) dx. (3.8)

Inserting (3.8) into (3.7), we deduce that
∫

RN g(x) |wσ(x)|2
|x|2 dx > 0. �

We show that the functional I1 satisfies the Mountain-Pass geometry, and esti-
mate the Mountain-Pass levels.

Lemma 3.2. Assume that the hypotheses of Theorem 1.2 hold, there exists a (PS)c

sequence of I1 at a level c, where 0 < c < c∗ = N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L .

Proof. Step 1. We prove that I1 satisfies all the conditions in Mountain-pass
theorem.

(i) I1(0) = 0;
(ii) For any u ∈ D1,2(RN ) \ {0}, we have

I1(u) >
1
2
‖u‖2g −

1

2 · 2∗µS
2∗µ
H,L

‖u‖2·2
∗
µ

D

>
1
2

(
1− 4gmax

(N − 2)2

)
‖u‖2D −

1

2 · 2∗µS
2∗µ
H,L

‖u‖2·2
∗
µ

D .

Because of 2 < 2 · 2∗µ, there exists a sufficiently small positive number ρ
such that

ϑ := inf
‖u‖D=ρ

I1(u) > 0 = I1(0).

(iii) Given u ∈ D1,2(RN ) \ {0} such that limt→∞ I1(tu) = −∞. We could
choose tu > 0 corresponding to u such that I1(tu) < 0 for all t > tu and
‖tuu‖D > ρ. Set

c = inf
Υ∈Γu

max
t∈[0,1]

I1(Υ(t)),

where Γu = {Υ ∈ C([0, 1], D1,2(RN )) : Υ(0) = 0,Υ(1) = tuu}.
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Step 2. Here we show 0 < c < c∗. Using Lemma 3.1, there exists σ ∈ [rε, rg] such
that

∫
RN g(x) |wσ(x)|2

|x|2 dx > 0. For all t > 0, we obtain

0 < c 6 sup
t>0

I1(twσ)

6
N + 2− µ
4N − 2µ

(∫
RN |∇wσ(x)|2 dx−

∫
RN g(x) |wσ(x)|2

|x|2 dx

(
∫

RN
∫

RN
|wσ(x)|2

∗
µ |wσ(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

) 2N−µ
N+2−µ

<
N + 2− µ
4N − 2µ

( ∫
RN |∇wσ(x)|2 dx

(
∫

RN
∫

RN
|wσ(x)|2

∗
µ |wσ(y)|2

∗
µ

|x−y|µ dxdy)1/2∗µ

) 2N−µ
N+2−µ

=
N + 2− µ
4N − 2µ

S
2N−µ
N+2−µ
H,L .

which means 0 < c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L . �

Lemma 3.3. Assume that the hypotheses of Theorem 1.2 hold. If {un} is a (PS)c
sequence of I1, then {un} is bounded in D1,2(RN ).

Proof. The (PS)c sequence {un} defined in Lemma 3.2. From the definition of
(PS)c sequence, we have

c∗ + ‖un‖D > c∗ + o(1)‖un‖D >I(un)− 1
2
〈I ′(un), un〉

=
2∗µ − 1
2 · 2∗µ

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy.

Applying above inequality and (A11), we know

c∗ > I(un) >
1
2

(
1− 4gmax

(N − 2)2

)
‖un‖2D −

1
2∗µ − 1

(c∗ + ‖un‖D).

Set

f1(t) =
1
2

(
1− 4gmax

(N − 2)2

)
t2 − 1

2∗µ − 1
t−

2∗µc
∗

2∗µ − 1
.

We have two solutions of f1(·) as follows:

t′ =
1

2∗µ−1 +
√

( 1
2∗µ−1 )2 + 2·2∗µ·c∗

2∗µ−1 (1− 4gmax
(N−2)2 )

1− 4gmax
(N−2)2

> 0,

t
′′

=
1

2∗µ−1 −
√

( 1
2∗µ−1 )2 + 2·2∗µ·c∗

2∗µ−1 (1− 4gmax
(N−2)2 )

1− 4gmax
(N−2)2

< 0.

Therefore, 0 6 ‖un‖D 6 t′, this implies that {un} is bounded in D1,2(RN ). �

To check that functional I1 satisfies the (PS)c condition, we give the following
Lemma.

Lemma 3.4. Assume that the hypotheses of Theorem 1.2 hold. If {un} is a
bounded sequence in D1,2(RN ), up to a subsequence, un ⇀ u in D1,2(RN ) and
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un → ua.e. in RN as n→∞, then∫
RN

g(x)
|un|2

|x|2
dx→

∫
RN

g(x)
|u|2

|x|2
dx.

In addition, for any ϕ ∈ D1,2(RN ),∫
RN

g(x)
unϕ

|x|2
dx→

∫
RN

g(x)
uϕ

|x|2
dx.

as n→∞.

Proof. Step 1. Define vn := un − u. According to (A8), (A9) and Brézis-Lieb
lemma in [3], we have∫

Ω1

g(x)
|un|2

|x|2
dx =

∫
Ω1

g(x)
|vn|2

|x|2
dx+

∫
Ω1

g(x)
|u|2

|x|2
dx+ o(1), as n→∞, (3.9)

and∫
Ω2

g(x)
|un|2

|x|2
dx =

∫
Ω2

g(x)
|vn|2

|x|2
dx+

∫
Ω2

g(x)
|u|2

|x|2
dx+o(1), as n→∞. (3.10)

Combining (3.9) and (3.10), we obtain∫
Ω1∪Ω2

g(x)
|un|2

|x|2
dx =

∫
Ω1∪Ω2

g(x)
|vn|2

|x|2
dx+

∫
Ω1∪Ω2

g(x)
|u|2

|x|2
dx+ o(1), (3.11)

as n→∞.
Step 2. Furthermore, we estimate the term involving vn in (3.11). Since vn ⇀ 0 in
D1,2(RN ), we have vn → 0 in L2(B(0, rg) \B(0, rε)). According to (A8) and (A9),
we obtain

lim
n→∞

∫
Ω1∪Ω2

g(x)
|vn|2

|x|2
dx = lim

n→∞

∫
B(0,rg)\B(0,rε)

g(x)
|vn|2

|x|2
dx

6
gmax

r2
ε

lim
n→∞

∫
B(0,rg)\B(0,rε)

|vn|2 dx = 0.
(3.12)

Keeping in mind that gmin < 0, similar to (3.12), we obtain

lim
n→∞

∫
Ω1∪Ω2

g(x)
|vn|2

|x|2
dx = lim

n→∞

∫
B(0,rg)\B(0,rε)

g(x)
|vn|2

|x|2
dx

>
gmin

r2
ε

lim
n→∞

∫
B(0,rg)\B(0,rε)

|vn|2 dx→ 0.
(3.13)

Combining (3.12) and (3.13), we obtain

0 6 lim
n→∞

∫
Ω1∪Ω2

g(x)
|vn|2

|x|2
dx 6 0,

then

lim
n→∞

∫
Ω1∪Ω2

g(x)
|vn|2

|x|2
dx = 0. (3.14)

Step 3. Putting (3.14) into (3.11), we know∫
Ω1∪Ω2

g(x)
|un|2

|x|2
dx =

∫
Ω1∪Ω2

g(x)
|u|2

|x|2
dx+ o(1) as n→∞. (3.15)
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Since g ≡ 0 in RN \ (Ω1 ∪ Ω2), by (3.15), we have∫
RN

g(x)
|un|2

|x|2
dx =

∫
RN

g(x)
|u|2

|x|2
dx+ o(1), as n→∞.

Step 4. In addition, the boundedness of un in D1,2(RN ) yields that un are bounded
in L2(Ω1, |x|−2) and L2(Ω2, |x|−2), respectively. Therefore, up to a subsequence,
we have the following weak convergence

g(x)un ⇀ g(x)u in L2(Ω1, |x|−2),

g(x)un ⇀ g(x)u in L2(Ω2, |x|−2).

Then
g(x)un ⇀ g(x)u in L2(Ω1 ∪ Ω2, |x|−2).

Since g ≡ 0 in RN \ (Ω1 ∪ Ω2), we know that

g(x)un ⇀ g(x)u in L2(RN , |x|−2).

For any ϕ ∈ D1,2(RN ), we have∫
RN

g(x)
unϕ

|x|−2
dx→

∫
RN

g(x)
uϕ

|x|2
dx.

�

Now we check functional I1 satisfies the (PS)c condition.

Lemma 3.5. Assume that the hypotheses of Theorem 1.2 hold. If {un} is a (PS)c

sequence of I1 with 0 < c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L , then {un} has a convergent subse-

quence.

Proof. Step 1. Since D1,2(RN ) is a reflexive space. And {un} is a bounded
sequence in D1,2(RN ), up to a subsequence, we can assume that

un ⇀ u in D1,2(RN ), un → u a.e. in RN ,

un → u in Lrloc(RN ) for all r ∈ [1, 2∗).

Then
|un|2

∗
µ ⇀ |u|2

∗
µ in L

2N
2N−µ (RN ), as n→∞.

By the Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a linear
continuous map from L

2N
2N−µ (RN ) to L

2N
µ (RN ), we know

|x|−µ ∗ |un|2
∗
µ ⇀ |x|−µ ∗ |u|2

∗
µ in L

2N
µ (RN ), as n→∞.

Combining with the fact that

|un|2
∗
µ−2un ⇀ |u|2

∗
µ−2u in L

2N
N+2−µ (RN ), as n →∞,

we obtain

(|x|−µ ∗ |un|2
∗
µ)|un|2

∗
µ−2un ⇀ (|x|−µ ∗ |u|2

∗
µ)|u|2

∗
µ−2u in L

2N
N+2 (RN ) as n→∞.

For any ϕ ∈ D1,2(RN ), we obtain

0← 〈I ′1(un), ϕ〉 =
∫

RN
∇un∇ϕdx−

∫
RN

g(x)
unϕ

|x|2
dx

−
∫

RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ−2un(y)ϕ(y)

|x− y|µ
dy dx.
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Passing to the limit as n→∞, by using Lemma 3.4, we obtain

0 =
∫

RN
∇u∇ϕdx−

∫
RN

g(x)
uϕ

|x|2
dx

−
∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)ϕ(y)

|x− y|µ
dy dx,

for any ϕ ∈ D1,2(RN ), which means that u is a weak solution of problem (1.6).
Taking ϕ = u ∈ D1,2(RN ) as a test function in (1.6), we have∫

RN
|∇u|2 dx−

∫
RN

g(x)
|u|2

|x|2
dx =

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µu(y)

|x− y|µ
dy dx,

which implies that 〈I ′1(u), u〉 = 0.
Step 2. From 〈I ′1(u), u〉 = 0, we obtain

I1(u) =I1(u)− 1
2
〈I ′1(u), u〉

=
(1

2
− 1

2 · 2∗µ

)∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy > 0.

Define vn := un − u, then we know vn ⇀ 0 in D1,2(RN ). According to the Brézis-
Lieb lemma, Lemma 2.2 and Lemma 3.4, we have

c← I1(un) =
1
2
‖un‖2D −

1
2

∫
RN

g(x)
|un|2

|x|2
dx

− 1
2 · 2∗µ

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy

=I1(u) +
1
2
‖vn‖2D −

1
2 · 2∗µ

∫
RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy

>
1
2
‖vn‖2D −

1
2 · 2∗µ

∫
RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy,

(3.16)

since I1(u) > 0. Similarly, since 〈I ′1(u), u〉 = 0, we obtain

o(1) =〈I ′1(un), un〉

=‖un‖2D −
∫

RN
g(x)
|un|2

|x|2
dx−

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy

=〈I ′1(u), u〉+ ‖vn‖2D −
∫

RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy

=‖vn‖2D −
∫

RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy.

(3.17)

From this equality, there exists a nonnegative constant b such that∫
RN
|∇vn|2 dx→ b and

∫
RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy → b,

as n→∞. From (3.16) and (3.17), we obtain

c >
N + 2− µ
4N − 2µ

b. (3.18)
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By the definition of the best constant SH,L in (2.1), we have

SH,L

(∫
RN

∫
RN

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy

)1/2∗µ
6
∫

RN
|∇vn|2 dx,

which gives SH,Lb1/2
∗
µ 6 b. Thus we have that either b = 0 or b > S

2N−µ
N+2−µ
H,L .

If b > S
2N−µ
N+2−µ
H,L , then from (3.18), we obtain

N + 2− µ
4N − 2µ

S
2N−µ
N+2−µ
H,L 6

N + 2− µ
4N − 2µ

b 6 c.

This is in contradiction to c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L . Thus b = 0, and ‖un − u‖D → 0, as

n→∞. �

Proof of Theorem 1.2. Step 1. Applying Lemma 3.2, we obtain that I1 possesses
a mountain pass geometry. Then from the Maintain Pass Theorem, there is a
sequence {un} ⊂ D1,2(RN ) satisfying I1(un) → c and I ′1(un) → 0, where 0 <

ϑ 6 c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L . Moreover, according to Lemma 3.3 and Lemma 3.5, {un}

satisfying (PS)c condition. We have a nontrivial solution u0 to problem (1.6). In
following text, we show the existence of ground state solution to problem (1.6).
Step 2. Define

K1 = {u ∈ D1,2(RN )|〈I ′1(u), u〉 = 0, u 6= 0},
E1 = {I1(u)|u ∈ K1}.

In Step 1, we have u0 6= 0 and 〈I ′1(u0), u0〉 = 0. Hence, we know K1 6= ∅.
Now, we claim that any limit point of a sequence in K1 is different from zero.

For any u ∈ K1, according to 〈I ′1(u), u〉 = 0 and (2.1), it follows that

0 = 〈I ′1(u), u〉 =‖u‖2g −
∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

>
(

1− 4gmax

(N − 2)2

)
‖u‖2D −

1

S
2∗µ
H,L

‖u‖2·2
∗
µ

D .

From the above expression, we obtain(
1− 4gmax

(N − 2)2

)
‖u‖2D 6

1

S
2∗µ
H,L

‖u‖2·2
∗
µ

D ,

which gives

0 <
((

1− 4gmax

(N − 2)2

)
S

2∗µ
H,L

) 1
2·2∗µ−2

6 ‖u‖D, for any u ∈ K1.

Hence, any limit point of a sequence in K1 is different from zero. Now, we claim
that E1 has an infimum. In fact, for any u ∈ K1, we have

0 = 〈I ′1(u), u〉 = ‖u‖2g −
∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy.

Then

I1(u) =
1
2
‖u‖2g −

1
2 · 2∗µ

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy
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=
(1

2
− 1

2 · 2∗µ

)
‖u‖2g

>
(1

2
− 1

2 · 2∗µ

)(
1− 4gmax

(N − 2)2

)
‖u‖2D

>
(1

2
− 1

2 · 2∗µ

)((
1− 4gmax

(N − 2)2

)
SH,L

) 2·2∗µ
2·2∗µ−2

> 0.

Therefore, we obtain

0 <
(1

2
− 1

2 · 2∗µ

)((
1− 4gmax

(N − 2)2

)
SH,L

) 2·2∗µ
2·2∗µ−2

6 E1 := inf{I1(u)|u ∈ K1}.

Step 3. (i) For each u ∈ D1,2(RN ) with u 6≡ 0, and t ∈ (0,∞), we set

f2(t) = I1(tu) =
t2

2
‖u‖2g −

t2·2
∗
µ

2 · 2∗µ

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy,

f ′2(t) = t‖u‖2g − t2·2
∗
µ−1

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy.

This implies that f ′2(·) = 0 if and only if ‖u‖2g = t2·2
∗
µ−2

∫
RN
∫

RN
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy.
Set

f3(t) = t2·2
∗
µ−2

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy.

We know that limt→0 f3(t)→ 0, limt→∞ f3(t)→∞ and f3(·) is strictly increasing
on (0,∞). This shows that f2(·) admits a unique critical point tu on (0,∞) such
that f2(·) takes the maximum at tu. This is showing that tuu ∈ K1.

To prove the uniqueness of tu, let us assume that 0 < t̄ < ¯̄t satisfy f ′2(t̄) =
f ′2(¯̄t) = 0. We obtain

‖u‖2g =t̄2·2
∗
µ−2

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

=¯̄t2·2
∗
µ−2

∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy.

Since t̄2·2
∗
µ−2 < ¯̄t2·2

∗
µ−2, the above equality leads to the contradiction: u = 0.

Hence, for each u ∈ D1,2(RN ) with u 6≡ 0, there exists a unique tu > 0 such that
tuu ∈ K1.
(ii) Set Φ(u) = 〈I ′1(u), u〉, for any u ∈ K1, then

〈Φ′(u), u〉 =〈Φ′(u), u〉 − qΦ(u)

6(2− q)‖u‖2g − (2 · 2∗µ − q)
∫

RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

6(2− q)‖u‖2g < 0,

where 2 < q < 2 · 2∗µ. Thus, for any u ∈ K1, we obtain Φ′(u) 6= 0.
(iii) If u ∈ K1 and I1(u) = E1 then since E1 is the minimum of I1 on K1, Lagrange
multiplier theorem implies that there exists λ ∈ R such that I ′1(u) = λΦ′(u). Thus

〈λΦ′(u), u〉 = 〈I ′1(u), u〉 = Φ(u) = 0.
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According to the previous result, λ = 0, and so, I ′1(u) = 0, Then u is ground state
solution for problem (1.6).
Step 4. By the Ekeland variational principle, there exists {ūn} ⊂ K1 and λn ∈ R
such that

I1(ūn)→ E1 and I ′1(ūn)− λnΦ′(ūn)→ 0 in (D1,2(RN ))−1,

we can show that {ūn} is bounded in D1,2(RN ). Hence, taking into account that

|〈I ′1(ūn), ūn〉 − 〈λnΦ′(ūn), ūn〉| 6 ‖I ′1(ūn)− λnΦ′(ūn)‖D−1‖ūn‖D → 0,

we have
〈I ′1(ūn), ūn〉 − λn〈Φ′(ūn), ūn〉 → 0,

Using that 〈I ′1(ūn), ūn〉 = 0 and 〈Φ′(ūn), ūn〉 6= 0, we conclude that λn → 0.
Consequently, I ′1(ūn) → 0 in (D1,2(RN ))−1. Hence {ūn} is a (PS)E1

sequence of
I1.

By Lemma 3.5, we obtain that {ūn} has a strongly convergent subsequence
(still denoted by {ūn}). Hence, there exists ū0 ∈ D1,2(RN ) such that ūn → ū0 in
D1,2(RN ). By using Step 2, we know ū0 6= 0. By weak lower semicontinuity of
‖ · ‖g, we have

E1 6 I1(ū0) =
(1

2
− 1

2 · 2∗µ

)
‖ū0‖2g

6 lim inf
n→∞

(1
2
− 1

2 · 2∗µ

)
‖ūn‖2g

= lim inf
n→∞

I1(ūn) = lim
n→∞

I1(ūn) = E1,

which implies that I1(ū0) = E1. Therefore, ū0 is a ground state solution of problem
(1.6). �

4. Perturbation with a sign-changing superlinear nonlocal term

In this section, we study the existence of nontrivial solutions for the critical
Choquard equation with a sign-changing superlinear nonlocal term, i.e.

−∆u =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+

(∫
RN

g(y)|u|p

|x− y|µ
dy
)
g(x)|u|p−2u. (4.1)

We introduce the energy functional associated with (1.7) as

I2(u) =
1
2
‖u‖2D −

1
2p

∫
RN

∫
RN

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy

− 1
2 · 2∗µ

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy.

The following Lemma plays an important role in estimating the Mountain-Pass
levels.

Lemma 4.1. Assume that (A7)–(A10), (A12) hold. Let N > 3, µ ∈ (0, N) and
p ∈ ( 2N−µ

N , 2N−µ
N−2 ). Then for all σ ∈ [rε, rg], we have∫

RN

∫
RN

g(x)g(y)|wσ(x)|p|wσ(y)|p

|x− y|µ
dxdy > 0.
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Proof. According to (A8), (A9) and (3.6), we obtain∫
RN

∫
RN

g(x)g(y)|wσ(x)|p|wσ(y)|p

|x− y|µ
dxdy

=
∫

Ω1∪Ω2

∫
Ω1∪Ω2

C2pσp(N−2)g(x)g(y)
(σ2 + |x|2)

p
2 (N−2)|x− y|µ(σ2 + |y|2)

p
2 (N−2)

dxdy

=
(∫

Ω1

∫
Ω1

C2pσp(N−2)g(x)g(y)
(σ2 + |x|2)

p
2 (N−2)|x− y|µ(σ2 + |y|2)

p
2 (N−2)

dx dy

+
∫

Ω2

∫
Ω1

C2pσp(N−2)g(x)g(y)
(σ2 + |x|2)

p
2 (N−2)|x− y|µ(σ2 + |y|2)

p
2 (N−2)

dxdy

+
∫

Ω1

∫
Ω2

C2pσp(N−2)g(x)g(y)
(σ2 + |x|2)

p
2 (N−2)|x− y|µ(σ2 + |y|2)

p
2 (N−2)

dxdy

+
∫

Ω2

∫
Ω2

C2pσp(N−2)g(x)g(y)
(σ2 + |x|2)

p
2 (N−2)|x− y|µ(σ2 + |y|2)

p
2 (N−2)

dxdy
)

= C2pσp(N−2)
(
A1 +A2 +A3 +A4

)
.

(4.2)

Since Ω1 ∪ Ω2 ⊂ B(0, rg) \ B(0, rε), we have |x|, |y| ∈ [rε, rg] in Ω1. By using
g(x), g(y) > 0 on Ω1, σ ∈ [rε, rg] and Fubini’s theorem, we obtain

A1 >
∫

Ω1

∫
Ω1

g(x)g(y)
(σ2 + r2

g)p(N−2)|x− y|µ
dxdy

>
∫

Ω1

∫
Ω1

g(x)g(y)
(σ2 + r2

g)p(N−2)(|x|+ |y|)µ
dx dy

>
1

(σ2 + r2
g)p(N−2)|2rg|µ

∫
Ω1

∫
Ω1

g(x)g(y) dxdy

>
1

2p(N−2)+µ · r2p(N−2)+µ
g

∫
Ω1

g(x) dx
∫

Ω1

g(y) dy.

(4.3)

Similar to (4.3), we have

A4 >
1

2p(N−2)+µ · r2p(N−2)+µ
g

∫
Ω2

g(x) dx
∫

Ω2

g(y) dy > 0. (4.4)

Keeping in mind that g(x) > 0 on Ω1 and g(y) < 0 on Ω2. Since x ∈ Ω1, y ∈ Ω2,
Ω1 ∩ Ω2 = ∅ and (A12), we have |x− y| > 2rε. Then

A2 >
∫

Ω2

∫
Ω1

g(x)g(y)
(σ2 + r2

ε)p(N−2)|x− y|µ
dxdy

>
∫

Ω2

∫
Ω1

g(x)g(y)
(σ2 + r2

ε)p(N−2)|2rε|µ
dxdy

>
1

2p(N−2)+µ · r2p(N−2)+µ
ε

∫
Ω1

g(x) dx
∫

Ω2

g(y) dy.

(4.5)
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Similar to (4.5), we have

A3 >
1

2p(N−2)+µ · r2p(N−2)+µ
ε

∫
Ω2

g(x) dx
∫

Ω1

g(y) dy

=
1

2p(N−2)+µ · r2p(N−2)+µ
ε

∫
Ω1

g(x) dx
∫

Ω2

g(y) dy.
(4.6)

Combining (4.3), (4.5) and (4.6), we deduce that

A1 +A2 +A3 >
1

2p(N−2)+µ

∫
Ω1

g(x) dx
( 1

r
2p(N−2)+µ
g

∫
Ω1

g(y) dy

+
2

r
2p(N−2)+µ
ε

∫
Ω2

g(y) dy
)
.

(4.7)

By (A10), we have ∫
Ω1

g(y) dy >2
(rg
rε

)4N ∫
Ω2

(−g(y)) dy

>2
(rg
rε

)4N−µ ∫
Ω2

(−g(y)) dy

>2
(rg
rε

)2p(N−2)+µ
∫

Ω2

(−g(y)) dy.

(4.8)

Inserting (4.8) into (4.7), we deduce that

A1 +A2 +A3 > 0. (4.9)

Inserting (4.4) and (4.9) into (4.2), we obtain∫
RN

∫
RN

g(x)g(y)|wσ(x)|p|wσ(y)|p

|x− y|µ
dxdy > A1 +A2 +A3 +A4 > 0.

�

We show that the functional I2 satisfies the Mountain-Pass geometry, and esti-
mate the Mountain-Pass levels.

Lemma 4.2. Assume that the hypotheses of Theorem 1.3 hold. Then there exists

a (PS)c sequence of I2 at a level c, where 0 < c < c∗ = N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L .

Proof. Step 1. For any u ∈ D1,2(RN ) \ {0}, we have

I2(u) >
1
2
‖u‖2D −

C1

2p
‖u‖2pD −

1

2 · 2∗µS
2∗µ
H,L

‖u‖2·2
∗
µ

D .

We just prove that I2 satisfies the above condition in Mountain-pass theorem, the
others similar to Lemma 3.2.

Step 2. Using Lemma 4.1, there exists σ ∈ [rε, rg] such that∫
RN

∫
RN

g(x)g(y)|wσ(x)|p|wσ(y)|p

|x− y|µ
dxdy > 0.
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Let

B1 :=
∫

RN
|∇wσ|2 dx > 0,

B2 :=
∫

RN

∫
RN

g(x)g(y)|wσ(x)|p|wσ(y)|p

|x− y|µ
dxdy > 0,

B3 :=
∫

RN

∫
RN

|wσ(x)|2
∗
µ |wσ(y)|2

∗
µ

|x− y|µ
dxdy > 0.

(4.10)

Set

h1(t) = I2(twσ) =
t2

2
B1 −

t2p

2p
B2 −

t2·2
∗
µ

2 · 2∗µ
B3.

We know that h1(0) = 0, limt→∞ h1(t) = −∞. On the interval [0,∞), we can see
that h′1(t) = 0 if and only if

h′1(t) = tB1 − t2p−1B2 − t2·2
∗
µ−1B3 = 0. (4.11)

From (4.11), we have
B1 = t2p−2B2 + t2·2

∗
µ−2B3. (4.12)

Define
k(t) = t2p−2B2 + t2·2

∗
µ−2B3. (4.13)

By Lemma 4.1 and (4.10), we know that B2 > 0. Observe k(·) is strictly increasing
on [0,∞), k(t) = 0 if and only if t = 0, and limt→∞ k(t) = ∞. From the fact that
h′1(t) = t(B1 − k(t)) = 0, we have two solutions t1 and t2 such that t1 = 0 and t2
satisfies

B1 = t2p−2
2 B2 + t

2·2∗µ−2

2 B3. (4.14)
By B1, B2, B3 > 0 and (4.14), we have t2 > 0 and

h1(t2) =
t22
2
B1 −

t2p2
2p
B2 −

t
2·2∗µ
2

2 · 2∗µ
B3

=
t22
2

(
t2p−2
2 B2 + t

2·2∗µ−2

2 B3

)
− t2p2

2p
B2 −

t
2·2∗µ
2

2 · 2∗µ
B3

=
(1

2
− 1

2p

)
t2p2 B2 +

(1
2
− 1

2 · 2∗µ

)
t
2·2∗µ
2 B3 > 0.

(4.15)

So h1 does not achieve its maximum at t1 = 0.
Next, we prove that h1 achieves its maximum at t2. Applying (4.14), we know

h′1(t) =t(B1 − k(t))

=t[(t2p−2
2 − t2p−2)B2 + (t

2·2∗µ−2

2 − t2·2
∗
µ−2)B3] > 0, for t ∈ (0, t2),

(4.16)

and

h′1(t) = t[(t2p−2
2 − t2p−2)B2 + (t

2·2∗µ−2

2 − t2·2
∗
µ−2)B3] < 0, for t ∈ (t2,∞). (4.17)

Let t3 =
(
2∗µ · B1

B3

) 1
2·2∗µ−2 . Since t3 > 0, we have

h1(t3) =
t23
2
B1 −

t2p3
2p
B2 −

t
2·2∗µ
3

2 · 2∗µ
B3 = − t

2p
3

2p
B2 < 0. (4.18)

Now, we claim that t2 < t3.
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Suppose on the contrary that t2 = t3, we obtain

h1(t3) < 0 < h1(t2),

which contradicts with t2 = t3.
Suppose on the contrary that t2 > t3. Applying h1(t1) = 0, (4.18), (4.16) and

t3 ∈ (t1, t2), we obtain
0 = h1(t1) < h1(t3) < 0,

which is a contradiction. Hence, t2 < t3.
According to Extreme value theorem, we know that h1 achieves its maximum on

compact set [0, t3]. Applying h′1(t2) = 0, (4.16) and (4.17), we obtain that h1(t2)
is the maximum of h1 on [0, t3].

By using (4.17) and h1(t3) < 0, we obtain h1(t) < 0 for t ∈ (t3,∞). Hence, we
deduce that h1(t2) is the maximum of h1 on [0,∞).

Step 3. Set h2(t) = t2

2 B1− t
2·2∗µ

2·2∗µ
B3. Similar to Step 2, we obtain that the maximum

of h2 attained at t4 =
(
B1
B3

) 1
2·2∗µ−2 > 0.

Next, we prove that t4 > t2. By (4.11), we have

h′1(t4) = t4(B1 − t
2·2∗µ−1

4 B3)− t2p−1
4 B2 = −t2p−1

4 B2 < 0.

Similar to the proof of t3 > t2 in Step 2, we know that t4 > t2.
Furthermore, we show that maxt>0 h1(t) < maxt>0 h2(t). We have

max
t>0

h1(t) = h1(t2) =
(1

2
− 1

2p

)
t2p2 B2 +

(1
2
− 1

2 · 2∗µ

)
t
2·2∗µ
2 B3

<t22

(1
2
− 1

2 · 2∗µ

)(
t2p−2
2 B2 + t

2·2∗µ−2

2 B3

)
=t22

(1
2
− 1

2 · 2∗µ

)
B1,

(4.19)

and

max
t>0

h2(t) = h2(t4) =t24
(1

2
− 1

2 · 2∗µ

)
B1. (4.20)

According to (4.19), (4.20) and t2 < t4, we know

max
t>0

h1(t) <t22
(1

2
− 1

2 · 2∗µ

)
B1

<t24

(1
2
− 1

2 · 2∗µ

)
B1 = max

t>0
h2(t) = h2(t4).

Step 4. From the above argument, we have

0 < c 6 sup
t>0

I2(twσ) = max
t>0

h1(t) < h2(t4) =
N + 2− µ
4N − 2µ

S
2N−µ
N+2−µ
H,L ,

which means that 0 < c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L . �

Lemma 4.3. Assume that the hypotheses of Theorem 1.3 hold. If {un} is a (PS)c
sequence of I2, then {un} is bounded in D1,2(RN ).

Proof. Similar to the proof of Lemma 3.3, we have Lemma 4.3. We omit it. �
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To check that the functional I2 satisfies (PS)c condition, we give the following
Lemmas.

Lemma 4.4. Assume that the hypotheses of Theorem 1.3 hold. If {un} ⊂ D1,2(RN )
is a sequence converging weakly to u ∈ D1,2(RN ) as n→∞, then∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|un(x)− u(x)|p|un(y)− u(y)|p

|x− y|µ
dx dy = 0.

Proof. Set vn := un − u, then we know vn ⇀ 0 in D1,2(RN ). According to (A8),
(A9) and Hardy-Littlewood-Sobolev inequality, we have

lim
n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

6 g2
max lim

n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

6 g2
maxC‖vn‖

2p

L
2Np

2N−µ (Ω1∪Ω2)
→ 0 (since

2Np
2N − µ

∈ (2, 2∗)).

(4.21)

On the other hand,

lim
n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dx dy

= lim
n→∞

(∫
Ω1

∫
Ω1

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

+
∫

Ω1

∫
Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

+
∫

Ω2

∫
Ω1

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

+
∫

Ω2

∫
Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

)
= J1 + J2 + J3 + J4.

(4.22)

Applying (A8) and (A9), we have

J1 > 0 and J4 > 0. (4.23)

Keeping in mind that g(x) > 0 on Ω1 and g(y) < 0 on Ω2. According to gmin < 0,
p ∈ ( 2N−µ

N , 2N−µ
N−2 ) ⊂ [1, 2∗) and Fubini’s theorem, we obtain

J2 >gmaxgmin lim
n→∞

∫
Ω1

∫
Ω2

|vn(x)|p|vn(y)|p

|x− y|µ
dx dy

>
gmaxgmin

(2rε)µ
lim
n→∞

∫
Ω1

∫
Ω2

|vn(x)|p|vn(y)|p dx dy

=
gmaxgmin

(2rε)µ
(

lim
n→∞

∫
Ω1

|vn(x)|p dx
)(

lim
n→∞

∫
Ω2

|vn(y)|p dy
)
→ 0.

(4.24)

Similar to (4.24), we have
J3 > 0. (4.25)

Putting (4.23)–(4.25) into (4.22), we obtain

lim
n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy > 0. (4.26)
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Combining (4.21) and (4.26), we have

0 6 lim
n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dx dy 6 0.

Thus,

lim
n→∞

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy = 0.

�

Lemma 4.5. Assume that the hypotheses of Theorem 1.3 hold. If {un} is a bounded
sequence in L

2Np
2N−µ (Ω1 ∪ Ω2) such that un → u a.e. on Ω1 ∪ Ω2 as n→∞, then

∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy

−
∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|u(y)|p|u(x)|p

|x− y|µ
dxdy

=
∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|un(x)− u(x)|p|un(y)− u(y)|p

|x− y|µ
dx dy + o(1),

Proof. Step 1. Since {un} is a bounded sequence in L
2Np

2N−µ (Ω1 ∪ Ω2) and un →
u a.e. on Ω1∪Ω2 as n→∞. Set vn := un−u. By using Hardy-Littlewood-Sobolev
inequality and Brézis-Lieb lemma in [3], we have

∫
Ωi

g(x)|un|p dx =
∫

Ωi

g(x)|vn|p dx+
∫

Ωi

g(x)|u|p dx+ o(1), (4.27)

for = 1, 2, as n→∞, and

|x|−µ ∗ (g|un|p)(Ωi) = |x|−µ ∗ (g|vn|p)(Ωi) + |x|−µ ∗ [g|u|p](Ωi) + o(1), (4.28)

for i = 1, 2, as n→∞.
By using [11, Lemma 2.3], we know that

∫
Ωi

(
|x|−µ ∗ (g|un|p)(Ωi)

)
g|un|p dx

=
∫

Ωi

(
|x|−µ ∗ (g|vn|p)(Ωi)

)
g|vn|p dx

+
∫

Ωi

(
|x|−µ ∗ (g|u|p)(Ωi)

)
g|u|p dx+ o(1), (i = 1, 2), as n→∞.

(4.29)
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Step 2. Since y ∈ Ω1, x ∈ Ω2 and (A12), we have 2rε 6 |x− y| 6 2rg. According
to the properties of convolution and Fubini’s theorem, we obtain∫

Ω2

(
|x|−µ ∗ (g|vn|p)(Ω1)

)
g(|un|p − |vn|p) dx

=
∫

Ω2

∫
Ω1

g(y)|un(y)|p

|x− y|µ
g(x)(|un(x)|p − |vn(x)|p) dy dx

=
∫

Ω1

∫
Ω2

g(x)|un(x)|p

|y − x|µ
g(y)|un(y)|p dx dy

−
∫

Ω1

∫
Ω2

g(x)|vn(x)|p

|y − x|µ
g(y)|un(y)|p dxdy (Fubini’s theorem)

=
∫

Ω1

(
|y|−µ ∗ g(|un|p)(Ω2)

)
(g|un|p) dy

−
∫

Ω1

(
|y|−µ ∗ g(|vn|p)(Ω2)

)
(g|un|p) dy (convolution)

=
∫

Ω1

(
|y|−µ ∗ g(|un|p)(Ω2)− |y|−µ ∗ g(|vn|p)(Ω2)

)
(g|un|p) dy

=
∫

Ω1

(
|y|−µ ∗ g(|un|p − |vn|p)(Ω2)

)
(g|un|p) dy (distributivity).

(4.30)

Since {un} is a bounded sequence in L
2Np

2N−µ (Ω1) and un → u a.e. on Ω1 as n→∞,
we have

g(y)|vn(y)|p ⇀ 0 in L
2Np

(2N−µ)(p−1) (Ω1), as n→∞. (4.31)

Similar to (4.31), we obtain

g(x)|vn(x)|p ⇀ 0 in L
2Np

(2N−µ)(p−1) (Ω2), as n→∞. (4.32)

Step 3. Taking the limit n → ∞, by (4.27), (4.28) and (4.30)–(4.32), we deduce
that∫

Ω2

(
|x|−µ ∗ (g|un|p)(Ω1)

)
g|un|p dx−

∫
Ω2

(
|x|−µ ∗ (g|vn|p)(Ω1)

)
g|vn|p dx

=
∫

Ω2

(
|x|−µ ∗ (g(|un|p − |vn|p))(Ω1)

)
g(|un|p − |vn|p) dx

+
∫

Ω2

(
|x|−µ ∗ (g(|un|p − |vn|p))(Ω1)

)
g|vn|p dx

+
∫

Ω1

(
|y|−µ ∗ g(|un|p − |vn|p)(Ω2)

)
g|vn|p dy (by (4.30))

=
∫

Ω2

(
|x|−µ ∗ (g|u|p))(Ω1)

)
g|u|p dx+ o(1).

(4.33)
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Similar to (4.33), we obtain∫
Ω1

(
|x|−µ ∗ (g|un|p)(Ω2)

)
g|un|p dx

=
∫

Ω1

(
|x|−µ ∗ (g|vn|p)(Ω2)

)
g|vn|p dx

+
∫

Ω1

(
|x|−µ ∗ (g|u|p)(Ω2)

)
g|u|p dx+ o(1), as n→∞.

(4.34)

Combining (4.29), (4.33) and (4.34), we obtain∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy

=
∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|vn(x)|p|vn(y)|p

|x− y|µ
dxdy

+
∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|u(y)|p|u(x)|p

|x− y|µ
dxdy + o(1) as n→∞.

�

Lemma 4.6. Assume that the hypotheses of Theorem 1.3 hold. If {un} is a bounded
sequence in D1,2(RN ), up to a subsequence, un ⇀ u in D1,2(RN ) and un → u a.e.
in RN as n→∞, then∫

RN

∫
RN

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy →

∫
RN

∫
RN

g(x)g(y)|u(x)|p|u(y)|p

|x− y|µ
dxdy.

In addition, for any ϕ ∈ D1,2(RN ),∫
RN

∫
RN

g(x)g(y)|un(y)|p|un(x)|p−2un(x)ϕ(x)
|x− y|µ

dxdy

→
∫

RN

∫
RN

g(x)g(y)|u(y)|p|u(x)|p−2u(x)ϕ(x)
|x− y|µ

dxdy.

as n→∞.

Proof. Step 1. By Lemmas 4.4 and 4.5, we have∫
Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy

=
∫

Ω1∪Ω2

∫
Ω1∪Ω2

g(x)g(y)|u(y)|p|u(x)|p

|x− y|µ
dxdy + o(1), as n→∞.

(4.35)

Since g ≡ 0 in RN \ (Ω1 ∪ Ω2), by (4.35), we have∫
RN

∫
RN

g(x)g(y)|un(x)|p|un(y)|p

|x− y|µ
dxdy

→
∫

RN

∫
RN

g(x)g(y)|u(x)|p|u(y)|p

|x− y|µ
dxdy as n→∞.

Step 2. By the Hardy-Littlewood-Sobolev inequality,∫
Ωi

g(y)|un|p

|x− y|µ
dy ⇀

∫
Ωi

g(y)|u|p

|x− y|µ
dy in L

2N
µ (Ωi), (i = 1, 2), as n→∞. (4.36)
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From (4.36), we obtain∫
Ω1∪Ω2

g(y)|un|p

|x− y|µ
dy ⇀

∫
Ω1∪Ω2

g(y)|u|p

|x− y|µ
dy, in L

2N
µ (Ω1 ∪ Ω2) as n→∞.

(4.37)
Since g ≡ 0 in RN \ (Ω1 ∪ Ω2), by (4.37), we have∫

RN

g(y)|un|p

|x− y|µ
dy ⇀

∫
RN

g(y)|u|p

|x− y|µ
dy in L

2N
µ (RN ) as n→∞. (4.38)

Similar to (4.38), we obtain

g(x)|un|p−2un ⇀ g(x)|u|p−2u in L
2Np

(2N−µ)(p−1) (RN ) as n→∞. (4.39)

Combining (4.38) and (4.39), as n→∞, we find that(∫
RN

g(y)|un|p

|x− y|µ
dy
)
g(x)|un|p−2un ⇀

(∫
RN

g(y)|u|p

|x− y|µ
dy
)
g(x)|u|p−2u

in L
2Np

2Np−2N+µ (RN ). Thus, for any ϕ ∈ D1,2(RN ),∫
RN

∫
RN

g(x)g(y)|un(y)|p|un(x)|p−2un(x)ϕ(x)
|x− y|µ

dxdy

→
∫

RN

∫
RN

g(x)g(y)|u(y)|p|u(x)|p−2u(x)ϕ(x)
|x− y|µ

dxdy.

�

Lemma 4.7. Assume that the hypotheses of Theorem 1.3 hold. If {un} is a (PS)c

sequence of I2 with 0 < c < N+2−µ
4N−2µ S

2N−µ
N+2−µ
H,L , then {un} has a convergent subse-

quence.

The proof of the above lemma is similar to that of Lemma 3.5. We omit it.

Proof of Theorem 1.3. Applying Lemma 4.2, we obtain that I2 possesses a moun-
tain pass geometry. Then from the Maintain Pass Theorem, there is a sequence
{un} ⊂ D1,2(RN ) satisfying I2(un)→ c and I ′2(un)→ 0, where

0 < ϑ 6 c <
N + 2− µ
4N − 2µ

S
2N−µ
N+2−µ
H,L .

Moreover, according to Lemma 4.3 and Lemma 4.7, {un} satisfying (PS)c condi-
tion. Hence, we have a nontrivial solution ũ0 to problem (1.7). �
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