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Abstract. The existence of a capacity solution to the thermistor problem
in the context of inhomogeneous Musielak-Orlicz-Sobolev spaces is analyzed.

This is a coupled parabolic-elliptic system of nonlinear PDEs whose unknowns

are the temperature inside a semiconductor material, u, and the electric po-
tential, ϕ. We study the general case where the nonlinear elliptic operator

in the parabolic equation is of the form Au = − div a(x, t, u,∇u), A being

a Leray-Lions operator defined on W 1,x
0 LM (QT ), where M is a generalized

N -function.

1. introduction

In the previous decade, there has been an increasing interest in the study of
various mathematical problems in modular spaces. These problems have many
consideration in applications [8, 21, 23] and have resulted in a renewal interest in
Lebesgue and Sobolev spaces with variable exponent, or the general Musielak-Orlicz
spaces, the origins of which can be traced back to the work of Orlicz in the 1930s. In
the 1950s, this study was carried on by Nakano [19] who made the first systematic
study of spaces with variable exponent. Later on, Polish and Czechoslovak math-
ematicians investigated the modular function spaces (see, for instance, Musielak
[18], Kovacik and Rakosnik [16]). The study of variational problems where the
function a satisfies a nonpolynomial growth conditions instead of having the usual
p-structure arouses much interest with the development of applications to electro-
rheological fluids as an important class of non-Newtonian fluids (sometimes referred
to as smart fluids). The electro-rheological fluids are characterized by their ability
to drastically change the mechanical properties under the influence of an external
electromagnetic field. A mathematical model of electro-rheological fluids was pro-
posed by Rajagopal and Ruzicka (we refer to [20, 21] for more details). Another
important application is related to image processing [22] where this kind of diffusion
operator is used to underline the borders of the distorted image and to eliminate
the noise.

From a mathematical standpoint, it is a hard task to show the existence of
classical solutions, i.e., solutions which are continuously differentiable as many times
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2 F. ORTEGÓN GALLEGO, M. RHOUDAF, H. SABIKI EJDE-2018/121

as the order of the differential equations under consideration. However, the concept
of weak solution is not enough to give a formulation to all problems and may not
provide existence or stability properties. This is the case when we are dealing with
nonuniformly elliptic problems, as in the problem

∂u

∂t
− div

(m(x, |∇u|)
|∇u|

∇u
)

= ρ(u)|∇ϕ|2 in QT = Ω× (0, T ),

div(ρ(u)∇ϕ) = 0 in QT , u = 0, ϕ = ϕ0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ Rd, d ≥ 2, is an open and bounded set and ρ ∈ C(R) ∩ L∞(R) is such
that ρ(s) > 0 for all s ∈ R. In this situation, one readily realizes that the search of
weak solutions to problem (1.1) are not well suited. Indeed, ρ(s) may converge to
zero as |s| tends to infinity and as a result, if u is unbounded in Ω×(0, T ), the elliptic
equation becomes degenerate at points where u is infinity and, therefore, no a priori
estimates for ∇ϕ will be available and thus, ϕ may not belong to a Sobolev space.
Instead of ϕ, we may consider the function Φ = ρ(u)|∇ϕ|2 as a whole and then show
that it belongs to L2(Ω)d. This means that a new formulation of the original system
is possible and the solution to this new formulation will be called capacity solution.
This concept was first introduced in the 1990s by Xu in [24] in the analysis of a
modified version of the thermistor problem where the monotone mapping a = a(∇u)
is a Leray-Lions operator from L2(H1) to L2(H−1). The same author applied this
concept to more general settings where weaker assumptions [25] or mixed boundary
conditions [26] are considered. Later, González Montesinos and Ortegón Gallego
[14] showed the existence of a capacity solution to problem (1.2) where a is a
Leray-Lions operator from Lp(W 1,p) into Lp

′
(W−1,p′), p ≥ 2, 1/p+ 1/p′ = 1. In a

recent paper, the existence of a capacity solution in the context of Orlicz-Sobolev
spaces has been established by Moussa, Ortegón Gallego and Rhoudaf [17]. The
analysis developed in the present paper is a generalization to that given in [17].
Our framework is the Musielak-Orlicz-Sobolev spaces.

This paper deals with the existence of a capacity solution to a coupled system
of parabolic-elliptic equations, whose unknowns are the temperature inside a semi-
conductor material, u, and the electric potential, ϕ, namely

∂u

∂t
− div a(x, t, u,∇u) = ρ(u)|∇ϕ|2 in QT = Ω× (0, T ),

div(ρ(u)∇ϕ) = 0 in QT ,

ϕ = ϕ0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

u = 0 on ∂Ω× (0, T ),

(1.2)

where Ω ⊂ Rd, d ≥ 2, is the space region occupied by the semiconductor, T > 0
is the final time of observation, Au = −div a(x, t, u,∇u) is a Leray-Lions operator
defined on W 1,x

0 LM (Ω), M is a generalized N -function, and the functions ϕ0 and
u0 are given. The functional spaces to deal with these problems are Musielak-
Orlicz-Sobolev spaces. In general, Orlicz-Sobolev spaces are neither reflexive nor
separable.

Problem (1.2) may be regarded as a generalization of the so-called thermistor
problem arising in electromagnetism [4, 13, 14].
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Our analysis makes extensively use of the notion of modular convergence in
Musielak-Orlicz spaces. The fundamental studies in this direction are due to Gossez
for the case of elliptic equations [11, 12]. The considerations of the problem with
an x-dependent modular function formulated in Musielak-Orlicz-Sobolev spaces are
due to Benkirane et al. [7] where the authors formulate an approximation theorem
with respect to the modular topology. A particular case of Musielak-Orlicz spaces
with an x-dependent modular function are the variable exponent spaces Lp(x)(Ω)
for which M(x, t) = |t|p(x) [5]. Other possible choices are

M(x, t) = |t|p(x) log(1 + |t|),

M(x, t) = |t| log(1 + |t|)(log(τ0 + |t|))p(x), for some τ0 ≥ 1,

M(x, t) = exp
(
|t|p(x)

)
− 1.

The reader is referred to [5] for an extensive analysis on the theory of quasilinear
of parabolic (and hyperbolic) equations related to some variable exponent spaces,
including the Lp(x)(Ω) spaces, and to [9] for a comprehensive summary on these
generalized modular spaces.

The main goal of this article is to prove the existence of a capacity solution of
(1.2) in the sense of Definition 4.2 for a generalized N -function, M , along with the
lack of reflexivity in this setting combined with the nonuniformly elliptic character
of the second differential equation.

This work is organized as follows. In Section 2 we recall some well-known prop-
erties and results on Musielak-Orlicz-Sobolev spaces. Section 3 is devoted to specify
the assumptions on data. In Section 4 we give the definition of a capacity solution
of (1.2). Finally, in Section 5 we present the existence result and develop its proof.

2. Preliminaries

In this section we list some definitions and facts about Musielak-Orlicz-Sobolev
spaces. Standard reference is [18]. We also include the definition of inhomogeneous
Musielak-Orlicz-Sobolev spaces and some preliminaries lemmas to be used later on
this paper.

Musielak-Orlicz spaces. Let Ω be a bounded domain in Rd, d ∈ N.

Definition 2.1. Let M : Ω× R 7→ R satisfying the following conditions:
(i) For a.a. x ∈ Ω, M(x, ·) is an N -function, that is, convex and even in R,

increasing in R+, M(x, 0) = 0, M(x, t) > 0 for all t > 0, M(x, t)/t → 0 as
t→ 0, M(x, t)/t→∞ as t→∞).

(ii) For all t ∈ R, M(·, t) is a measurable function.
A function M(x, t) which satisfies the conditions (i) and (ii) is called a Musielak-
Orlicz function, a generalized N -function or a generalized modular function.

From now on, M : Ω×R 7→ R will stand for a general Musielak-Orlicz function.
Notice that

ess infx∈Ω
M(x, t)

t
→∞ as t→∞. (2.1)

Indeed, by the definition of ess infx∈ΩM(x, t) we have for all ε > 0 there exist a
measurable Ωε ⊂ Ω, meas(Ωε) > 0 such that

M(y, t) ≤ ess infx∈ΩM(x, t) + ε, for all y ∈ Ωε,
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dividing by t we obtain

M(y, t)
t

≤ ess infx∈Ω
M(x, t)

t
+
ε

t
, for all y ∈ Ωε,

and letting t→∞, using (i), we obtain (2.1).
In some situations, the growth order with respect to t of two given Musielak-

Orlicz functions M and P are comparable. This concept is detailed in the next
definition.

Definition 2.2. Let M,P : Ω× R 7→ R be Musielak-Orlicz functions.
• Assume that there exist two constants ε > 0 and t0 ≥ 0 such that for

a. a. x ∈ Ω one has

P (x, t) ≤M(x, εt) for all t ≥ t0,

then we write P ≺ M and we say that M dominates P globally if t0 = 0
and near infinity if t0 > 0.
• We say that P grows essentially less rapidly than M at t = 0 (respectively,

near infinity), and we write P � M , if for every positive constant k we
have

lim
t→0

sup
x∈Ω

P (x, kt)
M(x, t)

= 0 (respectively, lim
t→∞

sup
x∈Ω

P (x, kt)
M(x, t)

= 0).

We will also use the following notation: Mx(t) = M(x, t), for a. a. x ∈ Ω and all
t ∈ R, and we associate its inverse function with respect to t ≥ 0, denoted by M−1

x ,
that is,

M−1
x (M(x, t)) = M(x,M−1

x (t)) = t, for all t ≥ 0.

Remark 2.3. It is easy to check that P �M near infinity if and only if

lim
t→∞

M−1(x, kt)
P−1(x, t)

= 0 uniformly for x ∈ Ω \ Ω0

for some null subset Ω0 ⊂ Ω.

We define the functional

%M,Ω(u) =
∫

Ω

M(x, u(x)) dx,

for any Lebesgue measurable function u : Ω 7→ R is a Lebesgue measurable function.
The set

LM (Ω) = {u : Ω 7→ R measurable such that %M,Ω(u) <∞}

is called the Musielak-Orlicz class related to M in Ω or simply the Musielak-Orlicz
class.

The Musielak-Orlicz space LM (Ω) is the vector space generated by LM (Ω), that
is, LM (Ω) is the smallest linear space containing the set LM (Ω). Equivalently,

LM (Ω) = {u : Ω 7→ R measurable such that %M,Ω(u/α) <∞, for some α > 0}.

For a Musielak-Orlicz function M , we introduce its complementary function,
denoted by M̄ , as

M̄(x, s) = sup
t≥0
{st−M(x, t)},
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that is M̄(x, s) is the complementary to M(x, t) in the sense of Young with respect
to the variable s. It turns out that M̄ is another Musielak-Orlicz function and the
following Young-Fenchel inequality holds

|ts| ≤M(x, t) + M̄(x, s) for all t, s ∈ R and a. a. x ∈ Ω. (2.2)

In the space LM (Ω) we define the following two norms:

‖u‖M,Ω = inf
{
λ > 0 :

∫
Ω

M(x, u(x)/λ) dx ≤ 1
}
,

which is called the Luxemburg norm, and the so-called Orlicz norm, namely

‖u‖(M),Ω = sup
%M̄,Ω(v)≤1

∫
Ω

u(x)v(x) dx.

where the supremum is taken over all v ∈ EM̄(Ω) such that %M̄,Ω(v) ≤ 1. An
important inequality in LM (Ω) is the following:∫

Ω

M(x, u(x)) dx ≤ ‖u‖(M),Ω for all u ∈ LM (Ω) such that ‖u‖(M),Ω ≤ 1, (2.3)

from we readily deduce∫
Ω

M
(
x,

u(x)
‖u‖(M),Ω

)
dx ≤ 1 for all u ∈ LM (Ω) \ {0}. (2.4)

It can be shown that the norm ‖ · ‖(M),Ω is equivalent to the Luxemburg norm
‖ · ‖M,Ω. Indeed,

‖u‖M,Ω ≤ ‖u‖(M),Ω ≤ 2‖u‖M,Ω for all u ∈ LM (Ω). (2.5)

Also, Hölder’s inequality holds∫
Ω

|u(x)v(x)|dx ≤ ‖u‖M,Ω‖v‖(M̄),Ω for all u ∈ LM (Ω) and v ∈ LM̄ (Ω),

in particular, if Ω has finite measure, Hölder’s inequality yields the continuous
inclusion LM (Ω) ⊂ L1(Ω).

Strong convergence in LM (Ω) is rather strict. For most purposes, a mild concept
of convergence will be enough, namely, that of modular convergence. The closure in
LM (Ω) of the bounded measurable functions with compact support in Ω̄ is denoted
by EM (Ω). The space EM (Ω) is the largest linear space such that EM (Ω) ⊂
LM (Ω) ⊂ LM (Ω), where the inclusion is in general strict.

Definition 2.4. We say that a sequence (un) ⊂ LM (Ω) is modular convergent to
u ∈ LM (Ω) if there exists a constant λ > 0 such that

lim
n→∞

%M,Ω((un − u)/λ) = 0.

Musielak-Orlicz-Sobolev spaces. For any fixed nonnegative integer m we define

WmLM (Ω) = {u ∈ LM (Ω) : Dαu ∈ LM (Ω) for all α, |α| ≤ m}
where α = (α1, α2, . . . , αd) ∈ Z, αj ≥ 0, j = 1, . . . , d, with |α| = α1 + α2 +
· · · + αd and Dαu denote the distributional derivative of multiindex α. The space
WmLM (Ω) is called the Musielak-Orlicz-Sobolev space (of order m).

Let u ∈WmLM (Ω), we define

%
(m)
M,Ω(u) =

∑
|α|≤m

%M,Ω(Dαu),
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‖u‖(m)
M,Ω = inf{λ > 0 : %(m)

M,Ω(u/λ) ≤ 1}, ‖u‖m,M,Ω =
∑
|α|≤m

‖Dαu‖M,Ω.

The functional %(m)
M,Ω is convex in WmLM (Ω), whereas the functionals ‖ · ‖(m)

M,Ω and

‖ · ‖m,M,Ω are equivalent norms on WmLM (Ω). The pair (WmLM (Ω), ‖ · ‖(m)
M,Ω) is

a Banach space if there exists a constant c > 0 such that

ess infx∈ΩM(x, 1) ≥ c. (2.6)

From this point on we will assume that (2.6) holds. The space WmLM (Ω) is
identified to a subspace of the product

∏
|α|≤m LM (Ω) =

∏
LM , this subspace is

σ(
∏
LM ,

∏
EM̄ ) closed.

Let Wm
0 LM (Ω) be the σ(

∏
LM ,

∏
EM̄ ) closure of D(Ω) in WmLM (Ω). Let

WmEM (Ω) be the space of functions u such that u and its distribution derivatives
up to order m lie in EM (Ω), and Wm

0 EM (Ω) is the (norm) closure of D(Ω) in
WmLM (Ω).

Lemma 2.5 (Poincaré’s inequality [2]). Let Ω be a bounded Lipchitz-continuous
domain of Rd. Then there exists a constant C0 = C0(Ω,M) > 0 such that

‖u‖M,Ω ≤ C0‖∇u‖M,Ω, for all u ∈W 1
0LM (Ω). (2.7)

Remark 2.6. Let M be a Musielak-Orlicz function and u ∈ W 1
0LM (Ω). Assume

that, for some constant C ≥ 0, one has
∫

Ω
M(x,∇u) dx ≤ C. Then we also have

‖u‖1,M,Ω ≤ C ′ where C ′ = (C0 + 1) max(C, 1). Indeed, since ‖u‖1,M,Ω = ‖u‖M,Ω +
‖∇u‖M,Ω, by using (2.7), we obtain

‖u‖1,M,Ω ≤ C0‖∇u‖M,Ω + ‖∇u‖M,Ω ≤ (C0 + 1)‖∇u‖M,Ω.

Now, if C ≥ 1, according to the convexity of M(x, ·), it yields∫
Ω

M
(
x,
∇u
C

)
dx ≤ 1

C

∫
Ω

M(x,∇u) dx ≤ C

C
= 1,

this means that C ∈ {λ > 0,
∫

Ω
M(x,∇u/λ) dx ≤ 1}, hence ‖∇u‖M,Ω ≤ C. On the

other hand, if C < 1, then
∫

Ω
M(x,∇u) dx ≤ C < 1, which yields ‖∇u‖M,Ω ≤ 1.

Since we are going to work with two generalized N -functions, say P and M , such
that P � M , we will consider the following assumptions for both complementary
functions P̄ and M̄ :

lim
|ξ|→∞

ess infx∈Ω
M̄(x, ξ)
|ξ|

=∞, (2.8)

lim
|ξ|→∞

ess infx∈Ω
P̄ (x, ξ)
|ξ|

=∞. (2.9)

Remark 2.7. From [15, Remark 2.1] we have that the assumptions (2.8) and (2.9)
provide the following:

sup
ξ∈B(0,R)

ess supx∈ΩM(x, ξ) <∞ for all 0 < R < +∞, (2.10)

sup
ξ∈B(0,R)

ess supx∈Ω P (x, ξ) <∞ for all 0 < R < +∞. (2.11)



EJDE-2018/121 MUSIELAK-ORLICZ-SOBOLEV SPACES 7

Definition 2.8. We say that a sequence (un) ⊂ W 1LM (Ω) converges to u ∈
W 1LM (Ω) for the modular convergence in W 1LM (Ω) if, for some h > 0,

lim
n→∞

%̄
(1)
M,Ω((un − u)/h) = 0.

The following spaces of distributions will also be used:

W−1LM̄ (Ω) =
{
f ∈ D′(Ω) : f =

∑
|α|≤1

(−1)|α|Dαfα for some fα ∈ LM̄ (Ω)
}
,

W−1EM̄ (Ω) =
{
f ∈ D′(Ω) : f =

∑
|α|≤1

(−1)|α|Dαfα for some fα ∈ EM̄ (Ω)
}
.

Lemma 2.9. If P �M and un → u for the modular convergence in LM (Ω), then
un → u strongly in EP (Ω). In particular, LM (Ω) ⊂ EP (Ω) and LP̄ (Ω) ⊂ EM̄ (Ω)
with continuous injections.

Proof. Let ε > 0 be given. Let λ > 0 be such that∫
Ω

M
(
x,
un − u
λ

)
→ 0, as n→∞.

Then, there exists h ∈ L1(Ω) such that

M
(
x,
un − u
λ

)
≤ h and un → u a. e. in Ω

for a subsequence still denoted (un). Since P � M , then for all r > 0 there exists
t0 > 0 such that

P (x, rt)
M(x, t)

≤ 1, a. e. in Ω and for all t ≥ t0.

For r = λ
ε and t = t′

λ , we obtain

P (x, t
′

ε )
M(x, t′λ )

≤ 1, when t′ ≥ t0λ.

Then

P
(
x,
un − u
ε

)
≤M

(
x,
un − u
λ

)
+ sup
t′∈B(0,t0λ)

ess supx∈Ω P (x, t′/ε)

≤ h+ sup
t′∈B(0,t0)

ess supx∈Ω P (x, t′/ε) for a. a. x ∈ Ω.

Since h+supt′∈B(0,t0λ) ess supx∈Ω P (x, t
′

ε ) ∈ L1(Ω) (from Remark 2.7), it yields, by
the Lebesgue dominated convergence theorem,

P
(
x,
un − u
ε

)
→ 0 in L1(Ω),

hence, for n big enough, we have ‖un − u‖P,Ω ≤ ε. That is, un → u in LP (Ω).
The continuous injection LM (Ω) ⊂ EP (Ω) is trivial since the convergence in

LM (Ω) implies the modular convergence in this space. On the other hand, since
P � M is equivalent to M̄ � P̄ , this yields the continuous injection LP̄ (Ω) ⊂
EM̄ (Ω). �
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Lemma 2.10 ([17, Lemma 2.2]). Let (wn) ⊂ LM (Ω), w ∈ LM (Ω), (vn) ⊂ LM̄ (Ω)
and v ∈ LM̄ (Ω). If wn → w in LM (Ω) for the modular convergence and vn → v in
LM̄ (Ω) for the modular convergence, then

lim
n→∞

∫
Ω

wnv dx =
∫

Ω

wv dx and lim
n→∞

∫
Ω

wnvn dx =
∫

Ω

wv dx.

Lemma 2.11 ([3, 6]). Let Ω be a bounded and Lipschitz-continuous domain in Rd
and let M and M̄ be two complementary Musielak-Orlicz functions which satisfy
the following conditions:

(i) There exists a constant A > 0 such that for all x, y ∈ Ω with |x − y| ≤ 1
2

one has
M(x, t)
M(y, t)

≤ t−A/ log |x−y| for all t ≥ 1. (2.12)

(ii) There exists a constant C > 0 such that

M̄(x, 1) ≤ C a. e. in Ω. (2.13)

Then the space D(Ω) is dense in LM (Ω) with respect to the modular convergence,
D(Ω) is dense in W 1

0LM (Ω) for the modular convergence and D(Ω̄) is dense in
W 1LM (Ω) for the modular convergence.

Remark 2.12. By taking t = 1 in (2.12) it yields that M(x, 1) = constant for
a. a. x ∈ Ω. In particular, the condition (2.6) is obviously satisfied and also∫

Ω

M(x, 1) dx <∞.

Remark 2.13 ([6]). Let p : Ω 7→ (1,∞) be a measurable function such that there
exists a constant A > 0 such that for all points x, y ∈ Ω with |x− y| < 1/2, one has
the inequality

|p(x)− p(y)| ≤ − A

log |x− y|
.

Then the following Musielak-Orlicz functions satisfy the assumption (2.12):
(1) M(x, t) = tp(x);
(2) M(x, t) = tp(x) log(1 + t);
(3) M(x, t) = t log(1 + t)(log(e− 1 + t))p(x).

Inhomogeneous Musielak-Orlicz-Sobolev spaces. Let Ω be a bounded and
open subset of Rd and let QT = Ω × (0, T ) with some given T > 0. Let M be
a Musielak function. For each α = (α1, . . . , αd) ∈ Zd, αj ≥ 0, j = 1, . . . , d, we
denote by Dα

x the distributional derivative on QT of multiindex α with respect to
the variable x ∈ Rd. The inhomogeneous Musielak-Orlicz-Sobolev spaces of order
one are defined as follows:

W 1,xLM (QT ) = {u ∈ LM (QT ) : Dα
xu ∈ LM (QT ) for all α, |α| ≤ 1},

W 1,xEM (QT ) = {u ∈ EM (QT ) : Dα
xu ∈ EM (QT ) for all α, |α| ≤ 1}

This last space is a subspace of the first one, and both are Banach spaces under
the norm

‖u‖ =
∑
|α|≤1

‖Dα
xu‖M,QT .

These spaces are considered as subspaces of the product space ΠLM (QT ) which has
(d + 1) copies. We also consider the weak-∗ topologies σ(ΠLM (QT ), ΠEM (QT ))
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and σ(ΠLM (QT ), ΠLM (QT )). If u ∈ W 1,xLM (QT ) then the function t :→ u(t)
is defined on (0, T ) with values in W 1LM (Ω). If, further, u ∈ W 1,xEM (QT )
then this function is a W 1EM (Ω)-valued and is strongly measurable. The space
W 1,xLM (QT ) is not in general separable. If u ∈ W 1,xLM (QT ), we cannot con-
clude that the function u(t) is measurable on (0, T ). However, the scalar function
t → ‖u(t)‖M,Ω is in L1(0, T ). The space W 1,x

0 EM (QT ) is defined as the (norm)
closure in W 1,xEM (QT ) of D(Q). We can easily show as in [4] that when Ω is
a Lipschitz-continuous domain then each element u of the closure of D(QT ) with
respect of the weak-∗ topology σ(ΠLM ,ΠEM̄ ) is limit, in W 1,xLM (QT ), of some
subsequence (un) ⊂ D(QT ) for the modular convergence; i. e., there exists λ > 0
such that for all α with |α| ≤ 1∫

QT

M
(
x,
Dα
xun −Dα

xu

λ

)
dx dt→ 0 as n →∞,

and, in particular, this implies that (un) converges to u in W 1,xLM (QT ) for the
weak-∗ topology σ(ΠLM ,ΠLM̄ ). Consequently

D(QT )
σ(ΠLM ,ΠLM̄ )

= D(QT )
σ(ΠLM ,ΠEM̄ )

.

This space will be denoted by W 1,x
0 LM (QT ). Furthermore,

W 1,x
0 EM (QT ) = W 1,x

0 LM (QT ) ∩ΠEM̄ (QT ).

Poincaré’s inequality also holds in W 1,x
0 LM (QT ), i. e. there exists a constant C > 0

such that for all u ∈W 1,x
0 LM (QT ) one has∑
|α|≤1

‖Dα
xu‖M,QT ≤ C

∑
|α|=1

‖Dα
xu‖M,QT . (2.14)

The dual space of W 1,x
0 EM (QT ) will be denoted by W−1,xLM̄ (QT ), and it can be

shown that

W−1,xLM̄ (QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ LM̄ (QT ), for all α

}
.

This space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖Dα
xfα‖M̄,QT

where the infimum is taken over all possible functions fα ∈ LM̄ (QT ) from which
the decomposition f =

∑
|α|≤1D

α
xfα holds.

We also denote by W−1,xEM̄ (QT ) the subspace of W−1,xLM̄ (QT ) consisting of
those linear forms which are σ(ΠLM ,ΠEM̄ )-continuous. It can be shown that

W−1,xEM̄ (QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ EM̄ (QT )

}
.

The following Lemma will be needed later on this paper.

Lemma 2.14. Let P be a Musielak function such that (2.9) is satisfied. Assume
that s2 ≤ P (x, s), for all a. a. x ∈ Ω and all s ∈ R. Then the following continuous
inclusions hold:

LP (Ω) ↪→ L2(Ω) ↪→ LP̄ (Ω).
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In particular, W 1
0LP (Ω) ↪→ H1

0 (Ω) and H−1(Ω) ↪→ W−1LP̄ (Ω). Furthermore, if
M is a Musielak function verifying (2.8) and such that P � M , then the same
continuous inclusions hold for M ; that is,

LM (Ω) ↪→ L2(Ω) ↪→ LM̄ (Ω),

and also W 1
0LM (Ω) ↪→ H1

0 (Ω) and H−1(Ω) ↪→W−1LM̄ (Ω).

Proof. From the estimate on P we have∫
Ω

v2 dx ≤
∫

Ω

P (x, v) dx, for all v ∈ LP (Ω). (2.15)

Taking v = u/‖u‖(P ) with u 6= 0 in (2.15) and using (2.4) it yields

‖u‖L2(Ω) ≤ ‖u‖(P ) for all u ∈ LP (Ω),

and the first assertions of this Lemma are readily deduced.
Now let P �M . For ε ∈ (0, 1) there exists t0 that

P (x, t) ≤M(x, εt) for all t ≥ t0 and a. a. x ∈ Ω. (2.16)

Then, taking v ∈ LM (Ω) and using Remark 2.7, we deduce that for some constant
C1 = C1(t0), ∫

Ω

v2 dx ≤
∫
{|v|<t0}

P (x, v) dx+
∫
{|v|≥t0}

P (x, v) dx

≤ C1 +
∫

Ω

M(x, εv) dx

≤ C1 + ε

∫
Ω

M(x, v) dx.

Making v = u/‖u‖(M),QT , u 6= 0, in this last inequality and using (2.4) we finally
deduce

‖u‖L2(Ω) ≤ C3‖u‖(M),QT for all u ∈ LM (Ω),

where C3 = (C1 + ε)1/2. �

Remark 2.15. Under the assumptions of Lemma 2.14, we have

L2(0, T ;H−1(Ω)) ↪→W−1,xLP̄ (QT ) ↪→W−1,xEM̄ (QT ).

Indeed, let f ∈ L2(0, T ;H−1(Ω)). Then, for some fα ∈ L2(QT ), f =
∑
|α|≤1∇αxfα.

But according to Lemma 2.9 L2(QT ) ⊂ LP̄ (QT ) ⊂ EM̄ (QT ) and thus

f ∈W−1,xLP̄ (QT ) ↪→W−1,xEM̄ (QT ).

We will use truncations in the definition of our approximate problems. To do so,
for K > 0, we introduce the truncation at height K, denoted by TK : R 7→ R, as

TK(s) = min(K,max(s,−K)) =

{
s if |s| ≤ K,
Ks/|s| if |s| > K,

(2.17)
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3. Compactness results

In the sequel, we will use the following results which concern mollification with
respect to time and space variables and some trace results. Also, unless stated the
contrary, Ω ⊂ Rd is a bounded and open set with a Lipschitz-continuous boundary,
and M is Musielak function. We put QT = Ω× (0, T ). For a function u ∈ L1(QT )
we introduce the function ũ ∈ L1(Ω × R) as ũ(x, s) = u(x, s)χ(0,T ) and define, for
all µ > 0, t ∈ [0, T ] and a.e. x ∈ Ω, the function uµ given as follows

uµ(x, t) = µ

∫ t

−∞
ũ(x, s)exp(µ(s− t)) ds. (3.1)

Lemma 3.1 ([1]). The following assertions hold:
(1) Let u ∈ LM (QT ). Then uµ ∈ C([0, T ];LM (Ω)) and uµ → u as µ→ +∞ in

LM (QT ) for the modular convergence.
(2) Let u ∈ W 1,xLM (QT ). Then uµ ∈ C([0, T ];W 1LM (Ω)) and uµ → u as

µ→ +∞ in W 1,xLM (QT ) for the modular convergence.
(3) Let u ∈ EM (QT ) (respectively, u ∈ W 1,xEM (QT )). Then uµ → u as

µ→ +∞ strongly in EM (QT ) (respectively, strongly in W 1,xEM (QT )).
(4) Let u ∈W 1,xLM (QT ) then ∂uµ

∂t = µ(u− uµ) ∈W 1,xLM (QT ).
(5) Let (un) ⊂W 1,xLM (QT ) and u ∈W 1,xLM (QT ) such that un → u strongly

in W 1,xLM (QT ) (respectively, for the modular convergence). Then, for all
µ > 0, (un)µ → uµ strongly in W 1,xLM (QT ) (respectively, for the modular
convergence).

Lemma 3.2. The following embedding holds with continuous injection

EM (QT ) ⊂ L1(0, T ;EM (Ω)) (3.2)

Proof. Since M(x, t) is convex with respect to t, then for every λ ≥ 1, t ∈ [0, T ]
and a. a. x ∈ Ω we have

αM(x, t) ≤M(x, λt) and λM(x, t/λ) ≤M(x, t). (3.3)

Let u ∈ EM (QT ) \ {0}. Owing to the definition of the space EM (QT ), we have∫
QT

M(x, λu(x, t)) dxdt < ∞ for every λ ≥ 0. Hence,
∫

Ω
M(x, λu(x, t)) dx < ∞

for a. a. t ∈ [0, T ] and for all λ ≥ 0. Therefore the function u(·, t) ∈ EM (Ω) for
a. a. t ∈ [0, T ]. In particular,∫

Ω

M
(
x,

u(x, t)
‖u(·, t)‖M,Ω

)
dx = 1 for a. a. t ∈ [0, T ].

Then, having in mind (3.3),∫ T

0

‖u‖M,Ω dt

=
∫
{‖u(·,t)‖M,Ω<1}

‖u(·, t)‖M,Ω dt+
∫
{‖u(·,t)‖M≥1}

‖u(·, t)‖M,Ω dt

≤ T +
∫
{‖u(·,t)‖M,Ω≥1}

‖u(·, t)‖M,Ω

∫
Ω

M
(
x,

u(x, t)
‖u(·, t)‖M,Ω

)
dxdt

≤ T +
∫
{‖u(·,t)‖M,Ω≥1}

∫
Ω

‖u(·, t)‖M,ΩM
(
x,

u(x, t)
‖u(·, t)‖M,Ω

)
dxdt
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≤ T +
∫
{‖u(·,t)‖M,Ω≥1}

∫
Ω

M(x, u(x, t)) dxdt

≤ T +
∫
QT

M(x, u(x, t)) dxdt.

By taking u/‖u‖M,QT instead of u into the first and last terms of this inequality,
using (2.4) and (2.5), it follows that

∫ T
0
‖u‖M,Ω dt ≤ 2(T + 1)‖u‖M,QT . �

A straightforward consequence of Lemma 3.2 is given in the next result.

Lemma 3.3. The following embeddings hold with continuous injections

W 1EM (QT ) ⊂ L1
(
0, T ;W 1EM (Ω)

)
, (3.4)

W−1EM̄ (QT ) ⊂ L1
(
0, T ;W−1EM̄ (Ω)

)
. (3.5)

The proof of the next three lemmas are straightforward adaptations of the ones
given in [10, Lemmas 2, 5 and Theorem2].

Lemma 3.4. Let Y be a Banach space such that L1(Ω) ⊂ Y with continuous
embedding. If F is bounded in W 1,x

0 LM (QT ) and relatively compact in L1(0, T ;Y )
then F is relatively compact in L1(QT ) and in EP (QT ) for all P �M .

Lemma 3.5. Let Ω be a bounded open subset of Rd with the segment property.
Consider the Banach space

W =
{
u ∈W 1,x

0 LM (QT ) :
∂u

∂t
∈W−1,xLM̄ (QT ) + L1(QT )

}
.

Then the embedding W ⊂ C([0, T ];L1(Ω)) holds and is continuous.

Lemma 3.6. If F is bounded in W 1,x
0 LM (QT ) and

{
∂f
∂t : f ∈ F

}
is bounded in

W−1,xLM̄ (QT ) then F is relatively compact in L1(QT ).

The existence result given in Theorem 3.7 will be useful in our analysis. It is
related to a second-order partial differential operator

A : D(A) ⊂W 1,xLM (QT ) 7→W−1,xLM̄ (QT )

in divergence form A(u) = − div a(x, t,∇u), where

a : Ω× (0, T )× Rd 7→ Rd is a Carathéodory function (3.6)

and for almost every (x, t) ∈ QT and for all ξ, ξ′ ∈ Rd, ξ 6= ξ′, one has

|a(x, t, ξ)| ≤ β(c1(x, t) + M̄−1
x M(x, k1|ξ|), (3.7)

(a(x, t, ξ)− a(x, t, ξ′))(ξ − ξ′) > 0, (3.8)

a(x, t, ξ)ξ ≥ αM(x, |ξ|). (3.9)

For a function f ∈ W−1,xLM̄ (QT ) and a function u0 ∈ L2(Ω) we consider the
parabolic problem given by

∂u

∂t
− div a(x, t,∇u) = f in QT ,

u(x, 0) = u0(x) in Ω,

u = 0 on ∂Ω× (0, T ).

(3.10)
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Theorem 3.7 ([1]). Under assumptions (3.6)-(3.9) there exists at least one weak
solution to problem (3.10), u ∈ D(A) ∩W 1,x

0 LM (QT ) ∩ C([0, T ];L2(Ω)) such that
a(x, t,∇u) ∈W−1,xLM̄ (QT ) and for all v ∈W 1,x

0 LM (QT ) with ∂v
∂t ∈W

−1,xLM̄ (QT )
and for all τ ∈ [0, T ] one has

− 〈∂v
∂t
, u〉Qτ +

∫
Ω

u(x, τ)v(x, τ) dx+
∫ τ

0

∫
Ω

a(x, t,∇u)∇v dxdt

= 〈f, v〉Qτ +
∫

Ω

u0(x)v(x, 0) dx,

where the 〈·, ·〉Qτ stands for the duality pairing between the spaces W−1,xLM̄ (Qτ )
and W 1,x

0 LM (Qτ ). Moreover, for all τ ∈ [0, T ], the following energy identity holds

1
2

∫
Ω

|u(x, τ)|2 dx+
∫ τ

0

∫
Ω

a(x, t,∇u)∇udxdt = 〈f, u〉Qτ +
1
2

∫
Ω

|u0(x)|2 dx.

4. Notion of capacity solution

In this section, we give the definition of a capacity solution for problem (1.2) in
the context of the Musielak-Orlicz-Sobolev spaces.

Let Ω be an open subset of Rd and let M be a Musielak-Orlicz function satisfying
the conditions of Lemma 2.11. We first consider the Banach space

W =
{
v ∈W 1,x

0 LM (QT ) :
∂v

∂t
∈W−1,xLM̄ (QT )

}
provided with its standard norm

‖v‖W = ‖v‖W 1,xLM (QT ) + ‖∂v
∂t
‖W−1,xLM̄ (QT ).

Throughout this paper 〈·, ·〉 stands for the duality pairing between the spaces
W 1,xLM (QT ) ∩ L2(QT ) and W−1,xLM̄ (QT ) + L2(QT ) or between W 1,x

0 LM (QT )
and W−1,xLM̄ (QT ), and we assume the following conditions:

P �M and t2 ≤ P (x, t) for a. a. x ∈ Ω and all t ∈ R, (4.1)

and their respective complementary functions, M̄ and P̄ , satisfy (2.8) and (2.9),
respectively. We consider a second order partial differential operator

A : D(A) ⊂W 1,xLM (QT ) 7→W−1,xLM̄ (QT )

in divergence form Au = −div a(x, t, u,∇u) where a : Ω × (0, T ) × R × Rd 7→ Rd
is a Carathéodory function (that is, a = a(x, t, s, ξ) is measurable in (x, t) for any
value of (s, ξ) and continuous with respect to the arguments (s, ξ) for a. a. (x, t) ∈
Ω× (0, T )) satisfying the following assumptions, for a. a. (x, t) ∈ QT , all s ∈ R, and
all ξ, ξ′ ∈ Rd, ξ 6= ξ′,

|a(x, t, s, ξ)| ≤ ζ(c(x, t) + M̄−1
x (P (x, k|s|)) + M̄−1

x (M(x, k|ξ|)), (4.2)

[a(x, t, s, ξ)− a(x, t, s, ξ′)][ξ − ξ′] ≥ α(M(x, |ξ − ξ′|) +M(x, |s|)), (4.3)

|a(x, t, s1, ξ)− a(x, t, s2, ξ)| ≤ ζ
[
e(x, t) + |s1|+ |s2|+ P−1(x, kM(|ξ|))

]
, (4.4)

a(x, t, s, 0) = 0, (4.5)

with c(x, t) ∈ EM̄ (QT ), e ∈ EP (QT ) and α, ζ, k > 0 are given real numbers.

ρ ∈ C(R) and there exists ρ̄ ∈ R such that 0 < ρ(s) ≤ ρ̄, for all s ∈ R, (4.6)

ϕ0 ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ), (4.7)
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u0 ∈ L2(Ω). (4.8)

Remark 4.1. Notice that from (4.3) and (4.5) we obtain the elliptic condition

a(x, t, s, ξ)ξ ≥ αM(x, |ξ|), for a. a. (x, t) ∈ QT , and all (s, ξ) ∈ R× Rd. (4.9)

The concept of capacity solution now follows.

Definition 4.2. A triplet (u, ϕ,Φ) is called a capacity solution of (1.2) if the
following conditions are fulfilled:

(1) u ∈W, a(x, t, u,∇u) ∈ LM̄ (QT )d, ϕ ∈ L∞(QT ) and Φ ∈ L2(QT )d.
(2) (u, ϕ,Φ) satisfies the system of partial differential equations

∂u

∂t
− div a(x, t, u,∇u) = div(ϕΦ) in QT , (4.10)

div Φ = 0 in QT , (4.11)

(3) For every S ∈ C1
0 (R) (functions of C1(R) with compact support), one has

S(u)ϕ− S(0)ϕ0 ∈ L2(0, T ;H1
0 (Ω)), and

S(u)Φ = ρ(u)[∇(S(u)ϕ)− ϕ∇S(u)], (4.12)

(4) u(·, 0) = u0 in Ω.

Notice that, thanks to Lemma 3.5 and the regularity of u, we obtain in particular
u ∈ C([0, T ];L1(Ω)) and thus the initial condition in (4) makes sense at least in
L1(Ω).

Remark 4.3. The notion of capacity solution involves a triplet (u, ϕ,Φ) whereas
the original problem (1.2) refers only to two unknowns, u and ϕ. Evidently, the
vector function Φ is, in some way, related to u and ϕ. For instance, if we were
allowed to take S = 1 in (4.12), we would readily obtain Φ = ρ(u)∇ϕ. But the
choice S = 1 is not possible since it does not belong to the space C1

0 (R). To
circumvent this situation, consider, for any m > 0, a function Sm ∈ C1

0 (R) such
that Sm(s) = 1 in {|s| ≤ m}. Using Sm in (4.12) and multiplying this expression
by χ{|u|≤m} we obtain

χ{|u|≤m}Φ = χ{|u|≤m}ρ(u)∇(Sm(u)ϕ), for all m > 0.

This last expression provides a meaning, al least in a pointwise sense, to ∇ϕ so
that Φ = ρ(u)∇ϕ almost everywhere in QT .

5. An existence result

This section is devoted to establish the main theorem of this paper:

Theorem 5.1. Under the assumptions (2.8), (2.9), (2.12), (2.13) and (4.2)-(4.8),
the system (1.2) admits a capacity solution in the sense of Definition 4.2.

To prove this theorem, we need first to show the existence of a weak solution to a
similar problem but with stronger assumptions; namely, there exists c ∈ EM̄ (QT ),
and two real numbers ζ > 0 and k ≥ 0, such that for almost all (x, t) ∈ QT and for
all s ∈ R, ξ ∈ Rd, we have

|a(x, t, s, ξ)| ≤ ζ[c(x, t) + M̄−1
x (M(x, k|ξ|))], (5.1)

and
ρ ∈ C(R) and there exist ρ1 and ρ2 ∈ R such that

0 < ρ1 ≤ ρ(s) ≤ ρ2, for all s ∈ R.
(5.2)
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Theorem 5.2. Assume (2.8), (2.9), (4.3)-(4.5), (4.7), (4.8), (5.1) and (5.2) are
satified. Then, there exists a weak solution (u, ϕ) to problem (1.2); that is,

u ∈W 1,x
0 LM (QT ) ∩ C([0, T ];L2(Ω)), a(x, t, u,∇u) ∈ LM̄ (QT )d,

ϕ− ϕ0 ∈ L∞(0, T ;H1
0 (Ω)) ∩ L∞(QT ),

u(·, 0) = u0 in Ω,∫ t

0

〈∂u
∂t
, φ
〉

+
∫ t

0

∫
Ω

a(x, t, u,∇u)∇φ = −
∫ t

0

∫
Ω

ρ(u)ϕ∇ϕ∇φ,

for all φ ∈W 1,x
0 LM (QT ), for all t ∈ [0, T ],∫

Ω

ρ(u)∇ϕ∇ψ = 0, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

Proof. To show the existence of a weak solution, Schauder’s fixed point theorem
will be applied together with the existence and uniqueness result of a weak solution
to a parabolic equation.

For every ω ∈ EP (QT ) and almost everywhere t ∈ (0, T ), we consider the elliptic
problem

div(ρ(ω)∇ϕ) = 0 in Ω× (0, T ),

ϕ = ϕ0 on ∂Ω× (0, T ).
(5.3)

Thanks to Lax-Milgram’s theorem, (5.3) has an unique solution ϕ(t) ∈ H1(Ω),
for almost all t ∈ (0, T ). In fact, ϕ is measurable in t with values in H1(Ω) [4]. In
that case, it is ϕ ∈ L∞(0, T ;H1(Ω)). Indeed, by the maximum principle we have

‖ϕ‖L∞(QT ) ≤ ‖ϕ0‖L∞(QT ). (5.4)

Using ϕ− ϕ0 ∈ H1
0 (Ω) as a test function in (5.3) we obtain∫

Ω

ρ(ω)∇ϕ∇(ϕ− ϕ0) = 0,

hence

ρ1

∫
Ω

|∇ϕ|2 dx ≤
∫

Ω

ρ(ω)|∇ϕ‖∇ϕ0|dx ≤ ρ2

∫
Ω

|∇ϕ||∇ϕ0|dx.

By the Cauchy-Schwarz inequality, we obtain∫
Ω

|∇ϕ|2 dx ≤ C(ρ1, ρ2, ϕ0) = C, a.e. t ∈ (0, T ). (5.5)

Note that the right-hand side in the original parabolic equation is ρ(u)|∇ϕ|2 ∈
L1(Ω× (0, T )). Thanks to the elliptic equation, this term also belongs to the space
L2(0, T ;H−1(Ω)). Indeed, let φ ∈ D(Ω) and take ξ = φϕ as a test function in (5.3).
We have, for a.e. t ∈ [0, T ], ∫

Ω

ρ(ω)∇ϕ∇(φϕ) dx = 0,

that is∫
Ω

ρ(ω)|∇ϕ|2φdx = −
∫

Ω

ρ(ω)ϕ∇ϕ∇φdx = 〈div(ρ(ω)ϕ∇ϕ), φ〉D′(Ω),D(Ω).

This means that

ρ(ω)|∇ϕ|2 = div(ρ(ω)ϕ∇ϕ) in D′(Ω) and a.e. in [0, T ]. (5.6)
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Since ρ(ω)ϕ∇ϕ ∈ L2(QT )d we finally deduce the regularity

div(ρ(ω)ϕ∇ϕ) ∈ L2(0, T ;H−1(Ω)).

The identity (5.6) is one of the keys that allows us to solve the classical thermistor
problem and the introduction of the notion of a capacity solution as well.

Now we introduce the parabolic problem
∂u

∂t
− div a(x, t, ω,∇u) = div(ρ(ω)ϕ∇ϕ) in QT ,

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(5.7)

The variational formulation of the parabolic equation is given as follows.

u ∈W 1,x
0 LM (QT ) ∩ C([0, T ];L2(Ω)), a(x, t, ω,∇u) ∈ LM̄ (QT )d,∫ t

0

langle
∂u

∂t
, φ〉+

∫ t

0

∫
Ω

a(x, t, ω,∇u)∇φ = −
∫ t

0

∫
Ω

ρ(ω)ϕ∇ϕ∇φ,

for all φ ∈W 1,x
0 LM (QT ), for all t ∈ [0, T ],

u(·, 0) = u0 in Ω.

(5.8)

Note that div(ρ(ω)ϕ∇ϕ) ∈ L2(0, T ;H−1(Ω)) ↪→ W−1,xEM̄ (QT ) due to (5.3),
(5.4), (5.5), Lemma 2.14 and Remark 2.15.

By Theorem 3.7, we have the existence of a solution to the problem (5.8). Now,
we show that |∇u| ∈ LM (QT ), and the estimates∫ T

0

∫
Ω

M(x, |∇u|) dx dt ≤ C(u0, ϕ0, α, T, ρ2) = C0, (5.9)

‖a(x, t, ω,∇u)‖M̄,QT ≤ C1, (5.10)

where C1 only depends on data, but not on ω. Indeed, let λ > 0 such that |∇u|/λ ∈
LM (QT ). Since ϕ ∈ L2(0, T ;H1(Ω)) ⊂W 1,xLM̄ (QT ), there exists µ > 0 such that
2
αµρ2‖ϕ0‖L∞(QT )|∇ϕ| ∈ LM̄ (QT ). By taking φ = u as a test function in (5.7), from
(4.2), (4.5), (5.2), (5.4) and Young’s inequality, we obtain

α

λµ

∫ T

0

∫
Ω

M(x, |∇u|) dxdt

≤ 1
λµ

∫ T

0

∫
Ω

a(x, t, ω,∇u)∇udxdt

≤ 1
2λµ
‖u0‖2L2(Ω) +

αµ

2

∫ T

0

∫
Ω

M̄(x,
2
αµ

ρ2‖ϕ0‖L∞(QT )|∇ϕ|) dxdt

+
α

2µ

∫ T

0

∫
Ω

M(x, |∇u|/λ) dxdt.

This shows that |∇u| ∈ LM (QT ) and, consequently, estimate (5.9) is derived by
just taking λ = 1 in this last inequality. In order to obtain (5.10), first notice that
from the last inequality we also have∫ T

0

∫
Ω

a(x, t, ω,∇u)∇udx dt ≤ αC0. (5.11)
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Then, owing to (4.3), for any φ ∈ W 1,x
0 EM (QT ) such that ‖∇φ‖M,QT = 1/(k + 1)

it yields

0 ≤
∫ T

0

∫
Ω

(a(x, t, ω,∇u)− a(x, t, ω,∇φ))(∇u−∇φ) dxdt,

and thus, using (5.11) and Young’s inequality,∫ T

0

∫
Ω

a(x, t, ω,∇u)∇φ dx dt

≤
∫ T

0

∫
Ω

a(x, t, ω,∇u)∇udxdt−
∫ T

0

∫
Ω

a(x, t, ω,∇φ)(∇u−∇φ) dx dt

≤ αC0 +
∫ T

0

∫
Ω

|a(x, t, ω,∇φ)∇u|dxdt+
∫ T

0

∫
Ω

a(x, t, ω,∇φ)∇φdxdt

≤ αC0 + 2ζ
∫ T

0

∫
Ω

[
M̄
(
x,
|a(x, t, ω,∇φ)|

2ζ

)
+M(x, |∇u|)

]
dxdt

+ 2ζ
∫ T

0

∫
Ω

[
M̄
(
x,
|a(x, t, ω,∇φ)|

2ζ

)
+M(x, |∇φ|)

]
dxdt,

where ζ is the constant appearing in (5.1). Since

M̄
(
x,
|a(x, t, ω,∇φ)|

2ζ

)
≤ 1

2
(M̄(x, c(x, t)) +M(x, k|∇φ|)) a. e. in QT ,

using (2.3), we have∫ T

0

∫
Ω

M̄
(
x,
|a(x, t, ω,∇φ)|

2ζ

)
dxdt ≤ 1

2

∫ T

0

∫
Ω

M̄(x, c(x, t)) dxdt+
1
2

= C2.

Note that C2 only depends on data (but not on ω). Therefore, gathering all these
estimates, we deduce for all φ ∈W 1,x

0 EM (QT ) such that ‖∇φ‖M,QT = 1/(k + 1)∫ T

0

∫
Ω

a(x, t, ω,∇u)∇φ dxdt ≤ C1,

which finally yields the estimate (5.10) by considering the dual norm on LM̄ (QT ).
Also from (4.2), (5.2), (5.4), (5.5) and (5.10) we obtain

∂u

∂t
∈W−1,xLM̄ (QT ) and ‖∂u

∂t
‖W−1,xLM̄ (QT ) ≤ C3, (5.12)

where, again, C3 is a constant depending only on data, but not on ω.
We define the operator G : ω ∈ EP (QT ) 7→ G(ω) = u ∈ W, with u being the

unique solution to (5.8). From Lemma 3.6, and Lemma 3.4 with Y = L1(Ω),
we have that W ↪→ EP (QT ) with compact embedding. Consequently, G maps
EP (QT ) into itself and, due to the estimates (5.9) and (5.12), G is a compact
operator. Moreover, from (5.9) we have, for R > 0 large enough G(BR) ⊂ BR
where BR = {v ∈ EP (QT ) : ‖v‖LP (QT ) ≤ R}.

To complete the proof, it remains to show that G is a continuous operator.
Thus, let (ωn) ⊂ BR be a sequence such that ωn → ω strongly in EP (QT ) and
consider the corresponding functions to ωn, that is, un = G(ωn) and ϕn and put
Fn = ρ(ωn)ϕn∇ϕn and F = ρ(ω)ϕ∇ϕ. We have to show that

un → u = G(ω) strongly in EP (QT ).
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Owing to P �M and (5.9), we have∇u ∈ EP (QT )d. Since the inclusion LP (QT ) ⊂
L2(QT ) is continuous, we also have ωn → ω strongly in L2(QT ) and thus, we may
extract a subsequence, still denoted in the same way, such that ωn → ω a.e. in
QT . Then, it is an easy task to show that ϕn → ϕ strongly in L2(0, T ;H1(QT ))
and, consequently, also for another subsequence denoted in the same way, Fn → F
strongly in L2(QT ).

On the other hand, since (ωn) ⊂ LP (QT ) is bounded, by the estimates obtained
above, we deduce, again modulo a subsequence,

un → U in EP (QT ), for some U ∈ EP (QT ), (5.13)

∇un → ∇U weakly in L2(QT )d, (5.14)

By subtracting the respective equations of (5.8) for un and u, and taking φ = un−u
as a test function, for all t ∈ [0, T ], we obtain

1
2
‖un(t)− u(t)‖2L2(Ω) +

∫ t

0

∫
Ω

(a(x, s, ωn,∇un)− a(x, s, ω,∇u))∇(un − u) dxds

= −
∫ t

0

∫
Ω

(Fn − F )∇(un − u) dxds.

By using (4.3), we obtain

(a(x, s, ωn,∇un)− a(x, s, ω,∇u))∇(un − u)

≥ αM(x, |∇(un − u)|) + (a(x, s, ωn,∇u)− a(x, s, ω,∇u))∇(un − u).

Let hn = a(x, s, ωn,∇u)− a(x, s, ω,∇u) and gn = ∇(un − u). Then, |hn| → 0 a.e.
in QT . For a given positive number λ0, to be chosen later, we have∫ t

0

∫
Ω

|hngn| =
∫
{|gn|≤λ0}

|hngn|+
∫
{|gn|>λ0}

|hngn|. (5.15)

For the first term of the right hand side of (5.15), we have∫
{|gn|≤λ0}

|hngn| ≤ λ0

∫
QT

|hn| = λ0

∫
{|hn|≤4ζ}

|hn|+ λ0

∫
{|hn|>4ζ}

|hn|.

The first of these integrals converges trivially to zero. As for the second one, using
the fact that |hn|4ζ > 1 on the set {|hn| > 4ζ} and (2.15), it yields

λ0

∫
{|hn|>4ζ}

|hn| ≤ 4ζλ0

∫
{|hn|>4ζ}

( |hn|
4ζ

)2

≤ 4ζλ0

∫
QT

P
(
x,
|hn|
4ζ

)
.

Bye (4.4), we deduce

P
(
x,
|hn|
4ζ

)
≤ 1

4
(P (x, e) + P (x, ωn) + P (x, ω) + kM(x, |∇u|)) ,

and since P (x, ωn) → P (x, ω) strongly in L1(QT ), by Lebesgue’s dominated theo-
rem we have

lim
n→∞

∫
QT

P
(
x,
|hn|
4ζ

)
= 0,

and consequently

lim
n→∞

∫
{|gn|≤λ0}

|hngn| = 0.
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As for the second term of the right-hand side of (5.15), we use Young’s inequality
and (2.15). It yields,∫

{|gn|>λ0}
|hngn| ≤

1
2α

∫
QT

|hn|2 +
α

2

∫
{|gn|>λ0}

|gn|2

≤ (4ζ)2

α

∫
QT

P
(
x,
|hn|
4ζ

)
+ α

∫
{|gn|>λ0}

P (x, |gn|).

It has been already shown that the first of these terms converges to zero. As for the
second one, since P �M , we can take λ0 large enough such that P (x, s) ≤M(x, s)
for |s| > λ0, and then,

α

∫
{|gn|>λ0}

P (x, |gn|) ≤ α
∫ t

0

∫
Ω

M(x, |gn|) = α

∫ t

0

∫
Ω

M(x, |∇(un − u)|).

Consequently, for some sequence (εn) ⊂ R, εn → 0, we have the estimate

1
2
‖un(t)− u(t)‖2L2(Ω) ≤ −

∫ t

0

∫
Ω

(Fn − F )∇(un − u) dxds+ εn,

and integrating this inequality over [0, T ], we have

1
2
‖un − u‖2L2(QT ) ≤ −

∫ T

0

∫
Ω

(T − t)(Fn − F )∇(un − u) dx dt+ Tεn. (5.16)

The first term of the right hand side in (5.16) converges to zero since Fn → F
strongly in L2(QT )d and (T − t)(∇un−∇u) is bounded in L2(QT )d. In conclusion,
un → u strongly in L2(QT ). Since this limit does not depend upon the subsequence
one may extract, it is in fact the whole sequence (un) which converges to u strongly
in L2(QT ). On the other hand, in virtue of (5.13), we also have un → U strongly
in L2(QT ), so that u = U and we can rewrite (5.13) to give un → u strongly in
EP (QT ). This shows that G is continuous and this ends the proof of Theorem 5.2.

Proof of Theorem 5.1. This stage is the main goal of this work. We start by
introducing a sequence of approximate problem and deriving a priori estimates of
it and showing two intermediate results, namely the strong convergence in L1(QT )
of both ∇un and ϕn, where (un, ϕn) is a weak solution to the approximate problem
of (1.2).
Step 1. For every n ∈ N, we introduce the following regularization of the data,

ρn(s) = ρ(s) +
1
n
, (5.17)

an(x, t, s, ξ) = a(x, t, Tn(s), ξ), (5.18)

and consider the approximate system
∂un
∂t
− div an(x, t, un,∇un) = ρn(un)|∇ϕn|2 in QT , (5.19)

div(ρn(un)∇ϕn) = 0 in QT , (5.20)

un = 0 on (0, T )× ∂Ω, (5.21)

ϕn = ϕ0 on (0, T )× ∂Ω, (5.22)

un(·, 0) = u0 in Ω. (5.23)

From (4.2) we deduce

|a(x, t, Tn(s), ξ)| ≤ ζ
[
c(x, t) + M̄−1

x (P (x, k|Tn(s)|)) + M̄−1
x (M(x, k|ξ|))

]
,
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by the Fenchel-Young inequality, we obtain

|a(x, t, Tn(s), ξ)| ≤ ζ
[
c(x, t) + (P (x, k|Tn(s)|) +M(x, 1)) + M̄−1

x (M(x, k|ξ|))
]

≤ ζ
[
cn(x, t) + M̄−1

x (M(x, k|ξ|))
]
,

where cn(x, t) = c(x, t) + supξ∈B(0,kn) ess supx∈Ω P (x, ξ) + M(x, 1). Using Re-
mark 2.12, M(x, 1) = constant for a. a. x ∈ Ω. Taking into account that L∞(QT ) ⊂
L2(QT ) ⊂ LP̄ (QT ) ⊂ EM̄ (QT ) (Lemma 2.9) and owing to (2.11), it yields that
cn ∈ EM̄(QT ).

Also, in view of (4.6), we have =

n−1 ≤ ρn(s) ≤ ρ3 + 1 = ρ4, for all s ∈ R. (5.24)

Thus, we can apply Theorem 5.2 to deduce the existence of a weak solution (un, ϕn)
to system (5.19)-(5.23).

By the maximum principle we have

‖ϕn‖L∞(QT ) ≤ ‖ϕ0‖L∞(QT ), (5.25)

hence there exists a function ϕ ∈ L∞(QT ) and a subsequence, still denoted in the
same way, such that

ϕn → ϕweak-* in L∞(QT ). (5.26)

Now let multiply (5.20) by ϕn − ϕ0 ∈ L2(0, T ;H1
0 (Ω)) and integrate over QT . We

obtain ∫ T

0

∫
Ω

ρn(un)∇ϕn∇(ϕn − ϕ0) dxdt = 0,

hence ∫ T

0

∫
Ω

ρn(un)|∇ϕn|2 dx dt ≤ C1, for all n ≥ 1. (5.27)

Where C1 = C1(ρ̄, ‖ϕ0‖L2(0,T ;H1(Ω))). Consequently, the sequence (ρn(un)∇ϕn) is
bounded in L2(QT ). Thus, there exists a function Φ ∈ L2(QT )d and a subsequence,
still denoted the same way, such that

ρn(un)∇ϕn → Φ weakly in L2(QT )d. (5.28)

This weak limit function Φ ∈ L2(QT )d is in fact the third component of the triplet
appearing in the Definition 4.2 of a capacity solution.

Taking un as a test function in (5.19), for all t ∈ [0, T ], we obtain

1
2
‖un(t)‖2L2(Ω) +

∫ t

0

∫
Ω

a(x, t, Tn(un),∇un)∇un dxdt

=
1
2
‖u0‖2L2(Ω) −

∫ t

0

∫
Ω

ρn(un)ϕn∇ϕn∇un dxdt.
(5.29)

From (4.2), (4.5), (5.25) and (5.24), we obtain

α

∫ t

0

∫
Ω

M(x, |∇un|) ≤
1
2
‖u0‖2L2(Ω) +

∫ t

0

∫
Ω

‖ϕ0‖L∞(QT )ρ2∇ϕn∇un, (5.30)

and by Young’s inequality, we may deduce that for all t ∈ [0, T ],∫ t

0

∫
Ω

M(x, |∇un|) dx dt ≤ C, (5.31)
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where C is a positive constant not depending on n. It follows from (2.6) that the
sequence (un) is bounded in W 1,x

0 LM (QT ). Consequently, there exist a subsequence
of (un), still denoted in the same way, and a function u ∈W 1,x

0 LM (QT ) such that:

un ⇀ u in W 1,x
0 LM (QT ) for σ(ΠLM ,ΠEM̄ ). (5.32)

On the other hand, Let φ ∈ W 1,x
0 EM (QT )d be an arbitrary function such that

‖∇φ‖(M),QT = 1/(k + 1). In view of the monotonicity of an, one easily has∫
QT

an(x, t, un,∇un)∇φ

≤
∫
QT

an(x, t, un,∇un)∇un −
∫
QT

an(x, t, un,∇φ)(∇un −∇φ)

≤ C +
∫
QT

|an(x, t, un,∇φ)∇un|+
∫
QT

an(x, t, un,∇φ)∇φ,

(5.33)

We can show that the two last integrals in (5.33) are bounded with respect to n.
Indeed, for the first one, by Young’s inequality∫
QT

|an(x, t, un,∇φ)∇un| ≤ 3ζ
∫
QT

[
M̄
(
x,
|a(x, t, Tn(un),∇φ)|

3ζ

)
+M(x, |∇un|)

]
,

using (4.2) we have

3ζM̄
(
x,
|a(x, t, Tn(un),∇φ)|

3ζ

)
≤ ζ

(
M̄(x, c(x, t)) + P (x, kTn(un)) +M(x, k∇φ)

)
,

since (un) is bounded in W 1,x
0 LM (QT ), and owing to Poincaré’s inequality, there

exists λ > 0 such that
∫
QT

M(x, un/λ) ≤ 1 for all n ≥ 1. Also, since P � M ,
there exists s0 > 0 such that P (x, ks) ≤ P (x, ks0) + M(x, s/λ) for all s ∈ R.
Consequently, using (2.11) it yields

3ζ
∫
QT

M̄
( |a(x, t, Tn(un),∇φ)|

3ζ

)
≤ ζ
(∫

QT

M̄(x, c(x, t)) + T

∫
Ω

P (x, ks0) dx+
∫
QT

M(x, un/λ) +
∫
QT

M(x, k∇φ)
)

≤ C,

and thus
∫
QT
|an(x, t, un,∇φ)∇un| ≤ C, for all n ≥ 1 and φ ∈W 1,x

0 EM (QT )d such
that ‖∇φ‖(M),QT = 1/(k + 1). On the other hand, the second integral in (5.33),
namely

∫
QT

an(x, t, un,∇φ)∇φ can be dealt in the same way so that it is easy to
check that it is also bounded. Gathering all these estimates, and using the dual
norm, one easily deduce that

(an(x, t, un,∇un)) is bounded in LM̄ (QT )d. (5.34)

Thus, up to a subsequence, still denoted in the same way, there exists δ ∈ LM̄ (QT )d

such that

an(x, t, un,∇un) ⇀ δ in LM̄ (QT )d for σ(ΠLM̄ ,ΠEM ). (5.35)

Finally, since both sequences (div an(x, t, un,∇un)) and (div(ρn(un)ϕn∇ϕn))
are bounded in the space W−1,xLM̄ (QT ), according to (5.19), we have(∂un

∂t

)
is bounded in W−1,xLM̄ (QT ). (5.36)
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Consequently, (un) ⊂ W is bounded and, since the embedding W ↪→ EP (QT ) is
compact, for a subsequence, still denoted in the same way, we have

un → u strongly in EP (QT ) and a.e. in QT , (5.37)

where u ∈W 1,x
0 LM (QT ) is also the limit function appearing in (5.32).

Step 2. Introduction of regularized sequences and the almost everywhere conver-
gence of the gradients.

First we introduce two smooth sequences, namely, (vj) ⊂ D(QT ) and (ψi) ⊂
D(Ω) such that

(1) vj → u in W 1,x
0 LM (QT ) for the modular convergence;

(2) vj → u and ∇vj → ∇u and almost everywhere in QT ;
(3) ψi → u0 strongly in L2(Ω);
(4) ‖ψi‖L2(Ω) ≤ 2‖u0‖L2(Ω), for all i ≥ 1.

For a fixed positive real number K, we consider the truncation function at height
K, TK , defined in (2.17). Then, for every K,µ > 0 and i, j ∈ N, we introduce
the function wiµ,j ∈W

1,x
0 LM (QT ) (to simplify the notation, we drop the index K)

defined as wiµ,j = TK(vj)µ + e−µtTK(ψi), where TK(vj)µ is the mollification with
respect to time of TK(vj) given in (3.1). From Lemma 3.1, we know that

∂wiµ,j
∂t

= µ(TK(vj)− wiµ,j), wiµ,j(·, 0) = TK(ψi), |wiµ,j | ≤ K a.e in QT , (5.38)

wiµ,j → wiµ
def= TK(u)µ + e−µtTK(ψi) in W 1,x

0 LM (QT ), (5.39)

for the modular convergence as j →∞.

TK(u)µ + e−µtTK(ψi)→ TK(u) in W 1,x
0 LM (QT ), (5.40)

for the modular convergence as µ → ∞. Since we may consider subsequences
in (5.38)-(5.40), we will assume without loss of generality that the convergences
(5.39) and (5.40) also hold almost everywhere in QT .

We will establish the following proposition.

Proposition 5.3. Let (un, ϕn) be a solution of the approximate problem (5.19)-
(5.23). Then, for a suitable subsequence, still denoted in the same way, we have

∇un → ∇u a.e. in QT , (5.41)

as n tends to +∞.

Proof. In the sequel and throughout this article, χjs and χs will denote, respectively,
the characteristic functions of the sets

Qjs =
{

(x, t) ∈ QT : |∇TK(vj)| ≤ s
}
, Qs =

{
(x, t) ∈ QT : |∇TK(u)| ≤ s

}
.

We also introduce the primitive of the truncation function TK vanishing at the
origin, SK , that is,

SK(t) =
∫ t

0

TK(s)ds =

{
t2/2 if |t| ≤ K,
K|t| −K2/2 if |t| > K.

(5.42)

It is straightforward to show that 0 ≤ SK(t) ≤ K|t| for all t ∈ R.
We will also use the following notation for vanishing sequences: ε(n) means a

sequence such that limn→∞ ε(n) = 0 or lim supn→∞ ε(n) = 0; ε(n, j) is a term such
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that limj→∞ limn→∞ ε(n, j) = 0 where any occurrence of lim may be substituted
by lim sup. And so on for ε(n, j, µ), etc.

For any µ, ν > 0 and i, j, n ≥ 1 we may use the admissible test function ϕµ,in,j,ν =
Tν(un − wiµ,j) in (5.19). This leads to

〈∂un
∂t

, ϕµ,in,j,ν〉+
∫
QT

an(x, t, un,∇un)∇Tν(un − wiµ,j) dxdt

=
∫
QT

ρn(un)|∇ϕn|2ϕµ,in,j,ν dxdt.
(5.43)

By using (5.27), we obtain〈∂un
∂t

, ϕµ,in,j,ν
〉

+
∫
QT

an(x, t, un,∇un)∇Tν(un − wiµ,j) dxdt ≤ C1ν. (5.44)

As far as the parabolic term is concerned, we have〈∂un
∂t

, Tν(un − wiµ,j)
〉

=
〈∂un
∂t
−
∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉

+
〈∂wiµ,j

∂t
, Tν(un − wiµ,j)

〉
.

(5.45)

The first term of the right-hand side in (5.45) can be written as〈∂un
∂t
−
∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉

=
∫

Ω

Sν(un(T )− wiµ,j(T ))−
∫

Ω

Sν(u0 − TK(ψi)).

Since

0 ≤
∫

Ω

Sν(u0 − TK(ψi)) ≤ ν
∫

Ω

|u0 − TK(ψi)|

≤ ν|Ω|1/2(
∫

Ω

|u0 − TK(ψi)|2)1/2

≤ 3‖u0‖L2(Ω)|Ω|1/2ν = C2ν,

we deduce that for all i, j, n ≥ 1 and µ, n,K > 0,〈∂un
∂t
−
∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉
≥ −C2ν. (5.46)

As for the second term of the right-hand side in (5.45) we have〈∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉

= µ

∫
QT

(TK(vj)− wiµ,j)Tν(un − wiµ,j). (5.47)

Passing to the limit first in n→∞, then in j →∞, it yields

lim
j→∞

lim
n→∞

〈∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉

= µ

∫
QT

(TK(u)− wiµ)Tν(u− wiµ).

Owing to (5.38) and (5.39) we have |wiµ| ≤ K almost everywhere in QT . Also, since
sTν(s) ≥ 0 for all s ∈ R, we deduce, for all µ, ν,K > 0 and i ≥ 1,

lim
j→∞

lim
n→∞

〈∂wiµ,j
∂t

, Tν(un − wiµ,j)
〉
≥ 0. (5.48)
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Gathering (5.45), (5.46) and (5.48) we finally obtain, for all µ, ν,K > 0 and i ≥ 1,
the following estimate for the parabolic term

lim inf
j→∞

lim inf
n→∞

〈∂un
∂t

, Tν(un − wiµ,j)
〉
≥ −C2ν. (5.49)

It remains to analyze the diffusion term of (5.43). We have∫
QT

an(x, t, un,∇un)∇Tν(un − wiµ,j) dxdt

=
∫
{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇(un − wiµ,j) dx dt

=
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇(un − wiµ,j) dxdt

+
∫
{|un|≤K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇(un − wiµ,j) dxdt

=
∫
{|TK(un)−wiµ,j |≤ν}

an(x, t, TK(un),∇TK(un))(∇TK(un)−∇wiµ,j) dx dt

+
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇un dxdt

−
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇wiµ,j dxdt.

By (4.9) and (4.5) we have∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇un dxdt

≥ α
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

M(x, |∇un|) dx dt ≥ 0,

which implies that∫
QT

an(x, t, un,∇un)∇Tν(un − wiµ,j) dxdt

≥
∫
{|TK(un)−wiµ,j |≤ν}

an(x, t, TK(un),∇TK(un))(∇TK(un)−∇wiµ,j)

−
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇wiµ,j dx dt.

(5.50)

On the one hand, let us observe that for any K > 0, and for n large enough, namely
n > K + ν ≥ K, we have

an(x, t, TK(un),∇TK(un)) = a(x, t, TK(un),∇TK(un)). (5.51)

On the other hand, from (5.38), we have |wiµ,j | ≤ K a.e. in QT , then in the set
{|un−wiµ,j | ≤ ν}, we have |un| ≤ |un−wiµ,j |+ |wiµ,j | ≤ ν+K. Then for n > ν+K,
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we obtain∫
{|un|>K}∩{|un−wiµ,j |≤ν}

an(x, t, un,∇un)∇wiµ,j dxdt

=
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wiµ,j dx dt.
(5.52)

From (5.51) and (5.52), inequality (5.50) becomes∫
QT

an(x, t, un,∇un)∇Tν(un − wiµ,j) dxdt

≥
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇wiµ,jTK(un)−∇wiµ,j)

−
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wiµ,j .

(5.53)

We put

J1 =
∫
{|un|>K}∩{|un−wiµ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wiµ,j dxdt.

Since (a(x, t, TK+ν(un),∇TK+ν(un))) is bounded in LM̄ (QT )d, we have

a(x, t, TK+ν(un),∇TK+ν(un)) ⇀ lK+ν

weakly in LM̄ (QT ) in σ(ΠLM̄ ,ΠEM ) as n tends to infinity and since

∇wiµ,jχ{|un|>K}∩{|un−wiµ,j |≤ν} → ∇w
i
µ,jχ{|u|>K}∩{|u−wiµ,j |≤ν}

strongly in EM (QT )d as n tends to infinity, we have∫
{|un|>K}∩{|un−wiµ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wiµ,j dxdt

→
∫
{|u|>K}∩{|u−wiµ,j |≤ν}

lK+ν∇wiµ,j dx dt

as n approaches infinity.
Using Lemma 2.9 with the convergences (5.39), (5.40), together with the almost

everywhere convergence, and letting first j then µ tend to infinity, we obtain (note
that the index i disappears in this process)∫

{|u|>K}∩{|u−wiµ,j |≤ν}
lK+ν∇wiµ,j →

∫
{|u|>K}∩{|u−TK(u)|≤ν}

lK+ν∇TK(u) = 0

since ∇TK(u) = 0 in the set {|u| > K}. This gives

J1 = ε(n, j, µ, i). (5.54)

Using (5.49), (5.53) and (5.54) in (5.44), we obtain∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un)−∇wiµ,j) dxdt

≤ Cν + ε(n, j, µ, i).
(5.55)

where C = (C1 + C2).
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On the other hand, note that∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un)−∇wiµ,j) dxdt

=
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un)−∇TK(vj)χsj)

+
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(vj)χsj −∇wiµ,j)

= J2 + J3.

(5.56)

The integral term J3 tends to 0 as first n, then j, µ, i and s go to ∞. Indeed,
since,

a(x, t, TK(un),∇TK(un)) ⇀ lK weakly in LM̄ (QT )d,
and since

(∇TK(vj)χsj −∇wiµ,j)χ{|TK(un)−wiµ,j |≤ν} → (∇TK(vj)χsj −∇wiµ,j)χ{|TK(u)−wiµ,j |≤ν}

strongly in EM̄ (QT )d as n→∞, we have

lim
n→∞

J3 =
∫
{|TK(u)−wiµ,j |≤ν}

lK · (∇TK(vj)χsj −∇wiµ,j) dxdt.

Letting j, µ, i and s, in this order, tend to infinity we readily deduce that

J3 = ε(n, j, µ, i, s). (5.57)

Consequently, from (5.55), (5.56) and (5.57), one has

J2 =
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un)−∇TK(vj)χsj)

≤ Cν + ε(n, i, j, µ, s).
(5.58)

Let Mn be the non-negative expression

Mn = (a(x, t, TK(un),∇TK(un))− a(x, t, TK(un),∇TK(u)))(∇TK(un)−∇TK(u)),

then for any 0 < θ < 1, we write

In,r =
∫
Qr

Mθ
n dxdt.

We have∫
Qr

Mθ
n dx dt =

∫
Qr

Mθ
nχ{|TK(un)−wiµ,j |≤ν} +

∫
Qr

Mθ
nχ{|TK(un)−wiµ,j |>ν}. (5.59)

Using Hölder’s inequality the second term of the right-side hand is less than(∫
Qr

Mn dxdt
)θ(∫

Qr

χ{|TK(un)−wiµ,j |>ν} dx dt
)1−θ

.

Note that ∫
Qr

Mn dx dt =
∫
Qr

a(x, t, TK(un),∇TK(un))∇TK(un) dxdt

−
∫
Qr

a(x, t, TK(un),∇TK(un))∇TK(u) dxdt
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+
∫
Qr

a(x, t, TK(un),∇TK(u))∇TK(u) dxdt

−
∫
Qr

a(x, t, TK(un),∇TK(u))∇TK(un) dxdt.

Since (a(x, t, TK(un),∇TK(un))) is bounded in LM̄ (QT )d, (∇TK(un)) is bounded
in LM (QT )d and (a(x, t, TK(un),∇TK(u))) is bounded in L∞(Qr), we have (Mn)
is bounded in L1(Qr).

It follows that there exists a constant C3 > 0 such that∫
Qr

Mθ
nχ{|TK(un)−wiµ,j |>ν} dxdt ≤ C3 meas{|TK(un)− wiµ,j | > ν}1−θ. (5.60)

Using again Hölder’s inequality, we have∫
Qr

Mθ
nχ{|TK(un)−wiµ,j |≤ν} dxdt

≤
(∫

Qr

1 dxdt
)1−θ(∫

{|TK(un)−wiµ,j |≤ν}∩Qr
Mn dx dt

)θ
≤ C4

(∫
{|TK(un)−wiµ,j |≤ν}∩Qr

Mn dxdt
)θ
.

(5.61)

From (5.60) and (5.61), we obtain

In,r ≤ C3 meas{|TK(un)− wiµ,j | > ν}1−θ

+ C4

(∫
{|TK(un)−wiµ,j |≤ν}∩Qr

Mn dxdt
)θ
.

(5.62)

On the other hand, for every s ≥ r and r > 0, we have∫
{|TK(un)− wiµ,j | ≤ ν} ∩Qr

Mn dxdt

≤
∫
{|TK(un)−wiµ,j |≤ν}∩Qs

Mn dx dt

=
∫
{|TK(un)−wiµ,j |≤ν}∩Qs

·[a(x, t, TK(un),∇TK(un))

− a(x, t, TK(un),∇TK(u)χs)] · [∇TK(un)−∇TK(u)χs] dxdt

≤
∫
{|TK(un)−wiµ,j |≤ν}

[a(x, t, TK(un),∇TK(un))

− a(x, t, TK(un),∇TK(u)χs)] · [∇TK(un)−∇TK(u)χs] dxdt

≤
∫
{|TK(un)−wiµ,j |≤ν}

[a(x, t, TK(un),∇TK(un))

− a(x, t, TK(un),∇TK(vj)χsj)] · [∇TK(un)−∇TK(vj)χsj ] dx dt

+
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un)) · [∇TK(vj)χsj −∇TK(u)χs] dx dt

+
∫
{|TK(un)−wiµ,j |≤ν}

·[a(x, t, TK(un),∇TK(vj)χsj)
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− a(x, t, TK(un),∇TK(u)χs)] · ∇TK(un) dxdt

−
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(vj)χsj) · ∇TK(vj)χsj dxdt

+
∫
{|TK(un)− wiµ,j | ≤ ν}

a(x, t, TK(un),∇TK(u)χs) · ∇TK(u)χs dxdt

= I1 + I2 + I3 + I4 + I5.

We will take the limit first in n then in j, µ, i and s as they tend to infinity in these
last five integrals.

Starting with I1, we have

I1 =
∫
{|TK(un)−wiµ,j |≤ν}

(a(x, t, TK(un),∇TK(un))− a(x, t, TK(un),∇TK(vj)χsj))

· (∇TK(un)−∇TK(vj)χsj) dxdt

=
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(un)) · (∇TK(un)−∇TK(vj)χsj)

−
∫
{|TK(un)−wiµ,j |≤ν}

a(x, t, TK(un),∇TK(vj)χsj) · (∇TK(un)−∇TK(vj)χsj)

= J2 − J3.

Since the sequence (a(x, t, TK(un),∇TK(vj)χsj)χ{|TK(un)−wiµ,j |≤ν})n converges to
a(x, t, TK(u),∇TK(vj)χsj)χ{|TK(u)−wiµ,j |≤ν} strongly in EM̄ (QT )d and (∇TK(un))
converges to ∇TK(u) weakly in LM (QT )d for σ(ΠLM ,ΠEM̄ ), we then have

J3 =
∫
{|TK(u)−wiµ,j |≤ν}

a(x, t, TK(u),∇TK(vj)χsj)
(
∇TK(u)−∇TK(vj)χsj

)
dxdt

+ ε(n).

Using the almost everywhere convergence of wiµ,j and since (∇TK(vj)χsj)j converges
to ∇TK(u)χs strongly in EM (QT )d and (a(x, t, TK(u),∇TK(vj)χsj))j converges to
a(x, t, TK(u),∇TK(u)χs) strongly in LM̄ (QT )d, we deduce

J3 =
∫
QT

a(x, t, TK(u),∇TK(u)χs)(∇TK(u)−∇TK(u)χs) dx dt+ ε(n, j, µ, i)

= ε(n, j, µ, i, s).

Gathering all these estimates, taking into account (5.58), we obtain

I1 ≤ Cν + ε(n, j, µ, i, s) = ε(n, j, µ, i, s, ν). (5.63)

As for I2, since (a(x, t, TK(un),∇TK(un)))n converges to lK weakly in LM̄ (QT )d

for σ(ΠLM̄ ,ΠEM ) and ((∇TK(vj)χsj − ∇TK(u)χs)χ{|TK(un)−wiµ,j |≤ν})n converges
to (∇TK(vj)χsj −∇TK(u)χs)χ{|TK(u)−wiµ,j |≤ν} strongly in EM (QT )d, we obtain

I2 =
∫
{|TK(u)−wiµ,j |≤ν}

lK(∇TK(vj)χsj −∇TK(u)χs) dxdt+ ε(n).

By letting now j →∞, and using Lebesgue’s theorem, we deduce that

I2 = ε(n, j). (5.64)
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Similar tools as above yield

I3 = ε(n, j), (5.65)

I4 = −
∫
QT

a(x, t, TK(u),∇TK(u)χs)∇TK(u)χs + ε(n, j, µ, i, s), (5.66)

I5 =
∫
QT

a(x, t, TK(u),∇TK(u)χs)∇TK(u)χs + ε(n, j, µ, i, s). (5.67)

Combining (5.62)-(5.67), we obtain

In,r ≤ C4ε(n, j, µ, i, s, ν)θ + C3 meas{|TK(un)− wiµ,j | > ν}1−θ. (5.68)

Consequently, when we take the limit superior first in n, then in j, µ, i, s and ν in
(5.68), we obtain

lim sup
n→∞

∫
Qr

(
(a(x, t, TK(un),∇TK(un))− a(x, t, TK(un),∇TK(u)))

· (∇TK(un)−∇TK(u))
)θ

dx dt = 0.

According to (4.9) this last expression implies that

lim
n→∞

∫
Qr

M(x,∇TK(un)−∇TK(u))θdxdt = 0.

hence, for a subsequence, ∇TK(un)→ ∇TK(u) almost everywhere in Qr. Since r >
0 is arbitrary, we may deduce that, maybe for another subsequence, ∇TK(un) →
∇TK(u) almost everywhere in QT . Finally, since K > 0 is arbitrary, it yields, still
for a subsequence,

∇un → ∇u a.e in QT . (5.69)

This completes the proof. �

Remark 5.4. A straightforward consequence of Proposition 5.3 is that, owing to
(5.35), δ = a(x, t, u,∇u); that is,

an(x, t, un∇un) ⇀ a(x, t, u,∇u) in LM̄ (QT )d for σ(ΠLM̄ ,ΠEM ). (5.70)

Step 3. In this step, we will show that ϕn → ϕ strongly in L1(QT ) modulo a
subsequence. The strongly convergence of (ϕn) in L1(QT ) is based in the next
result which generalizes that of González Montesinos and Ortegón Gallego in [14,
Lemma 4].

Lemma 5.5. Let P be a Musielak function such that (2.9) is satisfied. Assume
that s2 ≤ P (x, s), for all a. a. x ∈ Ω and all s ∈ R, and let (un) be a bounded
sequence in W 1,xLM (QT ) such that un → u strongly in EP (QT ). Then there exists
a subsequence (un(k)) ⊂ (un) such that, for every ε > 0, there exists a constant
value M = M(ε) and a function ψ ∈ L1(0, T ;W 1,1(Ω)) satisfying the following
properties:

0 ≤ ψ ≤ 1. (5.71)

‖ψ − 1‖L1(QT ) + ‖∇ψ‖L1(QT ) ≤ ε. (5.72)

|u|, |un(k)| ≤M on {ψ > 0} for all k ≥ 1. (5.73)
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Proof. According to lemmas 2.9 and 2.14 we deduce the the following continuous
inclusions:

LP (QT ) ↪→ LP̄ (QT ) ↪→ LM̄ (QT ).
Since (un) is relatively compact in EP (QT ), we can extract a subsequence (un(k)) ⊂
(un) such that

∞∑
k=1

‖un(k) − u‖LM̄ (QT ) ≤ 1. (5.74)

Fix K > 0 to be chosen later big enough and introduce the function γ given by

γ = (|u| −K)+ +
∞∑
k=1

(|un(k) − u| −K)+. (5.75)

Then putting vk = un(k) − u, k ≥ 1, and v0 = u, we have∫
QT

(|vk| −K)+ +
∫
QT

|∇(|vk| −K)+|

=
∫
{|vk|>K}

(|vk| −K)+ |vk|
|vk|

+
∫
{|vk|>K}

|∇(|vk| −K)+| |vk|
|vk|

≤ 1
K

(‖vk‖LM (QT ) + ‖∇vk‖LM (QT ))‖vk‖LM̄ (QT )

Summing these inequalities, bearing in mind that (un(k)) and (vk) are bounded in
W 1,xLM (QT ) and (5.75), we deduce

∞∑
k=0

(‖(|vk| −K)+‖L1(QT ) + ‖(|∇vk| −K)+‖L1(QT ))

≤ C0

K

∞∑
k=0

‖vk‖LM̄ (QT )

=
C0

K

(
‖u‖LM̄ (QT ) +

∞∑
k=1

‖un(k) − u‖LM̄ (QT )

)
≤ C0

K
(‖u‖LM̄ (QT ) + 1) =

C

K
.

Hence

‖γ‖L1(0,T ;W 1,1(Ω)) ≤
C

K
.

It is straightforward to check that the function ψ = (1−γ)+ satisfies the asserted
condition (5.71)-(5.73) for K ≥ C/ε and M = K + 1. �

The next two results analyze the behavior of certain subsequences of (ϕn). They
will allow us, together with the convergences deduced in the previous steps, to
pass to the limit in the approximate problems (5.19)-(5.23) in order to show the
existence of a capacity solution to the system (1.2).

Lemma 5.6 ([14]). Let (un, ϕn) be a weak solution to the system (5.19)-(5.23),
u ∈ EP (QT ) and ϕ ∈ L∞(QT ) the limit functions appearing, respectively, in (5.26)
and (5.37). Then, for any function S ∈ C1

0 (R), there exists a subsequence, still
denoted in the same way, such that

S(un)ϕn ⇀ S(u)ϕ weakly in L2(0, T ;H1(Ω)). (5.76)
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Moreover, if 0 ≤ S ≤ 1, then there exists a constant C > 0, independent of S, such
that

lim sup
n→∞

∫
QT

ρn(un)|∇[S(un)ϕn − S(u)ϕ]|2 ≤ C‖S′‖∞(1 + ‖S′‖∞). (5.77)

Lemma 5.7. There exists a subsequence (ϕn(k)) ⊂ (ϕn) such that

lim
k→∞

∫
QT

|ϕn(k) − ϕ| = 0. (5.78)

Proof. The proof of this result is almost identical to that of [14, Lemma 4.8]. For
the sake of completeness, we include it here.

Since the conditions of Lemma 5.5 are fulfilled by a suitable subsequence (un(k)),
we have for every ε > 0 there exists M > 0 and ψ ∈ L1(0, T ;W 1,1(Ω)) such that
(5.71)-(5.73) are satisfied. By (5.73), there exists CM > 0 such that

ξk
def= ρn(k)(un(k)) ≥ CM on {ψ > 0}, for all k ≥ 1. (5.79)

We consider a sequence of regular functions (Sm) ⊂ C1
0 (R) such that

0 ≤ Sm ≤ 1, Sm = 1 in [−M,M], for all k ≥ 1, (5.80)

‖S′m‖L∞(R) ≤
1
m
, for all m ≥ 1. (5.81)

From (5.73) and (5.80), we write∫
QT

|ϕn(k) − ϕ| =
∫
{ψ>0}

|Sm(un(k))ϕn(k) − Sm(u)ϕ|+
∫
{ψ=0}

|ϕn(k) − ϕ|.

Inserting ±ψ|Sm(un(k))ϕn(k) − Sm(u)ϕ| in the first integral above and −ψ|ϕn(k) −
ϕ| = 0 in the second one, then owing to (5.25), (5.26), (5.71) and using Poincaré’s
inequality, we obtain∫

QT

|ϕn(k) − ϕ|

=
∫
{ψ>0}

ψ|Sm(un(k))ϕn(k) − Sm(u)ϕ|

+
∫
{ψ>0}

(1− ψ)|Sm(un(k))ϕn(k) − Sm(u)ϕ|+
∫
{ψ=0}

(1− ψ)|ϕn(k) − ϕ|

≤ C0

∫
QT

|∇(ψ(Sm(un(k))ϕn(k) − Sm(u)ϕ))|+ 2‖ϕ0‖L∞(QT )

∫
QT

|1− ψ|

≤ 2C0‖ϕ0‖L∞(QT )

∫
QT

|∇ψ|+ C0

∫
QT

|∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ)|

+ 2‖ϕ0‖L∞(QT )

∫
QT

|1− ψ|,

Putting C∗ = 2‖ϕ0‖L∞(Ω) max(C0, 1), KM = C0C
−1/2
M |Ω|1/2T 1/2 and taking into

account (5.72) and (5.79), we deduce∫
QT

|ϕn(k) − ϕ| ≤ C∗ε+ C0

∫
QT

ξ
−1/2
k ξ

1/2
k |∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ)|

≤ C∗ε+KM

(∫
QT

ξk|∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ|2
)1/2

,
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Owing to (5.77) and (5.81), we obtain

lim sup
k→∞

∫
QT

|ϕn(k) − ϕ| ≤ C∗ε+KM

(
C‖S′m‖∞(1 + ‖S′m‖∞)

)1/2

≤ C∗ε+KMC
1/2

big[
1
m

(
1 +

1
m

)]1/2
.

And since ε > 0 and m ≥ 1 are arbitrary, we derive the desired result. �

Step 5. Passing to the limit. According to (5.26), (5.28), (5.32), (5.34) and (5.36),
it is straightforward that the condition (C1) of Definition 4.2 is fulfilled. The
convergences in Proposition 5.3 and Lemma 5.7 lead us to (C2) of Definition 4.21,
and in order to obtain the condition (C3), using Proposition 5.3 and Lemma 5.7
again with (5.76), it is sufficient to let k goes to infinity in the expression

S(un(k))ρn(k)(un(k))∇ϕn(k) = ρn(k)(un(k))[∇(S(un(k))ϕn(k))− ϕn(k)∇S(un(k))]

Step 6. Regularity of u. Finally, it remains to show the regularity of u ∈
C([0, T ];L1(Ω)) [1]. To this end, we go back to the expression (5.43) but the
integration in time happens in the interval (0, τ) for any τ ∈ (0, T ], namely

〈∂un
∂t

, Tν(un − wiµ,j)〉Qτ =
∫
Qτ

an(x, t, un,∇un)(∇wiµ,j −∇un)χ{|un−wiµ,j |≤ν}

−
∫
Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wiµ,j).

(5.82)
where ν ∈ (0, 1], Qτ = (0, τ) × Ω and 〈·, ·〉Qτ is the duality product between
W−1,xLM̄ (Qτ ) and W 1,x

0 LM (Qτ ). We will consider the necessary subsequences to
assure the almost everywhere convergence in QT of ϕn → ϕ, un → u, ∇un → ∇u,
and also for (Tν(un − wiµ,j)), etc.

From (5.70) we readily obtain

lim
n→∞

∫
Qτ

an(x, t, un,∇un)∇wiµ,jχ{|un−wiµ,j |≤ν}

=
∫
Qτ

a(x, t, u,∇u)∇wiµ,jχ{|u−wiµ,j |≤ν}

Also, by Fatou’s lemma we obtain∫
Qτ

a(x, t, u,∇u)∇uχ{|u−wiµ,j |≤ν} ≤ lim inf
n→∞

∫
Qτ

an(x, t, un,∇un)∇unχ{|un−wiµ,j |≤ν}

then, passing to the limit in these two expressions, first in j, then in µ, i and K,
we deduce, uniformly in τ , that∫

Qτ

an(x, t, un,∇un)(∇wiµ,j −∇un)χ{|un−wiµ,j |≤ν} ≤ ε(n, j, µ, i,K) (5.83)

The analysis of the term
∫
Qτ
ρn(un)ϕn∇ϕn∇Tν(un−wiµ,j) dxdt is more involved.

Here the difficulty relies on the fact that the sequence (ρn(un)|∇ϕn|2) does not
converge, in general, strongly in L1(QT ). To deal with this situation, we are going
to make use of the properties already shown for a capacity solution. Indeed, we
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first notice that ∇Tν(un − wiµ,j) = 0 in the set {|un| ≤ K + ν} ⊂ {|un| ≤ K + 1}.
Then we consider a sequence of functions SK ⊂ C1

0 (R) such that

0 ≤ SK ≤ 1, SK = 1 in [−(K + 1),K + 1], for all K > 0,

‖S′K‖L∞(R) ≤
1

K + 1
, for all K > 0.

We have ∫
Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wiµ,j) dx dt

=
∫
Qτ

ρn(un)ϕn∇[SK(un)ϕn]∇Tν(un − wiµ,j) dxdt

=
∫
Qτ

ρn(un)ϕn∇[SK(un)ϕn − S(u)ϕ]∇Tν(un − wiµ,j) dxdt

+
∫
Qτ

ρn(un)ϕn∇[SK(u)ϕ]∇Tν(un − wiµ,j) dxdt = I1 + I2.

According to the almost everywhere convergence of (un) and (ϕn) together with
(5.25) and (5.32), we readily deduce that

lim
n→∞

I2 =
∫
Qτ

ρ(u)ϕ∇[SK(u)ϕ]∇Tν(u− wiµ,j) dxdt,

and using the identity (C3), already shown in the previous step, namely,

ρ(u)∇[SK(u)ϕ] = SK(u)Φ + ϕ∇SK(u),

we can easily obtain the estimate

I2 = ε(n, j, µ, i,K).

As for the term I1, we use (5.77) to get, for some constant C > 0,

|I1|2 ≤
(∫

Qτ

ρn(un)|∇[SK(un)ϕn − S(u)ϕ]|2 dxdt
)

×
(∫

Qτ

ρn(un)|ϕn|2|∇Tν(un − wiµ,j)|2 dxdt
)

≤ C

K + 1
,

and thus it is also
I1 = ε(n, j, µ, i,K).

Consequently, we obtain, for any fixed ν ∈ (0, 1] and uniformly in τ ∈ [0, T ],∫
Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wiµ,j) dx dt ≤ ε(n, j, µ, i,K), (5.84)

Gathering (5.82), (5.83) and (5.84) we obtain the estimate

〈∂un
∂t

, Tν(un − wiµ,j)〉Qτ ≤ ε(n, j, µ, i,K). (5.85)

Then we write, as in (5.45)-(5.48),∫
Ω

Sν(un(x, τ)− wiµ,j(x, τ)) dx
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=
〈∂(un − wiµ,j)

∂t
, Tν(un − wiµ,j)

〉
Qτ

+
∫

Ω

Sν(u0 − TK(ψi)) dx

=
〈∂un
∂t

, Tν(un − wiµ,j)
〉
Qτ
−
〈∂wiµ,j

∂t
, Tν(un − wiµ,j)

〉
Qτ

+
∫

Ω

Sν(u0 − TK(ψi)) dx.

Consequently, owing to (5.48) and (5.85), it yields, for every fixed ν ∈ (0, 1] and
uniformly in τ ∈ [0, T ],∫

Ω

Sν(un(x, τ)− wiµ,j(x, τ)) dx ≤ ε(n, j, µ, i,K),

and using the convexity of the function Sν we may also derive the estimate∫
Ω

Sν

(1
2

(un(x, τ)− um(x, τ))
)

dx

≤ 1
2

∫
Ω

Sν(un(x, τ)− wiµ,j(x, τ)) dx+
1
2

∫
Ω

Sν(um(x, τ)− wiµ,j(x, τ)) dx

≤ ε(n, j, µ, i,K) + ε(m, j, µ, i,K),

and thus, for any fixed ν > 0 and uniformly in τ ∈ [0, T ], we have∫
Ω

Sν

(1
2

(un(x, τ)− um(x, τ))
)

dx ≤ ε(n) + ε(m). (5.86)

Consequently, using the definition of Sν and (5.86), for all τ ∈ [0, T ], we have∫
Ω

1
2
|un(x, τ)− um(x, τ)|dx

≤
∫
{|un(x,τ)−um(x,τ)|≤2ν}

1
2
|un(x, τ)− um(x, τ)|dx

+
∫
{|un(x,τ)−um(x,τ)|>2ν}

1
2
|un(x, τ)− um(x, τ)|dx

≤ |Ω|ν +
1
ν

∫
{|un(x,τ)−um(x,τ)|>2ν}

ν

2
|un(x, τ)− um(x, τ)|dx

= |Ω|ν +
1
ν

∫
{|un(x,τ)−um(x,τ)|>2ν}

[
Sν

(1
2
|un(x, τ)− um(x, τ)|

)
+
ν2

2
]

dx

=
3
2
|Ω|ν +

1
ν

(ε(n) + ε(m)).

This last estimate shows that (un) is a Cauchy sequence in the space C([0, T ];L1(Ω))
and, in particular, its limit u lies in this space. This completes the proof. �

Remark 5.8. The previous result given in Theorem 5.1 gives just the existence of
a capacity solution. The uniqueness of the capacity solution is an open problem,
even in a Hilbertian context. Other interesting questions on this capacity solution
are concerned with the establishment of certain qualitative properties [5] as the
derivation of some energy estimate, the analysis of large time behavior or even the
occurrence of a blow-up situation.
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