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INITIAL BOUNDARY VALUE PROBLEM FOR A MIXED
PSEUDO-PARABOLIC p-LAPLACIAN TYPE EQUATION WITH

LOGARITHMIC NONLINEARITY

YANG CAO, CONGHUI LIU

Abstract. We consider the initial boundary value problem for a mixed pseudo-
parabolic p-Laplacian type equation with logarithmic nonlinearity. Construct-

ing a family of potential wells and using the logarithmic Sobolev inequality, we

establish the existence of global weak solutions. we consider two cases: global
boundedness and blowing-up at ∞. Moreover, we discuss the asymptotic be-

havior of solutions and give some decay estimates and growth estimates.

1. Introduction

In this article we study the following initial-boundary value problem for a non-
linear evolution equation with logarithmic source

ut − div(|∇u|p−2∇u)− k4ut = |u|p−2u log |u|, Ω× (0, T ),

u(x, t) = 0, ∂Ω× (0, T ),

u(x, 0) = u0(x), Ω ,

(1.1)

where 1 < p < 2, u0 ∈ H1
0 (Ω), T ∈ (0,+∞], k ≥ 0, Ω ⊂ Rn(n ≥ 1) is a bounded

domain with smooth boundary ∂Ω.
Problem (1.1) is a mixed pseudo-parabolic p-Laplacian type equation, whose

abstract form was first considered by Showalter [18], and sometimes referred to as
Showalter equation [1]. When k = 0, (1.1) is the classical fast diffusive p-Laplacian,
which appears to be relevant in the theory of non-Newtonian fluids. When k > 0,
(1.1) belongs to the pseudo-parabolic equations, which are characterized by the
occurrence of first-order partial derivative in time of the highest order term [19].
These equations arise from a variety of important physical processes, such as the
flows of fluids through fissured rock [3], nonlinear dispersive long waves [4], the
heat conduction involving two temperatures [8], the aggregation of populations [9],
etc. Particularly, (1.1) is from shearing flows of incompressible simple fluids [2].
The quantity |∇u|p−2∇u + k∇ut can be viewed as approximation to the stress
functional in such a flow, and k∇ut can be interpreted as viscous relaxation effects.
On the other hand, when considering the influence of many factors, such as the
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molecular and ion effects, the nonlinear term ∇(|∇u|p−2∇u) appears to replace ∆u
in pseudo-parabolic models.

Let us introduce the research on the asymptotic behavior of solutions that related
to our work. We mainly review the following three aspects.

(i) For the fast diffusive p-Laplacian equations, Jin et al [23] considered the initial
boundary value problem of the equation

ut − div(|∇u|p−2∇u) = uq,

with 0 < p < 2 and q > 0. They determined both the critical extinction exponent
q0 = p − 1 and the critical blow-up exponent qc = 1. Lately, Qu et al [16] and Li
et al [13] extended the critical exponent results to the sign-changing solutions for
p-Laplacian equations with nonlocal source |u|q − 1

|Ω|
∫

Ω
|u|qdx.

(ii) For the pseudo-parabolic equation

ut −∆ut −∆u = uq, (1.2)

Cao et al [5] studied the Cauchy problem of (1.2) and obtained the complete Fujita
type result with showing qc = 1 + 2

n . For the initial boundary value problem of
(1.2), via the potential well method, Xu et al [22] also confirmed the Fujita exponent
qc =∞ (n = 1, 2) and qc = n+2

n−2 (n ≥ 3) with bounded initial energy. Lately, Chen
et al. [7] carried out the research on pseudo-parabolic equations with logarithmic
source

ut −∆ut −∆u = u log |u|, (1.3)
and found the blowing-up at ∞ of the solutions, which with [22] reveal that the
polynomial nonlinearity is an important condition for the solutions to be blow-up
in finite time.

(iii) Recently, Le et al [12] investigated (1.1) with p > 2. Owing to the slow
diffusion, there exist both global existence and blowing-up in finite time of the
weak solutions, under the same conditions in [7]. Moreover, Le et al gave the large
time decay of the global weak solutions.

In this article, we would like to reveal the effect from fast diffusive, pseudo-
parabolic viscosity and logarithmic nonlinearity on the asymptotic behavior of so-
lutions. First, different from the case p > 2, we prove that the weak solutions
of (1.1) are global and can not blow up in finite time. This means that the fast
diffusion is dominant, and the logarithmic source is not strong enough to cause
blowing-up in finite time. Next, similar to [7], we find the sufficient conditions to
divide the global boundedness and blowing-up at ∞ of the weak solutions (Theo-
rems 4.1 and 5.1). Moreover, we derive some decay estimates of the global bounded
solutions, namely Theorem 4.2, as while as some growth estimates of the unbounded
solutions, namely Theorem 5.3. From Theorem 4.2, the global bounded solutions
of the 1-D case decay exponentially, which is the same as the case p = 2, while
different from the algebraical decay of the case p > 2. Theorem 4.2 also tells us
that the upper bound of the decay rate are proportional to k, which seems that the
pseudo-parabolic viscosity slows down the decay. From Theorem 5.3 and Theorem
2.3, the weak solutions that blow up at ∞ grow algebraically. Theorem 5.3 also
indicates that the lower bound of growth estimates is smaller than that of the case
p = 2, which is caused by the fast diffusion.

Here we exploit the potential well method which was proposed by Sattinger et
al [17]. Liu et al [14, 15] generalized and improved the method by introducing a
family of potential wells which include the known potential well as a special case.
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Nowadays, it is one of the most useful method for proving global existence and
nonexistence of solutions, and vacuum isolating of solutions for parabolic equations
[6, 21].

This article is organized as follows. In Section 2, we prove the global existence
and uniqueness of the weak solution. Section 3 gives some preliminary lemmas of
the potential wells. In Section 4, we treat the global bounded case and the decay
estimates. Section 5 is devoted to the blow-up at ∞ and the growth estimates.

2. Global existence and uniqueness

We start this section with the definition of the weak solutions. Set

E =
{
u ∈ C(0, T ;H1

0 (Ω));ut ∈ L2(0, T ;H1
0 (Ω))

}
.

Definition 2.1. A function u(x, t) is said to be a weak solution of (1.1), if u ∈ E,
u(x, 0) = u0(x) ∈ H1

0 (Ω), it holds

(ut, ϕ)2 + (|∇u|p−2∇u,∇ϕ)2 + k(∇ut,∇ϕ)2 = (|u|p−2u log |u|, ϕ)2, (2.1)

for any ϕ ∈ H1
0 (Ω), and for a.e. t ∈ (0, T ), where (·, ·)2 means the inner product of

L2(Ω).

Lemma 2.2 (Imbedding inequality). For any function u ∈ W 1,q
0 (Ω), we have the

inequality
‖u‖p ≤ C(p, q, n,Ω)‖∇u‖q,

for all 1 ≤ p ≤ q∗, where q∗ = nq
n−q if n > q and q∗ =∞ if n=q.

Theorem 2.3 (Global existence and uniqueness). Assume that u0(x) ∈ H1
0 (Ω).

Then for any T > 0, the problem (1.1) admits a unique weak solution.

Proof. Here we use the Galerkin approximation method to prove the existence of
the global weak solutions for (1.1).
Step 1: Approximation problem. Let {wj(x)} be the orthogonal basis in
H1

0 (Ω), which is also orthogonal in L2(Ω). We look for the approximate solutions
of the following form

um(x, t) =
m∑
j=1

gmj (t)wj(x), m = 1, 2, ...,

where the coefficients gmj (t) = (um, wj)2, satisfy the system of ODEs

(umt , wj)2 + (|∇um|p−2∇um,∇wj)2 + k(∇umt ,∇wj)2

= (|um|p−2um log |um|, wj)2,

um0 (x) =
m∑
j=1

gmj (0)wj(x)→ u0, in H1
0 (Ω),

(2.2)

for j = 1, 2, . . . ,m. The standard theory of ODEs, e.g. Peano’s theorem, yields
that gmj (t) ∈ C1[0,∞). Thus um ∈ C1([0,∞);H1

0 (Ω)).
Step 2: A priori estimates. We need some a priori estimates of the approximate
solutions um. Multiplying the first equality of (2.2) by gmj (t) and summing for j,
we have

1
2
d

dt
‖um‖22 +

k

2
d

dt
‖∇um‖22 + ‖∇um‖pp =

∫
Ω

|um|p log |um|dx. (2.3)
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Via a direct calculation and Lemma 2.2, it holds∫
Ω

|um|p log |um|dx ≤ 1
eα0

∫
Ω

|um|p+α0dx ≤ 1
eα0

(∫
Ω

|∇um|2dx
) p+α0

2
, (2.4)

where α0 satisfies 1 ≤ p+ α0 < 2, e.g. we can choose α0 = 2−p
2 . Substituting (2.4)

into (2.3), we can deduce that

d

dt
‖um‖22 + k

d

dt
‖∇um‖22dx ≤

2
eα0k(p+α0)/2

(
‖um‖22 + k‖∇um‖22

) p+α0
2 ,

which implies

‖um‖22 + k‖∇um‖22

≤
(2(1− p+α0

2 )t
eα0k(p+α0)/2

+
(
‖um0 ‖22 + k‖∇um0 ‖22

)1− p+α0
2
) 1

1− p+α0
2 .

(2.5)

Multiplying the first equality of (2.2) by d
dtg

m
j (t), summing for j, and integrating

with respect to time from 0 to t, we obtain∫ t

0

‖umτ ‖22dτ + k

∫ t

0

‖∇umτ ‖22dτ +
1
p
‖∇um‖pp +

1
p2
‖um‖pp

=
1
p
‖∇um0 ‖pp −

1
p

∫
Ω

|um0 |p log |um0 |dx+
1
p2
‖um0 ‖pp +

1
p

∫
Ω

|um|p log |um|dx,
(2.6)

On the one hand, the convergence of um0 (x) gives

1
p
‖∇um0 ‖pp −

1
p

∫
Ω

|um0 |p log |um0 |dx+
1
p2
‖um0 ‖pp ≤ C(u0),

for sufficiently large m, with

C(u0) =
1
p
‖∇u0‖pp −

1
p

∫
Ω

|u0|p log |u0|dx+
1
p2
‖u0‖pp + 1.

On the other hand, (2.4) and (2.5) tell us that

1
p

∫
Ω

|um|p log |um|dx ≤ C(u0, t)

with

C(u0, t) =
1

peα0k(p+α0)/2

(2(1− p+α0
2 )t

eα0k(p+α0)/2
+
(
‖um0 ‖22 + k‖∇um0 ‖22

)1− p+α0
2
) 1

2
p+α0

−1
.

Substituting the above two inequalities into (2.6), we obtain∫ t

0

‖umτ ‖22dτ + k

∫ t

0

‖∇umτ ‖22dτ +
1
p
‖∇um‖pp +

1
p2
‖um‖pp ≤ C(u0) +C(u0, t). (2.7)

Step 3: Passing to the limit. Therefore, from (2.5) and (2.7), for any T > 0,
there exist u ∈ L∞(0, T ;H1

0 (Ω)) and a subsequence of um, which is still denoted by
itself, such that when sending m→∞,

um → u weak? in L∞(0, T ;H1
0 (Ω)) and a.e. in Ω× [0, T ),

umt → ut weakly in L2(0, T ;H1
0 (Ω)),

|∇um|p−2∇um → χ weak? in L∞(0, T ;L
p
p−1 (Ω)).
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Since the convergence of um and umt , it follows from Aubin-Lions compactness
theorem that

um → u strongly in C(0, T ;L2(Ω)),

which implies

|um|p−2um log |um| → |u|p−2u log |u| a.e. in Ω× [0, T ).

For j fixed, we can pass to the limit in (2.2) to get

(ut, wj)2 + (χ,∇wj)2 + k(∇ut,∇wj)2 = (|u|p−2u log |u|, wj)2.

Then for any ϕ ∈ H1
0 (Ω), it holds

(ut, ϕ)2 + (χ,∇ϕ)2 + k(∇ut,∇ϕ)2 = (|u|p−2u log |u|, ϕ)2. (2.8)

We only need to prove that χ = |∇u|p−2∇u in the weak sense, namely

(χ,∇ϕ)2 = (|∇u|p−2∇u,∇ϕ)2, ∀ϕ ∈ H1
0 (Ω). (2.9)

In fact, for any v ∈ L∞(0, T ;W 1,p
0 (Ω)), ψ ∈ H1

0 (Ω), 0 ≤ ψ ≤ 1, we have∫
Ω

ψ
(
|∇um|p−2∇um − |∇v|p−2∇v

)
∇(um − v)dx ≥ 0,

namely ∫
Ω

ψ|∇um|p−2|∇um|2dx−
∫

Ω

ψ|∇um|p−2∇um∇vdx

−
∫

Ω

ψ|∇v|p−2∇v∇(um − v)dx ≥ 0.

Letting m→∞ in the above equation and noticing that∫
Ω

ψ|∇um|p−2|∇um|2dx

= −
∫

Ω

div(|∇um|p−2∇um)umψdx−
∫

Ω

|∇um|p−2∇umum∇ψdx

= −
∫

Ω

umt u
mψdx− k

∫
Ω

∇umt ∇umψdx− k
∫

Ω

∇umt um∇ψdx

+
∫

Ω

|um|p log |um|ψdx−
∫

Ω

|∇um|p−2∇umum∇ψdx,

we have

−
∫

Ω

utuψdx− k
∫

Ω

∇ut∇uψdx− k
∫

Ω

∇utu∇ψdx+
∫

Ω

|u|p log |u|ψdx

−
∫

Ω

χu∇ψdx−
∫

Ω

ψχ∇vdx−
∫

Ω

ψ|∇v|p−2∇v∇(u− v)dx ≥ 0.
(2.10)

Choosing ϕ = uψ in (2.8), we obtain∫
Ω

utuψdx+
∫

Ω

χ∇uψdx+
∫

Ω

χ∇ψudx

+ k

∫
Ω

∇ut∇uψdx+ k

∫
Ω

∇utu∇ψdx

=
∫

Ω

|u|p log |u|ψdx.

(2.11)
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Combining (2.11) with (2.10), we obtain∫
Ω

ψ
(
χ− |∇v|p−2∇v

)
∇(u− v)dx ≥ 0.

Choosing v = u− λϕ, λ ≥ 0, ϕ ∈ H1
0 (Ω) in the above inequality, we arrive at∫

Ω

ψ
(
χ− |∇(u− λϕ)|p−2∇(u− λϕ)

)
∇ϕdx ≥ 0.

Taking λ→ 0, we have∫
Ω

ψ
(
χ− |∇u|p−2∇u

)
∇ϕdx ≥ 0, ∀ϕ ∈ H1

0 (Ω).

Obviously, if we choose λ ≤ 0, we can deduce the similar inequality replacing “≥” by
“≤”. Hence, (2.9) holds. On the other hand, from (2.2) we obtain u(x, 0) = u0(x)
in H1

0 (Ω). Thus u is a global weak solution of (1.1).
Step 4: Uniqueness. Suppose (1.1) admits two weak solutions u1 and u2. Set
w = u1 − u2, then w satisfies

wt − div((p− 1)|∇w|p−2∇w)− k∆wt = ((p− 1) log |w̃|+ 1)|w̃|p−2w, Ω× (0, T ),

w(x, t) = 0, ∂Ω× (0, T ),

w(x, 0) = 0, Ω ,

(2.12)
where w = θ1u1 + (1− θ1)u2, w̃ = θ2u1 + (1− θ2)u2 with θ1, θ2 ∈ [0, 1].

Multiplying (2.12) by w and integrating on Ω, we have

1
2
d

dt

∫
Ω

w2dx+
∫

Ω

(p− 1)|∇w|p−2|∇w|2dx+
k

2
d

dt

∫
Ω

|∇w|2dx

=
∫

Ω

((p− 1) log |w̃|+ 1)|w̃|p−2w2dx.

For any t ∈ (0, T ), integrating both side of the above equation on (0, t) and noticing
that w(x, 0) = 0, we can get

1
2

∫
Ω

w2dx+
k

2

∫
Ω

|∇w|2dx ≤
∫ t

0

∫
Ω

((p− 1) log |w̃|+ 1)|w̃|p−2w2dxdτ.

In fact, since when 1 < p < 2, it holds

lim
f→+∞

((p− 1) log f + 1)fp−2 = 0, lim
f→0+

((p− 1) log f + 1)fp−2 < 0;

thus ((p − 1) log f + 1)fp−2 ≤ C with f = e
2p−3

(2−p)(p−1) as the maximum point, and
((p − 1) log f + 1)fp−2 < 0 with 0 < f < e−

1
p−1 . Thus we can find a positive

constant C independent of u1 and u2, such that

1
2

∫
Ω

w2dx+
k

2

∫
Ω

|∇w|2dx ≤ C
∫ t

0

∫
Ω

w2dxdτ.

It follows from Gronwall’s inequality that∫
Ω

w2dx = 0, a.e. (0, t).

Thus w = 0 a.e in Ω× (0, T ). �
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3. Potential wells

We define the following two functionals on H1
0 (Ω):

J(u) =
1
p
‖∇u‖pp −

1
p

∫
Ω

|u|p log |u|dx+
1
p2
‖u‖pp,

I(u) = ‖∇u‖pp −
∫

Ω

|u|p log |u|dx.
(3.1)

It is obvious that

J(u) =
1
p
I(u) +

1
p2
‖u‖pp. (3.2)

Remark 3.1. Since u ∈ E and 1 < p < 2, we can use the Hölder inequality and
Lemma 2.2 to derive that

‖u‖p + ‖∇u‖p ≤ C(p,Ω)(‖u‖2 + ‖∇u‖2),∫
Ω

|u|p log |u|dx ≤ 1
eα
‖∇u‖p+α2 ,

where α satisfies 1 ≤ p+ α < 2∗, which imply that J(u) and I(u) are well-defined
in H1

0 (Ω) and W 1,p
0 (Ω). Further, similar to the Step 4 of Theorem 2.3, one can

prove that

u 7→
∫

Ω

|u|p log |u|dx

is continuous from H1
0 (Ω) to R. It follows that J(u) and I(u) are continuous.

Let
d = inf{sup

λ≥0
J(λu)|u ∈ H1

0 (Ω), ‖∇u‖pp 6= 0}, (3.3)

and
N = {u ∈ H1

0 (Ω)|I(u) = 0, ‖∇u‖pp 6= 0}.
Then Lemma 3.3 and Lemma 3.5 below tell us that

d = inf
u∈N

J(u) ≥M =
1
p2

(
p2e

nLp
)n/p,

where Lp can be found in (3.9). Thus we can define

W = {u ∈ H1
0 (Ω)|I(u) > 0, J(u) < d} ∪ {0},

V = {u ∈ H1
0 (Ω)|I(u) < 0, J(u) < d}.

For δ > 0, we introduce

Iδ(u) = δ‖∇u‖pp −
∫

Ω

|u|p log |u|dx, (3.4)

Nδ = {u ∈ H1
0 (Ω)|Iδ(u) = 0, ‖∇u‖pp 6= 0}, (3.5)

d(δ) = inf
u∈Nδ

J(u), (3.6)

Wδ = {u ∈ H1
0 (Ω)|Iδ(u) > 0, J(u) < d(δ)} ∪ {0}, (3.7)

Vδ = {u ∈ H1
0 (Ω)|Iδ(u) < 0, J(u) < d(δ)}. (3.8)

To handle the logarithmic nonlinearity |u|p−2u log |u|, we need the following Lp

logarithmic Sobolev inequality
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Lemma 3.2 ([11, 10]). For any u ∈ W 1,p(Rn) with p ∈ (1,+∞), u 6= 0, and any
µ > 0,

p

∫
Rn
|u|p log(

|u|
‖u‖p

)dx+
n

p
log(

pµe

nLp
)
∫

Rn
|u|pdx ≤ µ

∫
Rn
|∇u|pdx,

where

Lp =
p

n
(
p− 1
e

)p−1π−
p
2

[ Γ(n2 + 1)
Γ(np−1

p + 1)

]p/n
. (3.9)

For u ∈ W 1,p(Ω), we can define u = 0 for x ∈ Rn \ Ω, such that u ∈ W 1,p(Rn).
Thus it holds the Lp logarithmic Sobolev inequality for bounded domain Ω

p

∫
Ω

|u|p log(
|u|
‖u‖p

)dx+
n

p
log(

pµe

nLp
)
∫

Ω

|u|pdx ≤ µ
∫

Ω

|∇u|pdx. (3.10)

Lemmas 3.3, 3.4, 3.5 and 3.6 are similar to [7, Lemmas 2.1, 2.2, 2.3 and 2.4], so
we omit most of their proofs.

Lemma 3.3. Assume λ > 0, u ∈ H1
0 (Ω) and ‖u‖p 6= 0, then we have

(1) J(λu) strictly increases on 0 < λ ≤ λ∗, strictly decreases on λ∗ ≤ λ <
∞ and takes the maximum at λ = λ∗. Further limλ→0 J(λu) = 0, and
limλ→+∞ J(λu) = −∞;

(2) I(λu) > 0 on 0 < λ < λ∗, I(λ∗u) = 0 and I(λu) < 0 on λ∗ < λ < ∞,
where

λ∗ = exp{
‖∇u‖pp −

∫
Ω
|u|p log |u|dx
‖u‖pp

}.

Lemma 3.4. Let u ∈W 1,p
0 (Ω) and ‖u‖p 6= 0. Then we have

(1) if 0 < ‖∇u‖p ≤ r(δ), then Iδ(u) ≥ 0;
(2) if Iδ(u) < 0, then ‖∇u‖p > r(δ);
(3) if Iδ(u) = 0, then ‖∇u‖p ≥ r(δ),

where r(δ) = λ
1/p
1 (p

2δe
nLp )

n
p2 , and λ1 is the first eigenvalue of the problem

− div(|∇u|p−2∇u) = λ|u|p−2u, x ∈ Ω,
u = 0, x ∈ ∂Ω.

Proof. (1) Using the Lp Sobolev logarithmic inequality (3.10), for any µ > 0, we
have

Iδ(u) ≥ (δ − µ

p
)‖∇u‖pp + (

n

p2
log(

pµe

nLp
)− log ‖u‖p)‖u‖pp. (3.11)

Taking µ = pδ in (3.11), we obtain that

Iδ(u) ≥ (
n

p2
log(

p2δe

nLp
)− log ‖u‖p)‖u‖pp. (3.12)

By the Poincaré inequality, if 0 < ‖∇u‖p ≤ r(δ), then 0 < ‖u‖p ≤ λ
− 1
p

1 ‖∇u‖p ≤
(p

2δe
nLp )

n
p2 . Thus Iδ(u) ≥ 0.

The proof for (2) and (3) is similar to that of [7, Lemma 2.2 ], so we omit it
here. �

Lemma 3.5. For d(δ) in (3.6), we have

(1) d(δ) ≥ 1
p (1−δ)rp(δ)+ 1

p2 (p
2δe
nLp )n/p. In particular, d(1) ≥ 1

p2 ( p
2e

nLp )n/p =: M ;
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(2) there exists a unique b, b ∈ (1, 1 + 1
pλ1

] such that d(b) = 0, and d(δ) > 0 for
1 ≤ δ < b;

(3) d(δ) is strictly increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ b, and takes
the maximum d = d(1) at δ = 1.

Now, we can define
d0 = lim

δ→0+
d(δ), (3.13)

where d0 ≥ 0 from Lemma 3.5.

Lemma 3.6. Let d0 < J(u) < d for some u ∈ H1
0 (Ω), and δ1 < 1 < δ2 are the

two roots of the equation d(δ) = J(u). Then the sign of Iδ(u) is unchangeable for
δ1 < δ < δ2.

In what follows, we prove that when 0 < J(u0) < d, Wδ and Vδ are the in-
variant sets of (1.1). The discussion is divided into two parts: J(u0) being in the
monotonous interval of d(δ), and J(u0) being in the non-monotonous interval of
d(δ).

Proposition 3.7. Assume u0 ∈ H1
0 (Ω), u is a weak solution of (1.1) with J(u0) =

σ. Then we have the following results.
(1) If 0 < σ ≤ d0, then there exists a unique δ̄ ∈ (1, b) such that d(δ̄) = σ,

where b is the constant in Lemma 3.5 (2). Furthermore, if I(u0) > 0, then
u ∈Wδ for any 1 ≤ δ < δ̄; else if I(u0) < 0, then u ∈ Vδ for any 1 ≤ δ < δ̄.

(2) If d0 < σ < d, then there exists δ1 and δ2 such that δ1 < 1 < δ2 and
d(δ1) = d(δ2) = σ. Furthermore, if I(u0) > 0, then u ∈ Wδ for any
δ1 < δ < δ2; else if I(u0) < 0, then u ∈ Vδ for any δ1 < δ < δ2.

Proof. Case 1. 0 < J(u0) = σ ≤ d0, namely J(u0) is in the monotonous interval of
d(δ). From Lemma 3.5, there exists a unique δ̄ ∈ (1, b) such that d(δ̄) = σ. For any
δ ∈ [1, δ̄), we have

Iδ(u0) = (δ − 1)‖∇u0‖pp + I(u0) ≥ I(u0), J(u0) = σ = d(δ̄) < d(δ). (3.14)

Multiplying both sides of (1.1) by ut and integrating on Ω× [0, t], it holds∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ + J(u) = J(u0) = d(δ̄) < d(δ), (3.15)

for all t ∈ (0, T ) and all δ ∈ [1, δ̄), where T is the maximal existence time.
If I(u0) > 0, then (3.14) means that u0 ∈ Wδ for δ ∈ [1, δ̄). We assert that

u ∈ Wδ for t ∈ (0, T ) and δ ∈ [1, δ̄). If it is false, then there exists δ∗ ∈ [1, δ̄) and
t0 ∈ (0, T ), such that u ∈Wδ∗ for t ∈ (0, t0), but u(x, t0) ∈ ∂Wδ∗ , namely

Iδ∗(u(t0)) = 0, ‖∇u(t0)‖pp 6= 0, or J(u(t0)) = d(δ∗).

In fact, (3.15) shows that J(u(t0)) ≤ J(u0) < d(δ∗), which implies Iδ∗(u(t0)) = 0
and ‖∇u(t0)‖pp 6= 0, namely u(x, t0) ∈ Nδ∗ . Thus from the definition of d(δ∗), we
have J(u(t0)) ≥ d(δ∗), which is a contradiction.

Next, we prove that if I(u0) < 0, then u0 ∈ Vδ for δ ∈ [1, δ̄), and u ∈ Vδ for
t ∈ (0, T ) and δ ∈ [1, δ̄). If the assertion of u0 is false, then (3.14) shows that
there exists δ∗ ∈ [1, δ̄) being the first number such that u0 ∈ Vδ for δ ∈ [1, δ∗) and
u0 ∈ ∂Vδ∗ , namely

Iδ∗(u0) = 0, or J(u0) = d(δ∗).
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Since J(u0) is in the strictly decreasing interval of d(δ), then J(u0) = d(δ̄) < d(δ∗),
which indicates that Iδ∗(u0) = 0. Since Iδ(u0) < 0 for δ ∈ [1, δ∗), then Lemma 3.4
(2) gives ‖∇u0‖p > r(δ) > 0, which indicates that u0 ∈ Nδ∗ . By the definition of
d(δ∗), we have J(u0) = d(δ̄) ≥ d(δ∗), which is contradict with the monotonicity of
d(δ). If the assertion of u is false, then there exists δ∗∗ ∈ [1, δ̄) and t0 ∈ (0, T ), such
that u ∈ Vδ∗∗ for t ∈ (0, t0), but u(x, t0) ∈ ∂Vδ∗∗ , namely

Iδ∗∗(u(t0)) = 0, or J(u(t0)) = d(δ∗∗).

In fact, (3.15) shows that J(u(t0)) ≤ J(u0) < d(δ∗∗), which implies Iδ∗∗(u(t0)) = 0.
If Iδ∗∗(u(t0)) = 0, then from Lemma 3.4 (3), ‖∇u(t0)‖p ≥ r(δ), namely u(x, t0) ∈
Nδ∗∗ . Thus from the definition of d(δ∗∗), we have J(u(t0)) ≥ d(δ∗∗), which is a
contradiction.

Case 2. d0 < J(u0) = σ < d, namely J(u0) is in the non-monotonous interval of
d(δ). From Lemma 3.5, there exist δ1 < 1 < δ2 being two roots of d(δ) = σ, and
d0 < J(u0) = d(δ1) = d(δ2) < d(δ) for δ ∈ (δ1, δ2).

If I(u0) > 0, then from Lemma 3.6, the sign of Iδ(u) is unchangeable for δ1 < δ <
δ2. Thus we have Iδ(u0) > 0 for δ ∈ (δ1, δ2). Therefore, u0 ∈ Wδ for δ ∈ (δ1, δ2).
The proof of u ∈Wδ is similar to that in Case 1.

If I(u0) < 0, also from Lemma 3.6, we have Iδ(u0) < 0 for δ ∈ (δ1, δ2), which
with J(u0) < d(δ) for δ ∈ (δ1, δ2), imply that u0 ∈ Vδ for δ ∈ (δ1, δ2). The proof of
u ∈ Vδ is similar to that in Case 1. �

Proposition 3.8. Assume u0 ∈ H1
0 (Ω) with u0 6≡ 0, J(u0) = d, u is a weak

solution of (1.1). If I(u0) > 0, then I(u(t)) ≥ 0 for all 0 < t < T ; if I(u0) < 0,
then I(u(t)) < 0 for all 0 ≤ t < T , where T is the maximal existence time of u.

Proof. We prove the proposition by contradiction. When I(u0) > 0, if there exists
t1 ∈ (0, T ) such that I(u(t1)) < 0, then we can find t0 ∈ (0, t1) being the first point
satisfying I(u) = 0, namely

I(u(t0)) = 0, and I(u(t)) > 0 for all 0 < t < t0.

Thus
∫ t

0
(‖uτ‖22 + k‖∇uτ‖22)dτ > 0 for 0 < t < t0. Otherwise ut = 0 and ∇ut = 0

a.e. (x, t) ∈ Ω × (0, t0), which are contradict with the fact I(u) = −
∫

Ω
utudx −

k
∫

Ω
∇ut · ∇udx > 0 for 0 < t < t0. Thus

J(u(t)) = J(u0)−
∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ < d, for all 0 < t ≤ t0. (3.16)

Also I(u(t0)) = 0 imply that u(x, t0) = 0 or ‖∇u(t0)‖pp ≥ r(1) 6= 0. If u(x, t0) = 0,
then from the uniqueness of solutions, u(x, t) = 0 for t > t0, which is a contradiction,
since I(u(t1)) < 0. If ‖∇u(t0)‖pp 6= 0, then by the definition of d(δ), we have
J(u(t0)) ≥ d, which is contradict with (3.16).

When I(u0) < 0, if there exists t1 ∈ (0, T ) such that I(u(t1)) = 0, and I(u(t)) < 0
for all 0 < t < t1. Similar to the proof of (3.16), we have

J(u(t)) = J(u0)−
∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ < d, for all 0 < t ≤ t1. (3.17)

Also from Lemma 3.4 and I(u(t)) < 0 for all 0 ≤ t < t1, then ‖∇u(t0)‖pp ≥ r(1) 6= 0.
By the definition of d(δ), we have J(u(t0)) ≥ d, which is contradict with (3.17). �



EJDE-2018/116 INITIAL BOUNDARY VALUE PROBLEM 11

4. Global boundedness and decay estimation

In this section, we treat the globally bounded case, especially including the
decay estimates. First we need to point out that if u is a solution of (1.1) with
J(u0) ≤ d, I(u0) ≥ 0, and there exists t2 > 0 such that ‖∇u(t2)‖p = 0, then from
the uniqueness of the solution, u = 0 for all t ≥ t2. So in what follows, we do not
consider this type of solutions.

Theorem 4.1. When J(u0) ≤ d and I(u0) ≥ 0, the weak solution of (1.1) is
globally bounded.

Step 1: J(u0) < d. Actually, we only need to focus on the case 0 < J(u0) < d &
I(u0) > 0, irrespectively of other cases. The reasons are that the case J(u0) < 0 &
I(u0) ≥ 0 is contradict with (3.2); the case 0 < J(u0) < d & I(u0) = 0 is contradict
with the definition of d; if J(u0) = 0 and I(u0) ≥ 0, then u0 ≡ 0, which is a trivial
case.

Multiplying the first equation of (1.1) by ut and integrating with respect to time
from 0 to t, we obtain∫ t

0

‖uτ‖22dτ + k

∫ t

0

‖∇uτ‖22dτ + J(u(t)) = J(u(0)) < d, for t > 0. (4.1)

We assert that u(x, t) ∈W for any t > 0. If it is false, then there exists t0 > 0 such
that u(x, t0) ∈ ∂W , then

I(u(t0)) = 0, ‖∇u(t0)‖p 6= 0, or J(u(t0)) = d.

On the one hand, (4.1) indicates that J(u(t0)) = d is not true. On the other hand,
if I(u(t0)) = 0, ‖∇u(t0)‖p 6= 0, then by the definition of d, we have J(u(t0)) ≥ d,
which is also contradict with (4.1). Thus we have u(x, t) ∈ W , which with (3.2)
deduce that

‖u‖pp < p2d. (4.2)

Taking µ = p
2 in (3.10), we have

‖∇u‖pp = I(u) +
∫

Ω

|u|p log |u|dx

= 2I(u) + 2
∫

Ω

|u|p log |u|dx− ‖∇u‖pp

≤ 2I(u) + 2‖u‖pp log ‖u‖p −
2n
p2

log(
p2e

2nLp
)‖u‖pp

= 2pJ(u) + (2 log ‖u‖p −
2
p
− 2n
p2

log(
p2e

2nLp
))‖u‖pp

≤ Cd.

(4.3)

Also, (4.1) implies ∫ t

0

‖uτ‖22dτ + k

∫ t

0

‖∇uτ‖22dτ < d. (4.4)

From (4.2), (4.3) and (4.4), we have∫ t

0

‖uτ‖22dτ + k

∫ t

0

‖∇uτ‖22dτ +
1
p
‖∇u‖pp +

1
p2
‖u‖pp ≤

(
2 +

C

p

)
d. (4.5)
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Multiplying the first equation of (1.1) by u, we have

1
2
d

dt

∫
Ω

|u|2dx+
k

2
d

dt

∫
Ω

|∇u|2dx+ I(u) = 0 (4.6)

Combining (4.6) and the fact that u(x, t) ∈W for any t > 0, we find that

1
2
d

dt

∫
Ω

|u|2dx+
k

2
d

dt

∫
Ω

|∇u|2dx < 0,

which means that
‖u‖22 + ‖∇u‖22 ≤ C(‖u0‖22 + ‖∇u0‖22). (4.7)

Thus (4.5) and (4.7) show that u is globally bounded in E.
Step 2: J(u0) = d. Let µm = 1− 1

m and um0 = µmu0 for m ≥ 2. We consider the
following problem:

ut − div(|∇u|p−2∇u)− k4ut = |u|p−2u log |u|, Ω× (0, T ),

u(x, t) = 0, ∂Ω× (0, T ),

u(x, 0) = um0(x), Ω.

(4.8)

We assert J(um0) < d and I(um0) > 0. If ‖u0‖p = 0, then from (3.2) and
J(u0) = d, we have I(u0) = pJ(u0) = pd. Thus I(um0) = µpmI(u0) = µpmpd > 0,
J(um0) = µpmJ(u0) = µpmd < d. If ‖u0‖p 6= 0, then from I(u0) ≥ 0 and Lemma
3.3, we have λ∗ ≥ 1. We can also deduce that I(um0) = I(µmu0) > 0, and
J(um0) = J(µmu0) < J(u0) = d.

Using the similar arguments as in Theorem 2.3 and Step 1, (4.8) admits a unique
global bounded weak solution um ∈ E. Since the initial data um0(x)→ u0 strongly
in H1

0 (Ω), then via a standard procedure, um → u strongly in E. Thus u is globally
bounded in E.

Theorem 4.2. Let u = u(x, t) be the global bounded weak solution in Theorem 4.1.
(1) If J(u0) < M and I(u0) ≥ 0, then we have

lim
t→∞

(‖u‖pp + k‖∇u‖pp) = 0. (4.9)

Furthermore, when n = 1, there exists time tβ > 0 such that

‖u(t)‖22 + k‖∇u(t)‖22 ≤ (‖u(tβ)‖22 + k‖∇u(tβ)‖22)e
1
2−Cα1t, for all t ≥ tβ ,

where
α1 = min{1

k
(1− µ

p
),
n

p2
log(

pµe

nLp
)− 1

p
log(p2J(u0))} > 0,

for any µ ∈ ([p2J(u0)]p/n nLppe , p) and Lp is (3.9).
(2) If J(u0) = M and I(u0) > 0, then

lim
t→∞

(‖u‖pp + k‖∇u‖pp) = 0.

Furthermore, when n = 1, there exists time tγ > 0, such that

‖u(t)‖22 + k‖∇u(t)‖22 ≤ (‖u(tγ)‖22 + k‖∇u(tγ)‖22)e
1
2−Cα2t, for all t ≥ tγ ,

where
α2 = min{1

k
(1− µ

p
),
n

p2
log(

pµe

nLp
)− 1

p
log(p2(M − γ))} > 0,

for any µ ∈ ([p2(M − γ)]p/n nLppe , p) and Lp is (3.9).
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Remark 4.3. When p > 2, under similar conditions as in Theorem 4.2, the global
bounded solutions decay algebraically [12]. However, if p < 2, Theorem 4.2 shows
that the global bounded solutions decay exponentially, which is the same as the
results in [7] for p = 2. Further, Theorem 4.2 tells us that the upper bound of the
decay rate e−α1t and e−α2t are proportional to k, which seems that the pseudo-
parabolic viscosity slows down the decay.

To prove the theorem, we need to introduce the following two lemmas.

Lemma 4.4 ([7, Lemma 3.1]). Let y(t) : R+ → R+ be a nonincreasing function.
Assume that there is a constant A > 0 such that∫ +∞

t

y(s)ds ≤ Ay(t), 0 ≤ t < +∞.

Then y(t) ≤ y(0)e1− t
A , for all t > 0.

Lemma 4.5 ([20, Prop. 6.2.3]). Assume that a is a positive constant, g(t), h(t) ∈
C1([a,∞)), h(t) ≥ 0 and g(t) is bounded blow. If there exists a positive b and C,
such that

g′(t) ≤ −bh(t), h′(t) ≤ C, t ∈ [a,∞),
then limt→∞ h(t) = 0.

Proof. Case 1. Decay estimates for J(u0) < M . Let u = u(x, t) be the global
bounded solution of (1.1) with J(u0) < M ≤ d and I(u0) ≥ 0. As in the proof
for Theorem 4.1, we only need to discuss the case 0 < J(u0) < M and I(u0) > 0.
Proposition 3.7 reveals that u ∈ Wδ for 1 ≤ δ < δ̄ or δ1 < δ < δ2 with δ1 < 1 < δ2
and particularly I(u) > 0. Then from (3.2) and (3.15), we have

‖u‖pp < p2J(u) ≤ p2J(u0) < p2M. (4.10)

Because J(u0) < M = 1
p2 ( p

2e
nLp )n/p, for µ ∈ ([p2J(u0)]p/n nLppe , p), we obtain the

following inequality from (3.10) and (4.10),

I(u) ≥ ‖∇u‖pp − ‖u‖pp log ‖u‖p +
n

p2
log(

pµe

nLp
)‖u‖pp −

µ

p
‖∇u‖pp

≥ (1− µ

p
)‖∇u‖pp + (

n

p2
log(

pµe

nLp
)− 1

p
log(p2J(u0)))‖u‖pp

≥ α1(‖u‖pp + k‖∇u‖pp),

(4.11)

where

α1 = min{1
k

(1− µ

p
),
n

p2
log(

pµe

nLp
)− 1

p
log(p2J(u0))} > 0.

Combining (4.11) with

I(u) = −1
2
d

dt
‖u‖22 −

k

2
d

dt
‖∇u‖22,

it holds
1
2
d

dt
‖u‖22 +

k

2
d

dt
‖∇u‖22 ≤ −α1(‖u‖pp + k‖∇u‖pp). (4.12)

Next we first prove that ‖u‖pp+k‖∇u‖pp decays to 0 as t→∞. For this purpose,
Lemma 4.5 is useful. Set

g(t) = ‖u‖22 + k‖∇u‖22, h(t) = ‖u‖pp + k‖∇u‖pp.
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Then it is sufficient to prove h′(t) ≤ C. Multiplying the first equation of (1.1) by
ut and using the Young inequality, we can obtain∫

Ω

|ut|2dx+ k

∫
Ω

|∇ut|2dx+
d

dt

∫
Ω

|∇u|p

p
dx

≤ 1
2

∫
Ω

|ut|2dx+
1
2

∫
Ω

|u|2p−2(log |u|)2dx.

(4.13)

Since
lim

f→+∞
f−α log f = 0, lim

f→0+
fα log f = 0, for 0 < α < 1,

then we can deduce that∫
Ω

|u|2p−2(log |u|)2dx ≤ C
∫

Ω

|u|2dx+ C,

which with (4.13) and (4.7) indicate that∫
Ω

|ut|2dx+ k

∫
Ω

|∇ut|2dx+
d

dt

∫
Ω

|∇u|pdx ≤ C.

Thus we find that

h′(t) =
∫

Ω

p|u|p−2uutdx+
d

dt

∫
Ω

k|∇u|pdx

≤ 1
2

∫
Ω

p2|u|2p−2dx+
1
2

∫
Ω

|ut|2dx+
d

dt

∫
Ω

k|∇u|pdx ≤ C.

Then from Lemma 4.5 and (4.12), we can prove (4.9).
Next, we deal with the decay estimates of the solutions for the 1-Dimensional

case. On the one hand, (4.9) and the Sobolev imbedding inequality imply that

|u|0;Ω = sup
Ω
|u| → 0, as t→∞. (4.14)

On the other hand, multiplying the first equation of (1.1) by ∆u and integrating
on Ω, we have

d

dt

∫
Ω

(
1
2
|∇u|2 +

k

2
|∆u|2)dx+ (p− 1)

∫
Ω

|∇u|p−2|∆u|2dx

=
∫

Ω

|u|p−2((p− 1) log |u|+ 1)|∇u|2dx,

which with (4.14) indicate that there exists a tβ > 0, such that

|u|0;Ω < e−
1
p−1 and

∫
Ω

|∆u|2dx ≤ C, for t ≥ tβ .

Using the Sobolev imbedding inequality again, we have that

|∇u|0;Ω = sup
Ω
|∇u| < C. (4.15)

Substituting (4.14) and (4.15) into (4.12) gives

d

dt
‖u‖22 +

d

dt
k‖∇u‖22 ≤ −2α1(‖u‖pp + k‖∇u‖pp)

= −2α1(
∫

Ω

|u|2|u|p−2dx+ k

∫
Ω

|∇u|2|∇u|p−2dx)

≤ −2Cα1(‖u‖22 + k‖∇u‖22).
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Integrating the above inequality from t to T with t ≥ tβ , we have∫ T

t

(‖u‖22 + k‖∇u‖22)ds ≤ 1
2Cα1

(‖u(t)‖22 + k‖∇u(t)‖22 − (‖u(T )‖22 + k‖∇u(T )‖22))

≤ 1
2Cα1

(‖u(t)‖22 + k‖∇u(t)‖22).

Let T →∞ and from Lemma 4.4, we can find

‖u(t)‖22 + k‖∇u(t)‖22 ≤ (‖u(tβ)‖22 + k‖∇u(tβ)‖22)e
1
2−Cα1t,

for all t ≥ tβ .

Case 2. Decay estimates for J(u0) = M . Let u = u(x, t) be the global
bounded solution of the problem (1.1) with J(u0) = M ≤ d and I(u0) > 0. From
Propositions 3.7 and 3.8, we know that

I(u) = −(ut, u)− k(∇ut,∇u) ≥ 0, for all t > 0, (4.16)

and there exists a t0 > 0, such that

I(u(t0)) = 0, and I(u(t)) > 0, for 0 < t < t0,

which implies ∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ > 0, 0 < t < t0.

Thus we can choose some time 0 < tγ < t0, such that∫ tγ

0

(‖uτ‖22 + k‖∇uτ‖22)dτ = γ,

where γ is a sufficiently small positive number. If we take tγ as the initial time,
then we have

I(u(tγ)) > 0,

J(u(tγ)) = J(u0)−
∫ tγ

0

(‖uτ‖22 + k‖∇uτ‖22)dτ = M − γ < M,

which is the same as Case 1. Similar to the proof for Case 1, we can choose tγ large
enough such that

‖u(t)‖22 + k‖∇u(t)‖22 ≤ (‖u(tγ)‖22 + k‖∇u(tγ)‖22)e
1
2−Cα2t, for all t ≥ tγ ,

where

α2 = min
{1
k

(1− µ

p
),
n

p2
log(

pµe

nL p
)− 1

p
log(p2(M − γ))

}
> 0,

for all µ ∈ ([p2(M − γ)]p/n nLppe , p). �

5. Blow-up at +∞ and growth estimation

Actually, the estimation (2.5) in Theorem 2.3 tells us that the solution of (1.1)
would not blow up at any finite time T > 0. However, in this section, we prove
that the solution may blow up at +∞ and further give some growth estimates of
the solution.
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Theorem 5.1. When J(u0) ≤ d and I(u0) < 0, then the weak solution of (1.1)
blows up at +∞, namely

lim
t→+∞

(‖u‖22 + k‖∇u‖22) = +∞.

Remark 5.2. Under the similar conditions, when p > 2, the weak solutions blow
up in finite time [12]. However, when p ≤ 2, the weak solutions blow up at ∞.

Proof. Step 1: J(u0) < d. From Proposition 3.7, we obtain for all t ≥ 0, u ∈ Vδ
for any 1 ≤ δ < δ̄ or δ1 < δ < δ2 with δ1 < 1 < δ2. Then by Iδ(u) < 0 and Lemma
3.4, we obtain ‖∇u‖pp > rp(δ) = λ1(p

2δe
nLp )n/p for all t ≥ 0. Set

G(t) =
∫ t

0

(‖u‖22 + k‖∇u‖22)dτ.

A simple calculation indicates that

G′′(t) = −2I(u) = 2(δ − 1)‖∇u‖pp − 2Iδ(u)

> 2(δ − 1)‖∇u‖pp
> 2(δ − 1)rp(δ), for all t ≥ 0.

Thus setting δ > 1, we can have

G′(t) = G′(0) +
∫ t

0

G′′(τ)dτ > 2(δ − 1)λ1(
p2δe

nLp
)n/pt, for all t ≥ 0, (5.1)

namely

‖u(t)‖22 + k‖∇u(t)‖22 > 2(δ − 1)λ1(
p2δe

nLp
)n/pt, for all t > 0,

where δ > 1 in Proposition 3.7, λ1 can be found in Lemma 3.4 and Lp is (3.9).
This means that the weak solution u will blow up at +∞.
Step 2: J(u0) = d. From Proposition 3.8, we know I(u) = −(ut, u)−k(∇ut,∇u) <
0 for t ≥ 0, and then

∫ t
0
(‖uτ‖22 + k‖∇uτ‖22)dτ is strictly positive for t > 0. For any

sufficiently small positive number t1, we have

J(u(t1)) = J(u0)−
∫ t1

0

(‖u‖22 + k‖∇uτ‖22)dτ < d.

If we take t = t1 as the initial time, then similar to Step 1, we can obtain that the
weak solution u blows up at +∞. �

Theorem 5.3. Let u = u(x, t) be the weak solution in Theorem 5.1. If J(u0) ≤M
and I(u0) < 0, then for any α3 ∈ (0, 1), there exist tα3 > 0 such that

‖u‖22 + k‖∇u‖22 ≥ Cα3(t− tα3)
1

1− pα3
2
−1
, for all t ≥ tα3 , (5.2)

where

Cα3 = ((1− pα3

2
)G−

pα3
2 (tα3)G′(tα3))

1
1− pα3

2

with G(t) =
∫ t

0
(‖u‖22 + k‖∇u‖22)dτ .

Remark 5.4. From (5.2) and (2.5), the weak solutions that blow up at ∞ grow
algebraically. (5.2) also indicates that the lower bound of growth estimates is
smaller than that of the case p = 2, which is caused by fast diffusion.
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Proof. Let u = u(x, t) be the weak solution of (1.1) with J(u0) ≤M and I(u0) < 0.
Then Propositions 3.7 and 3.8 tell us that u ∈ V and I(u) < 0 for all t ≥ 0. Taking
µ = p in (3.10) and noticing I(u) < 0, we can obtain

‖u‖pp ≥ (
p2e

nLp
)n/p = p2M, for all t ≥ 0, (5.3)

which also implies ‖u‖22 > 0 for all 0 ≤ t < T . Thus

G′(t) = ‖u‖22 + k‖∇u‖22 > 0 and G′′(t) = −2I(u) > 0, for all t ≥ 0.

Furthermore, from (5.3), we obtain

G′′(t) = −2I(u) = −2pJ(u) +
2
p
‖u‖pp

= −2pJ(u0) + 2p
∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ +
2
p
‖u‖pp

≥ 2p(M − J(u0)) + 2p
∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ, for all t ≥ 0.

(5.4)

Since(∫ t

0

((uτ , u)2 + k(∇uτ ,∇u)2)dτ
)2

=
1
4

(
∫ t

0

d

dτ
(‖u‖22 + k‖∇u‖22)dτ)2

=
1
4

(G′(t)−G′(0))2

=
1
4

(G′2(t)− 2G′(t)G′(0) +G′2(0)),

(5.5)

then combining (5.4) and (5.5), and using the Hölder inequality, we can calculate

G(t)G′′(t)− p

2
G′2(t)

≥ 2p(M − J(u0))G(t) + 2p
∫ t

0

(‖uτ‖22 + k‖∇uτ‖22)dτ
∫ t

0

(‖u‖22 + k‖∇u‖22)dτ

− 2p(
∫ t

0

((uτ , u)2 + k(∇uτ ,∇u)2)dτ)2 − pG′(t)(‖u0‖22 + k‖∇u0‖22)

+
p

2
(‖u0‖22 + k‖∇u0‖22)2

≥ 2p(M − J(u0))G(t)− pG′(t)(‖u0‖22 + k‖∇u0‖22)

≥ −p(‖u0‖22 + k‖∇u0‖22)G′(t).
(5.6)

Then for 0 < α3 < 1, we obtain

G(t)G′′(t)− pα3

2
G′2(t) ≥ (1− α3)

p

2
G′2(t)− p(‖u0‖22 + k‖∇u0‖22)G′(t).

From (5.1), there exists t1 > 0 such that G′(t) is large enough and

G(t)G′′(t)− pα3

2
G′2(t) > 0, for all t ≥ t1. (5.7)

Then we have

(G1− pα3
2 (t))′ = (1− pα3

2
)G−

pα3
2 (t)G′(t),

(G1− pα3
2 (t))′′ = (1− pα3

2
)G−

pα3
2 −1(t)(G(t)G′′(t)− pα3

2
G′2(t)) > 0.
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Now, we take tα3 ≥ t1 satisfying G(tα3) > 0. Then for t ≥ tα3 ,

G(t) = (G1− pα3
2 (t))

1
1− pα3

2

= (G1− pα3
2 (tα3) +

∫ t

tα3

(1− pα3

2
)G−

pα3
2 (τ)G′(τ)dτ)

1
1− pα3

2

≥ Cα3(t− tα3)
1

1− pα3
2

(5.8)

with

Cα3 = ((1− pα3

2
)G−

pα3
2 (tα3)G′(tα3))

1
1− pα3

2 .

Since G′′(t) > 0 for all t ≥ 0, then we have
∫ t

0
G′(τ)dτ ≤ tG′(t), namely

t(‖u‖22 + k‖∇u‖22) ≥ G(t), for all t ≥ 0,

which combining with (5.8) we deduce that for 0 < α3 < 1 and t ≥ tα3 ,

‖u‖22 + k‖∇u‖22 ≥ Cα3(t− tα3)
1

1− pα3
2
−1
.
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