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COMPACTNESS OF COMMUTATORS OF TOEPLITZ
OPERATORS ON q-PSEUDOCONVEX DOMAINS
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Abstract. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and

let 1 6 q 6 n − 1. If Ω is smooth, we find sufficient conditions for the
∂-Neumann operator to be compact. If Ω is non-smooth and if q 6 p 6
n−1, we show that compactness of the ∂-Neumann operator, Np+1, on square

integrable (0, p + 1)-forms is equivalent to compactness of the commutators

[Bp, zj ], 1 6 j 6 n, on square integrable ∂-closed (0, p)-forms, where Bp is the
Bergman projection on (0, p)-forms. Moreover, we prove that compactness of

the commutator of Bp with bounded functions percolates up in the ∂-complex

on ∂-closed forms and square integrable holomorphic forms. Furthermore, we

find a characterization of compactness of the canonical solution operator, Sp+1,

of the ∂-equation restricted on (0, p+1)-forms with holomorphic coefficients in

terms of compactness of commutators [T
zj∗
p , T

zj
p ], 1 6 j 6 n, on (0, p)-forms

with holomorphic coefficients, where T
zj
p is the Bergman-Toeplitz operator

acting on (0, p)-forms with symbol zj . This extends to domains which are not
necessarily pseudoconvex.

1. Introduction and statement of main results

Since the pioneering work of Lars Hörmander, the ∂-Neumann problem showed
how linear PDE theory could revolutionize the theory of analytic functions of
several complex variables and its applications. First in this article, we discuss
sufficient conditions for compactness of the ∂-Neumann problem. Compactness
of the ∂-Neumann operator Np, 1 6 p 6 n, is a basic property with many
useful consequences. In [11], Kohn and Nirenberg showed that Np is globally
regular if it is compact on a smooth bounded pseudoconvex domain. Np is al-
ways compact on a smooth bounded strongly pseudoconvex domain, but on pseu-
doconvex domains in general not. Krantz [12] showed that Np is not compact
on a certain class of bounded Reinhardt domain. For instance on the bidisc
{(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}, Np is not compact. Thus on pseudoconvex
domains, conditions for compactness of Np are very important. However, finding
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sufficient conditions for compactness is a significant problem. An important suffi-
cient condition is Catlin’s property (P ) in [2], which generalized by McNeal [13] to
property (P̃ ).

A domain Ω has property (P ) if for every positive number M there exists a
smooth plurisubharmonic function λ on Ω such that 0 6 λ 6 1 on Ω and i∂∂λ >
iM∂∂|z|2 on the boundary bΩ.

A domain Ω has property (P̃ ) if for every positive number M there exists λ =
λM ∈ C2(Ω) such that |∂λ|i∂∂λ 6 1 and the sum of any q eigenvalues of the matrix(

∂2λ
∂zk∂z`

)
(z) >M , for all z ∈ bΩ.

Henkin and Iordan [7] showed that Np, 1 6 p 6 n, is compact on a hyperconvex
domain. On locally convex domains, property (P ) and property (P̃ ) are equivalent,
and equivalent to compactness of Np, for 1 6 p 6 n. Moreover, the three prop-
erties are equivalent to a simple geometric condition, the absence of p-dimensional
varieties from the boundary (see [4]). (Both (P ) and (P̃ ) can also be formulated
naturally at the level of (0, p)-forms; Thus (Pp) ⇒ (Pp+1), (P̃p) ⇒ (P̃p+1), and
(Pp) ⇒ (P̃p) for all 1 6 p 6 n, see [4, 13]). In the following theorem we give
sufficient conditions for compactness of Np on a smooth bounded q-pseudoconvex
domain for q 6 p 6 n.

Theorem 1.1. Let Ω be a smooth bounded q-pseudoconvex domain in Cn, n > 2
and let 1 6 q 6 n. If Ω satisfies property (P ), Thus the ∂-Neumann operator, Np,
is compact for q 6 p 6 n. The same is true if Ω satisfies property (P̃ ).

Second, we characterize compactness of the ∂-Neumann operator on square in-
tegrable (0, p)-forms. According to a result of Fu and Straube [4], compactness of
the restriction to forms with holomorphic coefficients implies compactness of the
solution operator Sp to ∂ on convex domains. Haslinger and Helffer [5] discussed
compactness of Sp to ∂ on weighted L2 spaces on Cn. On pseudoconvex domains,
Haslinger [6] showed that compactness of N1 restricted to (0, 1)-forms with holo-
morphic coefficients is equivalent to compactness of the commutator [B,M ] defined
on L2(Ω), where B is the Bergman projection and M is pseudodifferential operator
of order 0. He also proved the equivalence of (4), (5), (6), and (7) of Theorem 1.2
when p = 0. Çelik and Şahutoǧlu [3] proved Theorem 1.2 for any (r, p)-form on
pseudoconvex domains. In the following theorem we show that these results are
valid for any (0, p)-form on bounded q-pseudoconvex domains for q 6 p 6 n.

Theorem 1.2. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and let
1 6 q 6 n− 1. Thus, for q 6 p 6 n− 1, the following are equivalent:

(1) Np+1 is compact on L2
0,p+1(Ω),

(2) Sp+1 is compact on L2
0,p+1(Ω),

(3) Sp+1 is compact on K2
0,p+1(Ω),

(4) [Bp, zj ] is compact on K2
0,p(Ω) for all 1 6 j 6 n,

(5) [Bp, zj ] is compact on L2
0,p(Ω) for all 1 6 j 6 n,

(6) [Bp, φ] is compact on L2
0,p(Ω) for all φ ∈ C(Ω),

(7) [Bp, φ] is compact on K2
0,p(Ω) for all φ ∈ C(Ω).

Compactness of the ∂-Neumann operator enjoys several important properties.
Among these are the facts that compactness of Np and those of Sp and the commu-
tators [Bp, φ] percolate up the complex. That is, if Np is compact, so is Np+1 and
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similarly for Sp and [Bp, φ]. On a pseudoconvex domain Ω, Çelik and Şahutoǧlu [3],
proved that the same is true for the commutator of the Bergman projection with
a function continuous on the closure of Ω. In the following theorem we show that
the same is true for Np, Sp and the commutator [Bp, φ] of the Bergman projection
Bp with a function continuous on the closure of a q-pseudoconvex domain.

Theorem 1.3. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and let
1 6 q 6 n− 1 and φ ∈ L∞(Ω). Thus, for q 6 p 6 n− 1, we have the following:

(1) compactness of Np implies compactness of Np+1,
(2) compactness of Sp on K2

0,p(Ω) implies compactness of Sp+1 on K2
0,p+1(Ω),

(3) compactness of [Bp, φ] on K2
0,p(Ω) implies compactness of [Bp+1, φ] on

K2
0,p+1(Ω),

(4) compactness of [Bp, φ] on H2
0,p(Ω) implies compactness of [Bp+1, φ] on

H2
0,p+1(Ω).

The final purpose of this article is to characterize the connection between the
∂-Neumann operator and the commutators of the Bergman-Toeplitz operators with
multiplication operators. Sheu and Upmeier [16], found a characterization for com-
pactness of N1 on (0, 1)-forms with holomorphic coefficients on pseudoconvex Rein-
hardt domains by the nonexistence of analytic discs in the boundary and also by
properties of the Bergman-Toeplitz C∗-algebra. They also showed that compactness
of S1 on (0, 1)-forms with holomorphic coefficients can be characterized by com-
pactness of commutators of Bergman Toeplitz-operators on pseudoconvex domains.
In [15], the structure of Toeplitz operators is studied for the strongly pseudoconvex
domains and the more general domains of finite type. Knirsch [10] proved Theorem
1.4 on a pseudoconvex domain. In the following theorem we extend these results
to the case of q-pseudoconvex domains.

Theorem 1.4. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and
1 6 q 6 n− 1. Thus, for q 6 p 6 n− 1 the following are equivalent:

(1) Np+1 is compact on H2
0,p+1(Ω),

(2) Sp+1 is compact on H2
0,p+1(Ω),

(3) [T zj∗p , T
zj
p ] is compact on H2

0,p(Ω) for all 1 6 j 6 n.

2. Proof of Theorem 1.1

Let Ω be a bounded domain in Cn and let 0 6 p 6 n. Let L2(Ω) be the space of
square integrable functions on Ω with respect to the Lebesgue measure dV in Cn.
Let

L2
0,p(Ω) =

{
α =

∑
|K|=p

′
αK dzK : αK ∈ L2(Ω), for all K

}
be the space of (0, p)-forms with L2(Ω)-coefficients. For a real function ϕ in C2,
the weighted L2

ϕ-norm is defined by

‖α‖2ϕ = 〈α, α〉ϕ := ‖αe−ϕ/2‖2 =
∫

Ω

|α|2e−ϕ dV.

The ∂-operator on (0, p)-forms is

∂
( ∑
|K|=p

′
αK dzK

)
=

n∑
j=1

∑
|K|=p

′ ∂αK
∂zj

dzj ∧ dzK .
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with dom ∂ = {α ∈ L2
0,p(Ω) : ∂α ∈ L2

0,p+1(Ω)}. The derivatives are taken in the
sense of distributions. Let ∂

∗
ϕ be the adjoint operator of ∂ from L2

0,p+1(Ω) into
L2

0,p(Ω). Denote by C∞0,p(Cn) the space of complex-valued differential forms of class
C∞ and of type (0, p) on Cn and C∞0,p(Ω) = {α

∣∣
Ω

;α ∈ C∞0,p(Cn)} the subspace of
C∞0,p(Ω) whose elements can be extended smoothly up to the boundary bΩ.

Proposition 2.1 ([17]). Let Ω be a bounded domain in Cn with C2 boundary and
(C2) defining function ρ and let α ∈ C∞0,p(Ω) ∩ dom ∂

∗
ϕ, 1 6 p 6 n. Furthermore,

assume that g, ϕ ∈ C2(Ω) with g > 0, thus

‖√g∂α‖2ϕ + ‖√g∂∗ϕα‖2ϕ

=
∑

|L|=p−1

′ n∑
j,k=1

∫
bΩ

g
∂2ρ

∂zj∂zk
αjLαkL e

−ϕ dS

+
∑
|K|=p

′ n∑
k=1

∫
Ω

g|∂αK
∂zk
|2e−ϕ dV

+
∑

|L|=p−1

′ n∑
j,k=1

∫
Ω

(
g

∂2ϕ

∂zj∂zk
− ∂2g

∂zj∂zk

)
αjLαkLe

−ϕ dV

+ 2 Re〈
∑

|L|=p−1

′ n∑
j=1

αjL
∂g

∂zj
dzL, ∂

∗
ϕα〉ϕ.

(2.1)

The case of g ≡ 1 and ϕ ≡ 0 is the classical Kohn-Morrey formula.

Definition 2.2. Let Ω be a bounded domain in Cn and let q be an integer with
1 6 q 6 n. A semicontinuous function η defined in Ω is called a q-subharmonic
function if for every q-dimension space L in Cn, η|L is a subharmonic function on
L∩Ω. This means that for every compact subset D b L∩Ω and every continuous
harmonic function h on D satisfies η 6 h on bD Thus η 6 h on D.

Proposition 2.3 ([1, 8]). Let Ω be a bounded domain in Cn and let q be an integer
with 1 6 q 6 n. Let ρ : Ω→ [−∞,∞) be a C2 smooth function. Thus the following
statements are equivalent:

(1) ρ is a q-subharmonic function.
(2) For every smooth (0, p)-form α =

∑
|J|=p αJ dzj, we have

∑
|K|=p−1

′ n∑
j,k=1

∂2ρ

∂zj∂zk
αjKαkK > 0 for every p > q. (2.2)

.

A function ρ ∈ C2(U) is called strongly q-subharmonic if ρ satisfies (2.2) with
strict inequality. Also Ω is strongly q-pseudoconvex if the boundary of Ω, is of class
C2 and its defining function is strongly q-subharmonic.

Definition 2.4. Ω is said to be q-pseudoconvex if there is a q-subharmonic ex-
haustion function on Ω.

To prove Theorem 1.1, we need a preliminary estimate, which follows easily, as
in [13], from the identity (2.1).
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Proposition 2.5. Let Ω be a smooth bounded q-pseudoconvex domain in Cn and
let 1 6 q 6 n. Assume that g, ϕ ∈ C2(Ω) with g > 0, Thus, for q 6 p 6 n and for
α ∈ C∞0,p(Ω) ∩ dom ∂

∗
ϕ, one obtains

‖√g∂α‖2ϕ +
(
1 +

1
τ

)
‖√g∂∗ϕα‖2ϕ

>
′∑

|K|=p

n∑
k=1

∫
Ω

g|∂αK
∂zk
|2e−ϕ dV −

∑
|L|=p−1

′
∫

Ω

τ
∣∣ 1
√
g

n∑
j=1

∂g

∂zj
αjL

∣∣e−ϕ
+

∑
|L|=p−1

′ n∑
j,k=1

∫
Ω

(
g

∂2ϕ

∂zj∂zk
− ∂2g

∂zj∂zk

)
αjLαkLe

−ϕ dV,

(2.3)

for any positive number τ .

Proof. Following (2.2), q-pseudoconvexity of bΩ implies that the boundary integral
in (2.1) is nonnegative for q 6 p 6 n. In the last term on the right-hand side of
(2.1), insert 1/

√
g into the first factor of the inner product and

√
g into the second

factor. Using the Cauchy-Schwarz inequality for that term, followed by the simple
inequality 2|st| 6 1

τ s
2 + τt2 with τ > 0, yields

2 Re
〈 ∑
|L|=p−1

′ n∑
j=1

αjL
∂g

∂zj
dzL, ∂

∗
ϕα〉ϕ

6 2
∣∣〈 ∑
|L|=p−1

′ 1
√
g
e−ϕ/2

n∑
j=1

∂g

∂zj
αjL dzj ,

√
g e−ϕ/2 ∂

∗
ϕα
〉∣∣

6 2
∥∥ ∑
|L|=p−1

′ 1
√
g

n∑
j=1

∂g

∂zj
αjL dzj

∥∥
ϕ
‖√g∂∗ϕα‖ϕ

6
∑

|L|=p−1

′
τ‖ 1
√
g

n∑
j=1

∂g

∂zj
αjL‖2ϕ +

1
τ
‖√g∂∗ϕα‖2ϕ.

Thus (2.3) follows from (2.1). �

Proposition 2.6. Let Ω be a bounded q-pseudoconvex domain in Cn and 1 6 q 6 n.
Thus, for q 6 p 6 n and for α ∈ C∞0,p(Ω) ∩ dom ∂

∗
, one obtains

(1) ∂αK/∂zk ∈ L2(Ω), 1 6 k 6 n, and∑
|K|=p

′ n∑
k=1

∫
Ω

|∂αK
∂zk
|2 dV 6 ‖∂α‖2 + ‖∂∗α‖2. (2.4)

(2) If h ∈ C2(Ω), h 6 0, Thus∑
|L|=p−1

′ n∑
j,k=1

∫
Ω

eh
∂2h

∂zj∂zk
αjLαkL dV 6 ‖∂α‖2 + ‖∂∗α‖2. (2.5)

Proof. Since Ω is a bounded q-pseudoconvex domain in Cn, Thus from [1], there
exists strongly q-pseudoconvex domains Ων with smooth boundary satisfies

Ω = ∪∞ν=1Ων , Ων b Ων+1 b Ω for all ν.
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Thus, for every α ∈ C∞0,p(Ων) ∩ dom ∂
∗

with q 6 p 6 n, one obtains∑
|L|=p−1

′ n∑
j,k=1

∫
bΩν

∂2ρ

∂zj∂zk
αjLαkL dS > C

∫
bΩν

|α|2 dS, (2.6)

where C is a positive constant. One keep the differentiability assumptions from
Proposition 2.1 on Ων and on α ∈ dom ∂

∗
. Choosing ϕ ≡ 0 and g = 1 in (2.1) and

from (2.6), one obtains∑
|K|=p

′ n∑
k=1

∫
Ων

∣∣∂αK
∂zk

∣∣2 dV 6 ‖∂α‖2Ων + ‖∂∗α‖2Ων . (2.7)

Replace g by 1 − eh with h 6 0 an arbitrary twice continuously differentiable
function. By applying the Cauchy-Schwarz inequality to the last term on the right-
hand side of (2.1), one obtains∑

|L|=p−1

′ n∑
j,k=1

∫
Ων

eh
∂2h

∂zj∂zk
αjLαkL dV − ‖eh/2∂

∗
α‖Ων

6 ‖√g ∂α‖2Ων + ‖√g∂∗α‖2Ων .

Since g + eh = 1 and g > 1, it follows that∑
|L|=p−1

′ n∑
j,k=1

∫
Ων

eh
∂2h

∂zj∂zk
αjLαkL dV 6 ‖∂α‖2Ων + ‖∂∗α‖2Ων , (2.8)

for all α ∈ C∞0,p(Ων) ∩ dom ∂
∗
, p > q. Estimates (2.7) and (2.8) were derived under

the assumption that α is continuously differentiable on Ων , it holds by density for
all square-integrable forms α ∈ dom ∂∩ dom ∂

∗
. The latter property carries over to

arbitrary bounded q-pseudoconvex domains by exhausting a nonsmooth by smooth
ones, and thus so does inequality (2.4) and (2.5). �

The complex Laplacian �p = ∂∂
∗

+ ∂
∗
∂ acts as an unbounded selfadjoint oper-

ator on L2
0,p(Ω), 1 6 p 6 n, it is surjective and thus has a continuous inverse, the

∂-Neumann operator Np. The space

K2
0,p(Ω) = {α ∈ L2

0,p(Ω) : ∂α = 0}

is a closed subspace of L2
0,p(Ω) because ∂ is a closed and densely defined operator.

A bounded, linear operator

Sp+1 : L2
0,p+1(Ω) ∩K2

0,p(Ω)→ L2
0,p(Ω)

is called a canonical solution operator for ∂ if ∂Sp+1α = α for all α ∈ L2
0,p+1(Ω) ∩

K2
0,p(Ω) and Sp+1α ⊥ K2

0,p(Ω). The Bergman projection Bp : L2
0,p(Ω) → K2

0,p(Ω)
is the orthogonal projection from L2

0,p(Ω) onto K2
0,p(Ω) and B0 is the classical

Bergman projection.

Proposition 2.7. Let Ω be a bounded q-pseudoconvex domain in Cn for 1 6 q 6 n.
Thus, for q 6 p 6 n, there exists a bounded linear operator Np : L2

0,p(Ω)→ L2
0,p(Ω)

which has the following properties:
(1) Rang(Np) ⊂ dom�p, Np�p = I on dom�p,
(2) for α ∈ L2

0,p(Ω), we have α = ∂∂
∗
Npα ⊕ ∂

∗
∂Npα,
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(3) ∂Np = Np∂ on dom ∂, q 6 p 6 n, ∂
∗
Np = Np∂

∗
on dom ∂

∗
, q+ 1 6 p 6 n,

(4) if ∂α = 0, Thus u = ∂
∗
Npα solves the equation ∂u = α,

(5) Np, ∂Np and ∂
∗
Np are bounded operators with respect to the L2-norms,

(6) the Bergmann projection Bp is given by

Bp = Id− Sp+1∂. (2.9)

Proof. If z0 is a point of Ων , and h(z) = −1+ |z−z0|2/d2, where d = supz,z′∈Ων |z−
z′| is the diameter of Ων , Thus (2.8) implies the fundamental estimate

‖α‖2Ων 6
(d2e

p

)(
‖∂α‖2Ων + ‖∂∗α‖2Ων

)
.

This estimate was derived under the assumption that α is continuously differentiable
on Ων , it holds by density for all square-integrable forms α ∈ dom ∂∩dom ∂

∗
. Thus,

by exhausting as in Proposition 2.6 and for p > q, one obtains

‖α‖Ω 6
(d2e

p

)
‖�pα‖Ω. (2.10)

Since �p is a linear closed densely defined operator, Thus, from [9, Theorem 1.1.1];
Rang(�p) is closed. Thus, from [9, (1.1.1)] and the fact that �p is self adjoint, one
obtains the Hodge decomposition

L2
0,p(Ω) = ∂∂

∗
dom�p ⊕ ∂

∗
∂ dom�p.

Since �p : dom�p → Rang(�p) = L2
0,p(Ω) is one to one on dom�p from (2.10),

there exists a unique bounded inverse operator Np : Rang(�p) → dom�p satisfies
Np�pα = α on dom�p and satisfies �pNp = I on L2

0,p(Ω). Thus (1) and (2) follow.
To show that ∂

∗
Np = Np∂

∗
on dom ∂

∗
, by using (2), ∂

∗
α = ∂

∗
∂∂
∗
Npα, for

α ∈ dom ∂
∗
. Thus

Np∂
∗
α = Np∂

∗
∂∂
∗
Npα = Np(∂

∗
∂ + ∂∂

∗
)∂
∗
Npα = ∂

∗
Npα.

A similar argument shows that ∂Np = Np∂ on dom ∂. By using (3) and since ∂α =
0, one obtains ∂Npα = Np∂α = 0. Thus, by using (2), we obtains α = ∂∂

∗
Npα.

Thus u = ∂
∗
Npα satisfies the equation ∂u = α. Since RangNp ⊂ dom�p, Thus by

applying (2.10) to Npα instead of α, (5) follows. To prove (6), we consider the two
complementary cases, α ∈ K2

0,p(Ω) and α ⊥ K2
0,p(Ω), and prove this expression for

each. First, if α ∈ K2
0,p(Ω), then (Id− Sp+1∂)α = α as expected. If α ⊥ K2

0,p(Ω),
then Sp+1∂α = α since the ranges of ∂ and ∂

∗
are closed. Thus, Sp+1α = 0 and

the proof follows. �

Proof of Theorem 1.1. The first part of Theorem 1.1 follows by using (2.5), as in
[17, Propositions 4.2 and 4.8]. And by applying Proposition 2.5, the second part of
Theorem 1.1 follows as in [13, Theorem 4.1 and Proposition 4.2] and [17] respec-
tively. �

3. Proof of Theorem 1.2

Let Ω be a bounded domain in Cn and let 0 6 p 6 n and φ ∈ L∞(Ω). Denote
by

H2(Ω) = {α ∈ L2(Ω) : α is holomorphic on Ω}
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the Bergman space which is a closed subspace of L2(Ω). The space

H2
0,p(Ω) =

{
α =

∑
|K|=p

′
αK dzK : αK ∈ H2(Ω), for all K

}
is the space of (0, p)-forms with holomorphic coefficients, is equipped with the
induced norm from L2

0,p(Ω) and so H2
0,p(Ω) is a closed subspace of L2

0,p(Ω). For
p = 0, H2

0,0(Ω) = K2
0,0(Ω) is called the Bergman space, but for p > 1 only one

obtains H2
0,p(Ω) $ K2

0,p(Ω).

Example 3.1 ([10]). Let α =
∑n
j=1 αj dzj ∈ L2

0,1(Ω). Thus

α ∈ K2
0,1(Ω)⇔ ∂αj

∂zk
=
∂αk
∂zj

, 1 6 j < k 6 n,

which can be seen from

∂α =
n∑

j,k=1

∂αj
∂zk

dzk ∧ dzj =
∑

16j<k6n

[∂αj
∂zk
− ∂αk
∂zj

]
dzk ∧ dzj .

Now let α =
∑3
j=1 αj dzj ∈ L2

0,1(Ω) and g =
∑3
j=1 gj dzj ∈ L2

0,1(Ω) with α1 :=
z1 + z2 + z3, α2 := z1 + z2 + z3, α3 := z1 + z2 and g1 := α3, g2 = α1, g3 := α2.
Using the above equivalence we have α ∈ K2

0,1(Ω), but g /∈ K2
0,1(Ω).

Remark 3.2 ([10]). The structure of H2
0,p(Ω) is less complicated than K2

0,p(Ω).
If α ∈ H2

0,p(Ω), Thus every form with the same coefficients, but with different
indicates is also in H2

0,p(Ω). But for α ∈ K2
0,p(Ω), p > 0.

Lemma 3.3. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2.
(i) Let α ∈ K2

0,p+1(Ω), where 1 6 q 6 n − 1. Thus, for q 6 p 6 n − 1, there
exist αj ∈ K2

0,p(Ω), 1 6 j 6 n, satisfies

α =
n∑
j=1

αj ∧ dzj and
n∑
j=1

‖αj‖ . ‖α‖. (3.1)

(ii) Let α ∈ H2
0,p+1(Ω), where 1 6 q 6 n − 1. Thus, for q 6 p 6 n − 1, there

exist αj ∈ H2
0,p(Ω), 1 6 j 6 n, satisfies

α =
n∑
j=1

αj ∧ dzj and ‖α‖2 =
n∑
j=1

‖αj‖2. (3.2)

(iii) Let α ∈ K2
0,p+1(Ω), where 1 6 p 6 n − 1. Thus, for q 6 p 6 n − 1, there

exist αj ∈ K2
0,p(Ω), 1 6 j 6 n, satisfies

[Bp+1, φ]α = (Id−Bp+1)
( n∑
j=1

([Bp, φ]αj) ∧ dzj
)
. (3.3)

Proof. (i) As in [3, Lemma 1], for

f =
∑
|K|=p

′
fK dzK = Sp+1α,

one can write

f =
n∑
j=1

fj ∧ dzj ,
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where the fj ’s are square integrable (0, p− 1)-forms satisfies there are no common
terms between fj ∧ dzj and fk ∧ dzk if j 6= k. This can be done as follows: Let
∨ denote the adjoint of the exterior multiplication. That is, if f is a (0, p)-form
dzj ∨ f is a (0, p− 1)-form satisfies

〈h ∧ dzj , f〉 = 〈h, dzj ∨ f〉 for all h ∈ C∞0,p−1(Cn).

Thus, one can define
f1 = dz1 ∨ f,

fj = dzj ∨

(
f −

j−1∑
k=1

fk ∧ dzk

)
, for j = 2, 3, . . . , n.

(3.4)

Namely, f1 is defined by collecting all terms that contain dz1 and writing their sum
as f1 ∧ dz1. Thus, one defines f1 by collecting the terms in f − f1 ∧ dz1 with dz1

and writing their sum as f2 ∧ dz2 etc. Since ∂α = 0 and f is in the range of ∂
∗
, we

have ∂f = α and ∂
∗
f = 0. So f ∈ dom ∂ ∩ dom ∂

∗
. Also since fj consists of terms

fK for some |K| = p, “bar” derivatives of fj ’s come from “bar” derivatives of f .
Thus

n∑
j,k=1

‖ ∂fj
∂zk
‖ .

∑
|K|=p

′ n∑
k=1

‖∂fK
∂zk
‖.

And by using (2.4), one obtains
n∑

j,k=1

‖ ∂fj
∂zk
‖ . ‖∂f‖+ ‖∂∗f‖ = ‖α‖.

Hence, ‖∂fj‖ . ‖α‖ for every j, and

α = ∂f =
n∑
j=1

∂fj ∧ dzj .

Thus (3.1) follows by defining αj = ∂fj .
(ii) By defining α1 and αj as f1 and fj in (3.4). Namely, α1 is defined by

collecting all terms that contain dz1 and writing their sum as α1 ∧ dz1. Thus, one
defines α1 by collecting the terms in α − α1 ∧ dz1 with dz1 and writing their sum
as α2 ∧ dz2 etc. The proof is completed as in (i).

(iii) Since both sides of (3.3) are orthogonal to K2
0,p+1(Ω) we need only to show

that for any h ∈ L2
0,p+1(Ω) that is orthogonal to K2

0,p+1(Ω), one obtains〈
[Bp+1, φ]α− (Id−Bp+1)

( n∑
j=1

([Bp, φ]αj) ∧ dzj
)
, h >= 0.

One can computes that〈
[Bp+1, φ]α− (Id−Bp+1)

( n∑
j=1

([Bp, φ]αj) ∧ dzj
)
, h
〉

= −〈φα, h〉 − 〈
n∑
j=1

Bp(φαj) ∧ dzj , h〉+ 〈
n∑
j=1

φαj ∧ dzj , h〉

= −〈
n∑
j=1

Bp(φαj) ∧ dzj , h〉.
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The fact that ∂(f ∧ dzj) = ∂f ∧ dzj implies that the (0, p+ 1)-forms Bp(φαj)∧ dzj
are ∂-closed for j = 1, . . . , n. Thus

〈
n∑
j=1

Bp(φαj) ∧ dzj , h〉 = 0

and (3.3) follows. �

Remark 3.4. Indeed, any (0, p+ 1)-form α =
∑
|J|=p+1

′
αJ dzJ can be written in

the form

α =
1

(p+ 1)

n∑
j=1

∑
|L|=p−1

′
αjLdzj ∧ dzL,

and if α has holomorphic coefficients, the αjL are holomorphic. Let α ∈ K2
0,p+1(Ω),

one obtains

[Bp, φ]α = Bpφα− φBpα = φα− Sp+1∂(φα)− φα = −Sp+1(∂φ ∧ α),

for all φ ∈ C(Ω). Thus, by taking φ = zj , one obtains

−
n∑
j=1

[Bp, zj ]
( ∑
|L|=p−1

′
αjL dzL

)
=

n∑
j=1

Sp+1

(
dzj ∧

∑
|L|=p−1

′
αjL dzL

)

= Sp+1

( n∑
j=1

∑
|L|=p−1

′
αjL dzj ∧ dzL

)
= (p+ 1)Sp+1α.

(3.5)

Lemma 3.5. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and 1 6
q 6 n− 1. Thus, for q 6 p 6 n− 1, the following are equivalent:

(1) Sp+1 is compact on K2
0,p+1(Ω),

(2) [Bp, zj ] is compact on K2
0,p(Ω) for all 1 6 j 6 n.

Proof. The implication (1) ⇒ (2) follows from (3.5). The implication (2) ⇒ (1)
follows from (3.1) as follows. Assume that {αk} is a bounded sequence inK2

0,p+1(Ω),
Thus for each k there exist ∂-closed (0, p)-forms αkj for 1 6 j 6 n satisfies

αk =
n∑
j=1

αkj ∧ dzj and
n∑
j=1

‖αkj ‖ 6 ‖αk‖.

Thus, from (3.5), one obtains

Sp+1(αk) = (−1)p+1
n∑
j=1

[Bp, zj ](αkj ).

Furthermore, if [Bp, zj ] is compact on ∂-closed (0, p)-forms for 1 6 j 6 n, the
sequences {[Bp, zj ](αkj )} have convergent subsequences for each j. Hence Sp+1 is
compact on K2

0,p+1(Ω). Thus the proof follows. �

Lemma 3.6. Let Ω be a bounded q-pseudoconvex domain in Cn, n > 2 and let
1 6 q 6 n− 1. Thus, for q 6 p 6 n− 1, the following are equivalent:

(1) Np+1 is compact on L2
0,p+1(Ω),

(2) [Bp, φ] is compact on K2
0,p(Ω) for all φ ∈ C(Ω).
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Proof. The implication (1) ⇒ (2) follows as [17, Proposition 4.1]. We prove only
the implication (2) ⇒ (1). Assume that [Bp, φ] is compact for all φ ∈ C(Ω) and
f ∈ K2

0,p+2(Ω). Thus, by Lemma 3.5, Sp+1 is compact. Moreover, by (3.1), there
exist fj ∈ K2

0,p+1(Ω) with

f =
n∑
j=1

fj ∧ dzj and
n∑
j=1

‖fj‖ . ‖f‖.

Thus

S(f) =
n∑
j=1

Sp+1(fj) ∧ dzj

solves ∂u = f and S is compact. Thus Sp+2 = (Id − Bp+1)S is compact on
K2

0,p+2(Ω) and Np+1 is compact by the Range’s formula [14]:

Np = (Sp)∗Sp + Sp+1(Sp+1)∗. (3.6)

Thus the proof follows. �

Proof of Theorem 1.2. The equivalence (1) ⇔ (2) follows from (3.6). The equiva-
lence (2)⇔ (3) follows from the compactness of Sp+1 on ∂-closed forms is equivalent
to compactness of Sp+1 on L2

0,p+1(Ω) as Sp+1 vanishes on the orthogonal comple-
ment of K2

0,p+1(Ω). The equivalence (3) ⇔ (4) follows from Lemma 3.5. The
equivalence (5)⇔ (6) follows from [3, Corollary 1]. The equivalence of (1) and (7)
follows from Lemma 3.6. The implication (2)⇒ (4) is easy; (2)⇒ (5) follows from
[17, Proposition 4.1]. The implications (6)⇒ (7) and (7)⇒ (4) are obvious. �

Corollary 3.7. For q 6 p 6 n− 1, the following are equivalent:

(1) [Bp, φ] is compact on H2
0,p(Ω), for all φ ∈ C(Ω),

(2) Np+1 is compact on H2
0,p+1(Ω).

The proof of the above corollary follows by using (3.2) as in Lemma 3.6.

4. Proof of Theorem 1.3

The proof will be based on several steps.

Step 1. (1) follows, by using (2.4) with (3.6), as in [17, Proposition 4.5]. Let
α =

∑
|J|=p+1

′
αJ dzJ ∈ dom ∂ ∩ dom ∂

∗
. For k = 1, . . . , n, one defines (0, p)-forms

αk =
∑
|K|=p

′
αkK dzK . Thus αk ∈ dom ∂ ∩ dom ∂

∗
. For dom ∂, this holds because

the components of ∂αk are linear combinations of terms ∂αJ/∂zj , and their L2-
norm is controlled by ‖∂α‖ + ‖∂∗α‖ from (2.4). To see that αk ∈ dom ∂

∗
, note

first that inner products with αk are closely related to inner products with u: if
u =

∑
|K|=p

′
aK dzK ∈ L2

0,p(Ω), Thus for k fixed,

〈dzk ∧ u, α〉 = 〈
∑
|K|=p

′
aK(dzk ∧ dzK),

∑
|J|=p+1

′
αJ dzJ〉

=
∑
|K|=p

′
aKαkK = 〈u, αk〉.

(4.1)
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The inner products are in L2
0,p+1(Ω) and L2

0,p(Ω), respectively. Thus, for β ∈ dom ∂,

〈∂β, αk〉 = 〈dzk ∧ ∂β, α〉 = −〈∂(dzk ∧ β), α〉

= −〈dzk ∧ β, ∂
∗
α〉 = −〈β, γk〉,

(4.2)

where γk =
∑
|L|=p−1

′(∂
∗
α)kL dzL. The last equality follows as in (4.1). (4.2)

shows that αk ∈ dom ∂
∗
, and that

∂
∗
αk = −γk. (4.3)

Now fix ε > 0. The compactness estimate for the p-forms αk gives

‖α‖2 =
1

(p+ 1)

n∑
k=1

‖αk‖2

6
1

(p+ 1)

n∑
k=1

(
ε(‖∂αk‖2 + ‖∂∗αk‖2) + Cε‖αk‖2W−1(Ω)

)
,

(4.4)

where the first equality follows from the definition of αk and the observation that
in the sum on the right-hand side of this equality, ‖αJ‖2 occurs precisely (p + 1)
times for each strictly increasing multi-index J of length p + 1. Both ‖∂αk‖2 and
‖∂∗αk‖2 are dominated by ‖∂α‖2 + ‖∂∗α‖2, independently of ε. For ‖∂αk‖2 this
was noted at the beginning of the proof, for ‖∂∗αk‖2, this follows from (4.3). Since
‖αk‖2W−1(Ω) . ‖α‖

2
W−1(Ω), by the definition of αk, (4.4) implies a compactness

estimate for α.
Step 2. (2) follows by using (3.1), as in [3, Lemma 3]. In fact, we assume that
{αk} is a bounded sequence of ∂-closed (0, p+ 1)-forms. Thus, by (3.1), there exist
∂-closed (0, p)-forms {αkj }’s satisfies

αk =
n∑
j=1

αkj ∧ dzj and
n∑
j=1

‖αkj ‖ . ‖αk‖.

Let us define fk =
∑n
j=1 Sp(α

k
j ) ∧ dzj . Thus ∂fk = αk and compactness of Sp

implies that {fk} has a convergent subsequence. Thus, ∂ has a compact solu-
tion operator on (0, p + 1)-forms. Hence, the canonical solution operator, Sp+1, is
compact on K2

0,p+1(Ω).

Step 3. (3) follows by using (3.1), as in [3, Theorem 2]. If p = n − 1 Thus
K2

0,p+1(Ω) = L2
0,n(Ω) and [Bp+1, φ] is the zero operator, hence compact. So, we

need to prove this part for n > 3 and q 6 p 6 n− 2 and for α ∈ K2
0,p+1(Ω). Thus,

from (3.1), there exist αj ∈ K2
0,p(Ω), 1 6 j 6 n, satisfies

α =
n∑
j=1

αj ∧ dzj and
n∑
j=1

‖αj‖ . ‖α‖.

Let {uk} ∈ K2
0,p+1(Ω) be a bounded sequence. Thus (3.1) implies that for each k

and 1 6 j 6 n there exists {ukj } ∈ K2
0,p(Ω) satisfies

uk =
n∑
j=1

ukj ∧ dzj and
n∑
j=1

‖ukj ‖ . ‖uk‖.
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Moreover, compactness of [Bp, φ] on K2
0,p(Ω) implies that {[Bp, φ]ukj }, 1 6 j 6 n,

has a convergent subsequence. By using (3.3), [Bp+1, φ] is compact on K2
0,p+1(Ω).

Step 4. (4) follows by using (3.2), as in the part (3).

Corollary 4.1. Compactness of [Bp, φ] on K2
0,p(Ω), for a fixed φ, does not neces-

sarily imply compactness of [Bp, φ] on L2
0,p(Ω).

The proof of the above corollary follows from [3].

5. Proof of Theorem 1.4

We identify φ ∈ L∞(Ω) with the multiplication operator φ : L2
0,p(Ω) → L2

0,p(Ω)
acting by

φ : α =
∑
|K|=p

′
αK dzK 7→

∑
|K|=p

′
(φαK) dzK .

It follows that φ is a bounded operator with ‖φ‖ 6 ‖φ‖∞ and φ∗ = φ. The
composition

Tφp = BpφBp : L2
0,p(Ω)→ L2

0,p(Ω)
is called the Bergman-Toeplitz operator acting on (0, p)-forms with symbol φ. The
Bergman-Toeplitz operators are bounded operators with ‖Tφp ‖ 6 ‖φ‖∞ and Tφ

∗

p =
Tφp . Clearly Tφp α = Bpφ(α), for all α ∈ K2

0,p(Ω).

Lemma 5.1 ([10]). The selfcommutator [T zj∗p , T
zj
p ] of T zjp , is compact if and only

if the operator (Id−Bp)zj is compact.

Proof. Given a Toeplitz operator with symbol φ ∈ H∞(Ω), the selfcommutator of
Tφp , is given by

[Tφ
∗

p , Tφp ]f = Bpφφf −BpφBpφf = Bpφ(Id−Bp)φf, f ∈ H2
0,p(Ω). (5.1)

Thus, [Tφ
∗

p , Tφp ] is compact if and only if the operator f → (Id − Bp)φf from
H2

0,p(Ω) into L2
0,p(Ω) is compact. Using the ith coordinate function zi in place of φ

in (5.1), one obtains

[T zj∗p , T zjp ]f = Bp zj(Id−Bp)zjf, f ∈ H2
0,p(Ω).

Thus, [T zj∗p , T
zj
p ] is compact if and only if the operator (Id−Bp)zj is compact. �

To prove a formula for Sp+1 restricted on (0, p + 1)-forms with holomorphic
coefficients, the following definitions are needed

J p := {(j1, . . . , jp) ∈ {1, . . . , n}p : j1 < · · · < jn},
Mp := {(j1, . . . , jp) ∈ {1, . . . , n}p : j1 6= · · · 6= jn}.

Let K,M ∈ Mp = ∪J∈J pMp
J . If K and M have the same components, one can

write K ∼ M and Mp
K := {M ∈ Mp : K ∼ M} is the equivalence class of K. So

one can writes
α =

∑
|K|=p

′
αK dzK =

∑
J∈J p

αK dzK

for (0, p)-forms α with strongly increasing p-tuple J and∑
K∈Mp

αK dzK =
∑
J∈J p

∑
K∈Mp

J

αK dzK
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for (0, p)-forms with non strongly increasing p-tuple K. It is clear thatMp
J ∩J p =

{J}, for all J ∈ J p. Thus the mappingMp 3M 7−→ J(M) ∈Mp
M ∩J p is unique,

which we need essentially in the proof of Lemma 5.2 with the facts |Mp
M | = p! and

|Mp| = p! |J p|. As in [10, Theorem 3.1], we prove the following lemma.

Lemma 5.2. Let Ω be a bounded q-pseudoconvex domain in Cn and let 1 6 q 6
n − 1, n > 2. Let α =

∑
|K|=p+1

′
αK dzJ ∈ H2

0,p+1(Ω), Thus, for q 6 p 6 n − 1,
one obtains

Sp+1α =
1

(p+ 1)

n∑
j=1

[(Id−Bp)zj ]
( ∑
|K|=p, j /∈K

′
αJ(j,K)ε

j,K
J(j,K)dzK

)
, (5.2)

where J(j,K) denotes the strongly increasing (p+1)-tuple with the same components

as the (p+ 1)-tuple (j,K) and εj,KJ(j,K) is the sign of the permutation
(

j,K
J(j,K)

)
.

Proof. First we show that

α =
∑
|J|=p+1

′
αJ dzJ =

1
(p+ 1)

n∑
j=1

∑
|K|=p

′
αJ(j,K)ε

j,K
J(j,K)dzj ∧ dzK . (5.3)

For this we consider the equivalence class Mp+1
J = {M1, . . . ,M(p+1)!} and we get

(p+ 1)!α =
∑

J∈J p+1

αK
[
dzJ + . . .

(p+1)!
+ dzJ

]
=

∑
J∈J p+1

αK
[
εM1
J dzM1 + . . .

(p+1)!
+ ε

M(p+1)!

J dzM(p+1)!

]
=

∑
J∈J p+1

αK
∑

M∈Mp+1
J

εMJ dzM

=
∑

M∈Mp+1

αJ(M)ε
M
J(M)dzM

=
n∑
j=1

∑
L∈Mp

αJ(j,L)ε
j,L
J(j,L)dzj ∧ dzL

=
n∑
j=1

∑
|K|=p

′ ∑
L∈Mp

K

αJ(j,L)ε
j,L
J(j,L)ε

K
L dzj ∧ dzK .

Consider the inner sum∑
L∈Mp

K

αJ(j,L)ε
j,L
J(j,L)ε

K
L =

∑
L∈Mp

K

αJ(j,K)ε
j,L
J(j,K)ε

K
L

=
∑

L∈Mp
K

αJ(j,K)ε
j,L
J(j,K)ε

j,K
j,L

=
∑

L∈Mp
K

αJ(j,K)ε
j,K
J(j,K)

= p!αJ(j,K)ε
j,K
J(j,K)
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and so we get

(p+ 1)!α = p!
n∑
j=1

∑
|K|=p

′
αJ(j,K)ε

j,K
J(j,K)dzj ∧ dzK .

Thus (5.3) follows. Let h =
∑
|K|=p

′
hK dzK ∈ K2

0,p(Ω), fix j and consider

zj h =
∑
|K|=p

′
zj hK dzK .

Thus
∂(zjh) =

∑
|K|=p

′
hK dzj ∧ dzK

and with the projection formula (2.9) one obtains

[(Id−Bp)zj ](h) = [Sp+1∂zj ](h) = Sp+1

( ∑
|K|=p

′
hK dzj ∧ dzK

)
. (5.4)

Using the assumption that α ∈ H2
0,p+1(Ω) and fix j, one defines

hj =
∑

|K|=p, j /∈K

′
αJ(j,K)ε

j,K
J(j,K)dzK

it follows that hj ∈ H2
0,p(Ω) ⊂ K2

0,p(Ω). Thus, one can use (5.4) for hj and obtains

[(Id−Bp)zj ]
( ∑
|K|=p, j /∈K

′
αJ(j,K)ε

j,K
J(j,K)dzK

)
= Sp+1

( ∑
|K|=p

′
αJ(j,K)ε

j,K
J(j,K) dzj ∧ dzK

)
.

From (5.3), one obtains

Sp+1(α) =
1

(p+ 1)

n∑
j=1

Sp+1

( ∑
|K|=p

′
αJ(j,K) ε

j,K
J(j,K) dzj ∧ dzK

)

=
1

(p+ 1)

n∑
j=1

[(Id−Bp)zj ]
( ∑
|K|=p, j /∈K

′
αJ(j,K)ε

j,K
J(j,K)dzK

)
.

Thus (5.2) follows. �

Proof of Theorem 1.4. The equivalence (1) ⇔ (2) follows from (3.6). Here, we
prove only the equivalence of (2) and (3) as in [10, Theorem 4.4].

First we prove (2) ⇒ (3). Let Sp+1 be a compact on H2
0,p(Ω). With Lemma

5.1 it is enough to show compactness of (Id − Bp)zj for all j = 1, . . . , n. Let
fm =

∑
|K|=p

′
fmK dzK be a bounded sequence in H2

0,p(Ω). It is clear that for every
j

umj = ∂(zjfm) =
∑
|K|=p

′
fmK dzj ∧ dzK

is a bounded sequence in H2
0,p+1(Ω). By our assumption there exists a subsequence

umkj satisfies Sp+1(umkk ) converges in L2
0,p(Ω). Thus, from (5.1) and (2.9), one

obtains convergence of [(Id−Bp)zj ](fmk) = Sp+1∂(zjfmk) = Sp+1(umkj ) in L2
0,p(Ω)

for every j.



16 S. SABER EJDE-2018/111

Second, we prove (3) ⇒ (2). Let fm =
∑
|J|=p+1

′
fmJ dzJ be a bounded se-

quence in H2
0,p+1(Ω). We have to show the existence of a subsequence fml satisfies

Sp+1(fml) converges in L2
0,p(Ω). With the equivalence of Lemma 5.1, one can as-

sume that (Id− Bp)zj is compact on H2
0,p(Ω) for all j = 1, . . . , n. For a fix j, one

defines
hmj =

∑
|K|=p j /∈K

′
fmJ(j,K)ε

j,K
J(j,K) dzK .

By using formula (5.2), one obtains

Sp+1(fm) =
1

(p+ 1)

n∑
j=1

[(Id−Bp)zj ]
( ∑
|K|=p j /∈K

′
fmJ(j,K)ε

j,K
J(j,K) dzK

)

=
1

(p+ 1)

n∑
j=1

[(Id−Bp)zj ](hmj ).

Clearly hmj is a bounded sequence in H2
0,p(Ω) for every j. Since (Id − Bp)zj is

compact on H2
0,p(Ω) for every j, there exists a subsequence (hml(1)1 ) satisfies ((Id−

Bp)z1)(hml(1)1 ) converges in L2
0,p(Ω). Clearly (hml(1)2 ) is also a bounded sequence

in H2
0,p(Ω). Thus it exists a further subsequence (hml(2)2 ) satisfies the sequences

((Id−Bp)z1)(hml(2)2 ) converge in L2
0,p(Ω). By continuing this process, one obtains

a subsequence (hml(j)j ) satisfies ((Id−Bp)z1)(hml(j)j ) converges in L2
0,p(Ω) for all j =

1, . . . , n. By defining ml = ml(n) and with formula (5.2) one obtains convergence
of

Sp+1(fml) =
1

(p+ 1)

n∑
j=1

((Id−Bp)zj) (hmlj ).

in L2
0,p(Ω) for every j. �

Corollary 5.3. For q 6 p 6 n − 1, compactness of Sp+1 on K2
0,p+1(Ω) implies

compactness of [T zj∗p , T
zj
p ] on K2

0,p(Ω) for all j with 1 6 j 6 n.

The proof of the above corollary follows by repeating the implication (2)⇒ (3)
of Theorem 1.4 for f ∈ K2

0,p(Ω).
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