INFINITELY MANY SOLUTIONS FOR A SEMILINEAR PROBLEM ON EXTERIOR DOMAINS WITH NONLINEAR BOUNDARY CONDITION

JANAK JOSHI, JOSEPH A. IAIA

Communicated by Jerome A. Goldstein

Abstract

In this article we prove the existence of an infinite number of radial solutions to $\Delta u+K(r) f(u)=0$ with a nonlinear boundary condition on the exterior of the ball of radius R centered at the origin in \mathbb{R}^{N} such that $\lim _{r \rightarrow \infty} u(r)=0$ with any given number of zeros where $f: \mathbb{R} \rightarrow \mathbb{R}$ is odd and there exists a $\beta>0$ with $f<0$ on $(0, \beta), f>0$ on (β, ∞) with f superlinear for large u, and $K(r) \sim r^{-\alpha}$ with $0<\alpha<2(N-1)$.

1. Introduction

In this article we study radial solutions to

$$
\begin{gather*}
\Delta u+K(|x|) f(u)=0 \quad \text { for } R<|x|<\infty, \tag{1.1}\\
\frac{\partial u}{\partial \eta}+c(u) u=0 \quad \text { when }|x|=R \text { and } \lim _{|x| \rightarrow \infty} u(x)=0, \tag{1.2}
\end{gather*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N \geq 2, R>0, c:[0, \infty) \rightarrow(0, \infty)$ is continuous, $\frac{\partial}{\partial \eta}$ is the outward normal derivative, f is odd and locally Lipschitz. We assume:
(H1) $f^{\prime}(0)<0$, there exists $\beta>0$ such that $f(u)<0$ on $(0, \beta), f(u)>0$ on (β, ∞).
(H2) $f(u)=|u|^{p-1} u+g(u)$ where $p>$ and $\lim _{u \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0$.
(H3) Denoting $F(u) \equiv \int_{0}^{u} f(t) d t$ we assume there exists γ with $0<\beta<\gamma$ such that $F<0$ on $(0, \gamma)$ and $F>0$ on (γ, ∞).
(H4) K and K^{\prime} are continuous on $[R, \infty)$ with $K(r)>0,2(N-1)+\frac{r K^{\prime}}{K}>0$ and there exists $\alpha \in(0,2(N-1))$ such that $\lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$.
(H5) There exist positive d_{1}, d_{2} such that $d_{1} r^{-\alpha} \leq K(r) \leq d_{2} r^{-\alpha}$ for $r \geq R$.
Note that (H4) implies $r^{2(N-1)} K$ is increasing. Our main result reads as follows.
Theorem 1.1. Assume (H1)-(H5), $N \geq 2$, and $0<\alpha<2(N-1)$. Then for each nonnegative integer n there exists a radial solution, u_{n}, of (1.1)-1.2) such that u_{n} has exactly n zeros on (R, ∞).

2010 Mathematics Subject Classification. 34B40, 35B05.
Key words and phrases. Exterior domain; superlinear; radial solution.
(C) 2018 Texas State University.

Submitted July 8, 2017. Published May 8, 2018.

The radial solutions of 1.1 on \mathbb{R}^{N} and $K(r) \equiv 1$ have been well-studied. These include [1, 2, 3, 10, 12, 14]. Recently there has been an interest in studying these problems on $\mathbb{R}^{N} \backslash B_{R}(0)$. These include [5, 6, 7, 11, 13]. In [6] positive solutions of a similar problem were studied for $N<\alpha<2(N-1)$. There the authors use the mountain pass lemma to prove existence of positive solutions. Here we use a scaling argument as in [9, 12] to prove the existence of infinitely many solutions.

2. Preliminaries

Since we are interested in radial solutions of $\sqrt{1.1}-(1.2)$, we denote $r=|x|$ and write $u(x)=u(|x|)$ where u satisfies

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+K(r) f(u)=0 \quad \text { for } R<r<\infty \tag{2.1}\\
u(R)=b>0, \quad u^{\prime}(R)=b c(b)>0 \tag{2.2}
\end{gather*}
$$

We will occasionally write $u(r, b)$ to emphasize the dependence of the solution on b. By the standard existence-uniqueness theorem [4] there is a unique solution of (2.1)-2.2) on $[R, R+\epsilon)$ for some $\epsilon>0$. We next consider

$$
\begin{equation*}
E(r)=\frac{1}{2} \frac{u^{\prime 2}}{K(r)}+F(u) \tag{2.3}
\end{equation*}
$$

It is straightforward using (2.1) and (H4) to show that

$$
\begin{equation*}
E^{\prime}(r)=-\frac{u^{\prime 2}}{2 r K}\left[2(N-1)+\frac{r K^{\prime}}{K}\right] \leq 0 \tag{2.4}
\end{equation*}
$$

Thus E is non-increasing. Therefore

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}}{K(r)}+F(u)=E(r) \leq E(R)=\frac{1}{2} \frac{b^{2} c^{2}(b)}{K(R)}+F(b) \text { for } r \geq R \tag{2.5}
\end{equation*}
$$

Since F is bounded from below by (H3), it follows from 2.5) that u and u^{\prime} are uniformly bounded wherever they are defined from which it follows that the solution of $2.1-(2.2)$ is defined on $[R, \infty)$.

Lemma 2.1. Assume (H1)-(H5) and $N \geq 2$. Let $u(r, b)$ be the solution of (2.1)(2.2) and suppose $0<\alpha<2(N-1)$. If $b>0$ and b is sufficiently small then $u(r, b)>0$ for all $r>R$.
Proof. We proceed as in 9. Since $u(R, b)=b>0$ and $u^{\prime}(R, b)=b c(b)>0$ we see that $u(r, b)>0$ on $(R, R+\delta)$ for some $\delta>0$. If $u^{\prime}(r, b)>0$ for all $r \geq R$ then $u(r, b)>0$ for all $r>R$ and so we are done in this case.

If u is not increasing for all $r>R$ then there exists a local maximum at some M_{b} with $M_{b}>R$ and $u^{\prime}(r, b)>0$ on $\left[R, M_{b}\right)$. If $u\left(M_{b}, b\right)<\gamma$ then $E(r) \leq E\left(M_{b}\right)<0$ for $r>M_{b}$ since E is non-increasing. It follows then that $u(r, b)$ cannot be zero for any $r>M_{b}$ for if there were such a $z_{b}>M_{b}$ then $0 \leq \frac{1}{2} \frac{u^{\prime 2}\left(z_{b}\right)}{K\left(z_{b}\right)}=E\left(z_{b}\right) \leq$ $E\left(M_{b}\right)<0$ which is impossible. Also, since $u^{\prime}(r, b)>0$ on $\left[R, M_{b}\right)$ it follows then that $u(r, b)>0$ on (R, ∞) if $u\left(M_{b}, b\right)<\gamma$. So if $u(r, b)$ has a local maximum at M_{b} with $u\left(M_{b}, b\right)<\gamma$ then we are done in this case as well.

In addition, if $E(R)=\frac{1}{2} \frac{b^{2} c^{2}(b)}{K(R)}+F(b) \leq 0$ then $E(t)<0$ for $t>R$ and a similar argument shows that $u(r, b)$ cannot be zero for $t>R$.

So for the rest of this proof we assume that $u(r, b)$ has a local maximum at M_{b}, $u\left(M_{b}, b\right) \geq \gamma, u^{\prime}(r, b)>0$ on $\left[R, M_{b}\right)$, and $E(R)=\frac{1}{2} \frac{b^{2} c^{2}(b)}{K(R)}+F(b)>0$ for all
sufficiently small $b>0$. From this it then follows from (H1) and (H3) that there exists r_{b} and $r_{b_{1}}$ with $R<r_{b}<r_{b_{1}}<M_{b}$ such that $u\left(r_{b}, b\right)=\beta$ and $u\left(r_{b_{1}}, b\right)=\frac{\beta+\gamma}{2}$.

From (H5) and from rewriting 2.5 we see that

$$
\begin{equation*}
\frac{\left|u^{\prime}\right|}{\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)-2 F(u)}} \leq \sqrt{K} \leq \sqrt{d_{2}} r^{-\frac{\alpha}{2}} \quad \text { for } r \geq R \tag{2.6}
\end{equation*}
$$

On $\left[R, r_{b}\right]$ we have $u^{\prime}>0$ and so integrating 2.6 on $\left[R, r_{b}\right]$ when $\alpha \neq 2$ gives

$$
\begin{align*}
\int_{0}^{\beta} \frac{d t}{\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)-2 F(t)}} & =\int_{R}^{r_{b}} \frac{u^{\prime}(r) d r}{\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)-2 F(u(r))}} \tag{2.7}\\
& \leq \frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1}\left(R^{1-\frac{\alpha}{2}}-r_{b}{ }^{1-\frac{\alpha}{2}}\right)
\end{align*}
$$

In the case $\alpha=2$ the right-hand side of 2.7 is replaced by:

$$
\begin{equation*}
\sqrt{d_{2}} \ln \left(r_{b} / R\right) \tag{2.8}
\end{equation*}
$$

As $b \rightarrow 0^{+}$the left-hand side of 2.7 goes to $+\infty$ since by (H1) and the definition of F,

$$
\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)-2 F(t)} \leq \sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)+2\left|f^{\prime}(0)\right| t^{2}}
$$

for small positive t thus

$$
\begin{equation*}
\int_{0}^{\epsilon} \frac{d t}{\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)-2 F(t)}} \geq \int_{0}^{\epsilon} \frac{d t}{\sqrt{\frac{b^{2} c^{2}(b)}{K(R)}+2 F(b)+2\left|f^{\prime}(0)\right| t^{2}}} \rightarrow \infty \tag{2.9}
\end{equation*}
$$

as $b \rightarrow 0^{+}$.
Combining (2.7) and 2.9) we see that if $2<\alpha<2(N-1)$ then

$$
\frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1} R^{1-\frac{\alpha}{2}} \geq \frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1}\left(R^{1-\frac{\alpha}{2}}-r_{b}{ }^{1-\frac{\alpha}{2}}\right) \rightarrow \infty \quad \text { as } b \rightarrow 0^{+}
$$

which is impossible since R is fixed. Thus it follows that $u\left(M_{b}, b\right)<\gamma$ if $b>0$ is sufficiently small and as indicated earlier in this lemma it then follows that $u(r, b)>0$ for $r>R$ if $b>0$ is sufficiently small.

For the case $0<\alpha \leq 2$ a lengthier argument is required and the details are carried out in [9]. There it is shown that $E\left(r_{b_{1}}\right)<0$ for sufficiently small $b>0$ and therefore $u(r, b)$ cannot be zero for any $z_{b}>r_{b_{1}}$ as indicated earlier in this lemma. This completes the proof.

Lemma 2.2. Assume (H1)-(H5) and $N \geq 2$. Let $u(r, b)$ be the solution of (2.1)(2.2) and suppose $0<\alpha<2(N-1)$. Given a positive integer n then $u(r, b)$ has at least n zeros on $(0, \infty)$ if $b>0$ is chosen sufficiently large.
Proof. Let $v(r)=u(r+R)$. Then v satisfies,

$$
\begin{gather*}
v^{\prime \prime}(r)+\frac{N-1}{R+r} v^{\prime}(r)+K(R+r) f(v)=0 \tag{2.10}\\
v(0)=b, v^{\prime}(0)=b c(b) \tag{2.11}
\end{gather*}
$$

Now let

$$
\begin{equation*}
v_{\lambda}(r)=\lambda^{-\frac{2}{p-1}} v\left(\frac{r}{\lambda}\right) \quad \text { for } \lambda>0 \tag{2.12}
\end{equation*}
$$

Then

$$
\begin{aligned}
& v_{\lambda}^{\prime}(r)=\lambda^{-\frac{2}{p-1}-1} v^{\prime}\left(\frac{r}{\lambda}\right) \\
& v_{\lambda}^{\prime \prime}(r)=\lambda^{-\frac{2}{p-1}-2} v^{\prime \prime}\left(\frac{r}{\lambda}\right) .
\end{aligned}
$$

Thus

$$
v^{\prime \prime}\left(\frac{r}{\lambda}\right)+\frac{N-1}{R+\frac{r}{\lambda}} v^{\prime}\left(\frac{r}{\lambda}\right)+K\left(\frac{r}{\lambda}+R\right) f\left(v\left(\frac{r}{\lambda}\right)\right)=0
$$

and so it then follows that

$$
\begin{equation*}
v_{\lambda}^{\prime \prime}+\frac{N-1}{(R \lambda+r)} v_{\lambda}^{\prime}+\frac{K\left(\frac{r}{\lambda}+R\right)}{\lambda^{\frac{2 p}{p-1}}} f\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)=0 \tag{2.13}
\end{equation*}
$$

From (H2) we have $f(u)=|u|^{p-1} u+g(u)$ and $\lim _{u \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0$ so rewriting (2.13) gives

$$
\begin{equation*}
v_{\lambda}^{\prime \prime}+\frac{N-1}{(R \lambda+r)} v_{\lambda}^{\prime}+\frac{K\left(\frac{r}{\lambda}+R\right)}{\lambda^{\frac{2 p}{p-1}}}\left[\lambda^{\frac{2 p}{p-1}}\left|v_{\lambda}\right|^{p-1} v_{\lambda}+g\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)\right]=0 \tag{2.14}
\end{equation*}
$$

Thus

$$
\begin{gather*}
v_{\lambda}^{\prime \prime}+\frac{N-1}{(R \lambda+r)} v_{\lambda}^{\prime}+K\left(\frac{r}{\lambda}+R\right)\left[\left|v_{\lambda}\right|^{p-1} v_{\lambda}+\frac{g\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2 p}{p-1}}}\right]=0 \tag{2.15}\\
v_{\lambda}(0)=\lambda^{\frac{-2}{p-1}} b \tag{2.16}\\
v_{\lambda}^{\prime}(0)=\lambda^{\frac{-2}{p-1}-1} b c(b)=\lambda^{-\frac{p+1}{p-1}} b c(b) \tag{2.17}
\end{gather*}
$$

Now let

$$
\begin{equation*}
E_{\lambda}(r)=\frac{v_{\lambda}^{\prime 2}}{2 K\left(\frac{r}{\lambda}+R\right)}+\frac{F\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2 p}{p-1}}} \tag{2.18}
\end{equation*}
$$

A straightforward calculation using (H4) and 2.13 gives

$$
E_{\lambda}^{\prime}(r)=-\frac{v_{\lambda}^{\prime 2}}{2\left(\frac{r}{\lambda}+R\right) K\left(\frac{r}{\lambda}+R\right)}\left[\frac{\left(\frac{r}{\lambda}+R\right) K^{\prime}\left(\frac{r}{\lambda}+R\right)}{K\left(\frac{r}{\lambda}+R\right)}+2(N-1)\right] \leq 0
$$

for $0<\alpha<2(N-1)$. Thus for $r \geq 0$,

$$
\begin{equation*}
\frac{v_{\lambda}^{\prime 2}}{2 K\left(\frac{r}{\lambda}+R\right)}+\frac{F\left(v_{\lambda}\right)}{\lambda^{\frac{2 p}{p-1}}}=E_{\lambda}(r) \leq E_{\lambda}(0)=\frac{b^{2} c^{2}(b)}{2 \lambda^{\frac{2(p+1)}{p-1}} K(R)}+\frac{F\left(\lambda^{\frac{-2}{p-1}} b\right)}{\lambda^{\frac{2 p}{p-1}}} . \tag{2.19}
\end{equation*}
$$

We now divide the rest of the proof into two cases.
Case 1: $\frac{c(b)}{b^{\frac{p-1}{2}}} \leq C_{0}$ for all sufficiently large b for some constant C_{0}. In this case we choose $b=\lambda^{\frac{2}{p-1}}$ so that 2.16$)-(2.17)$ become $v_{\lambda}(0)=1$ and

$$
v_{\lambda}^{\prime}(0)=\lambda^{\frac{-2}{p-1}-1} b c(b)=\frac{c(b)}{\lambda}=\frac{c(b)}{b^{\frac{p-1}{2}}} \leq C_{0}
$$

Next using (H2)-(H3) it follows that

$$
\begin{equation*}
F(u)=\frac{|u|^{p+1}}{p+1}+G(u) \tag{2.20}
\end{equation*}
$$

where $G(u)=\int_{0}^{u} g(s) d s$ and from L'Hôpital's rule it follows that $\frac{G(u)}{|u|^{p+1}} \rightarrow 0$ as $u \rightarrow \infty$.

So from 2.12, 2.19-2.20 and since $b=\lambda^{\frac{2}{p-1}}$ we obtain

$$
\begin{align*}
\frac{v_{\lambda}^{\prime 2}}{2 K\left(\frac{r}{\lambda}+R\right)}+\frac{\left|v_{\lambda}\right|^{p+1}}{p+1}+\frac{G\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2(p+1)}{p-1}}} \leq \frac{b^{2} c^{2}(b)}{2 \lambda^{\frac{2(p+1)}{p-1}} K(R)}+\frac{F(1)}{\lambda^{\frac{2 p}{p-1}}} \tag{2.21}\\
=\frac{1}{2 K(R)}\left(\frac{c(b)}{b^{\frac{p-1}{2}}}\right)^{2}+\frac{F(1)}{\lambda \frac{2 p}{p-1}} \leq \frac{C_{0}^{2}}{2 K(R)}+\frac{F(1)}{\lambda \frac{2 p}{p-1}} \tag{2.22}
\end{align*}
$$

So since $\frac{G(u)}{|u|^{p+1}} \rightarrow 0$ as $u \rightarrow \infty$ it follows that $\frac{|G(u)|}{|u|^{p+1}} \leq \frac{1}{2(p+1)}$ for say $u>T$. Also, $|G(u)| \leq G_{0}$ for $|u| \leq T$ since G is continuous on the compact set $[0, T]$ and thus $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1}+G_{0}$ for all u. Similarly using (H2) it follows that $|g(u)| \leq \frac{1}{2}|u|^{p}+g_{0}$ for all u for some constant g_{0} where $|g(u)| \leq g_{0}$ on $[0, T]$.

Therefore for $\lambda>0$ it follows from (2.21)-2.22 that
$\frac{v_{\lambda}^{\prime 2}}{2 K\left(\frac{r}{\lambda}+R\right)}+\frac{\left|v_{\lambda}\right|^{p+1}}{2(p+1)} \leq \frac{C_{0}^{2}}{2 K(R)}+\frac{F(1)}{\lambda^{\frac{2 p}{p-1}}}+\lambda^{\frac{-2(p+1)}{p-1}} G_{0} \leq \frac{C_{0}^{2}}{2 K(R)}+F(1)+G_{0}$ for $\lambda>1$.
It follows from this that $v_{\lambda}(r)$ and $v_{\lambda}^{\prime}(r)$ are uniformly bounded on $[0, \infty)$ for large λ. It then follows that $\left(\frac{N-1}{R \lambda+r}\right) v_{\lambda}^{\prime}$ is uniformly bounded on $[0, \infty)$ and also $K\left(\frac{r}{\lambda}+\right.$ $R)\left[\left|v_{\lambda}\right|^{p-1} v_{\lambda}+\frac{g\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2 p}{p-1}}}\right]$ is uniformly bounded on $[0, \infty)$. Then from 2.15 we see that $v_{\lambda}^{\prime \prime}$ is uniformly bounded on $[0, \infty)$ for large λ. Therefore by the Arzela-Ascoli theorem it follows that there is a subsequence (still denoted v_{λ}) and continuous functions v_{0} and v_{0}^{\prime} such that $v_{\lambda} \rightarrow v_{0}$ and $v_{\lambda}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on compact subsets of $[0, \infty)$ to a solution of

$$
\begin{gather*}
v_{0}^{\prime \prime}+K(R) v_{0}^{p}=0 \\
v_{0}(0)=1, \quad v_{0}^{\prime}(0)=d_{0}=\lim _{b \rightarrow \infty} \frac{c(b)}{b^{\frac{p-1}{2}}} \leq C_{0} \tag{2.23}
\end{gather*}
$$

It is now straightforward to show that v_{0} has infinitely many zeros on $[0, \infty)$. Thus v_{λ} has at least n zeros for sufficiently large λ and so $u(r, b)$ has at least n zeros for sufficiently large b. This concludes the proof in Case 1.
Case 2: $\frac{c(b)}{b^{\frac{p-1}{2}}} \rightarrow \infty$ for some subsequence as $b \rightarrow \infty$. Then for these b we let

$$
\begin{equation*}
\lambda=(b c(b))^{\frac{p-1}{p+1}} \quad \text { that is } b c(b)=\lambda^{\frac{p+1}{p-1}} \tag{2.24}
\end{equation*}
$$

From 2.17 and 2.24 we see that

$$
v_{\lambda}(0)=\lambda^{-\frac{2}{p-1}} b=\left[\frac{b^{\frac{p-1}{2}}}{c(b)}\right]^{\frac{2}{p+1}} \rightarrow 0 \quad \text { as } b \rightarrow \infty \text { and } v_{\lambda}^{\prime}(0)=1
$$

As in case (1) we can show there exist continuous functions v_{0} and v_{0}^{\prime} such that for some subsequence $v_{\lambda} \rightarrow v_{0}$ and $v_{\lambda}^{\prime} \rightarrow v_{0}^{\prime}$ as $\lambda \rightarrow \infty$ uniformly on compact subsets of $[0, \infty)$ and v_{0} is a solution of

$$
\begin{gather*}
v_{0}^{\prime \prime}+K(R) v_{0}^{p}=0 \tag{2.25}\\
v_{0}(0)=0, \quad v_{0}^{\prime}(0)=1
\end{gather*}
$$

And again it is easy to show that v_{0} has infinitely many zeros on $[0, \infty)$. Thus it follows that $v_{\lambda}(r)$ and hence $u(r, b)$ has at least n zeros on $[0, \infty)$ when b is sufficiently large. This completes the proof.

3. Proof of the main theorem

Proof. We proceed as we did in 9. It follows from Lemma 2.1 that

$$
\{b>0: u(r, b)>0 \text { on }(R, \infty)\}
$$

is nonempty and from Lemma 2.2 it follows that this set is bounded from above. Hence we set

$$
b_{0}=\sup \{b \mid u(r, b)>0 \text { on }(R, \infty)\} .
$$

We next show that $u\left(r, b_{0}\right)>0$ on (R, ∞). This follows because if there is a $z>R$ such that $u\left(z, b_{0}\right)=0$ then $u^{\prime}\left(z, b_{0}\right)<0$ (by uniqueness of solutions of initial value problems) and so $u\left(r, b_{0}\right)$ becomes negative for r slightly larger than z. By continuity with respect to initial conditions it follows that $u(r, b)$ becomes negative for b slightly smaller than b_{0} contradicting the definition of b_{0}. Thus $u\left(r, b_{0}\right)>0$ on (R, ∞). Next it follows by the definition of b_{0} that if $b>b_{0}$ then $u(r, b)$ must have a zero, z_{b}, where $z_{b}>R$. We now show that $z_{b} \rightarrow \infty$ as $b \rightarrow b_{0}^{+}$. If not then the z_{b} are uniformly bounded and so a subsequence of them (still denoted z_{b}) converges to some $z_{0} \geq R$. Then since $E^{\prime} \leq 0$:

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}(r, b)}{K(r)}+F(u(r, b)) \leq \frac{1}{2} \frac{b^{2} c^{2}(b)}{K(R)} \quad \text { for } r \geq R \tag{3.1}
\end{equation*}
$$

and since F is bounded from below (by (H3)) it follows that $u(r, b)$ and $u^{\prime}(r, b)$ are uniformly bounded on $[R, \infty)$ for b near b_{0}. In addition it follows from 2.1p that $u^{\prime \prime}(r, b)$ is also uniformly bounded on $[R, \infty)$ for b near b_{0}. Then by the ArzelaAscoli theorem a subsequence (still denoted $u(r, b)$ and $\left.u^{\prime}(r, b)\right)$ converges uniformly to $u\left(r, b_{0}\right)$ and $u^{\prime}\left(r, b_{0}\right)$ and so we obtain $u\left(z_{0}, b_{0}\right)=0$. But we know $u\left(r, b_{0}\right)>0$ for $r>R$ and so we get a contradiction. Thus $z_{b} \rightarrow \infty$ as $b \rightarrow b_{0}^{+}$.

We now show that $E\left(r, b_{0}\right) \geq 0$ on $[R, \infty)$. If not then there is an $r_{0}>R$ such that $E\left(r_{0}, b_{0}\right)<0$. By continuity $E\left(r_{0}, b\right)<0$ for b slightly larger than b_{0}. Also for $b>b_{0}$ the function $u(r, b)$ has a zero, z_{b}, (by definition of b_{0}) and $E\left(z_{b}\right)=\frac{1}{2} \frac{u^{\prime 2}\left(z_{b}, b\right)}{K\left(z_{b}\right)} \geq 0$. But E is non-increasing so $z_{b}<r_{0}$ which contradicts $z_{b} \rightarrow \infty$ as $b \rightarrow b_{0}^{+}$. Thus, $E\left(r, b_{0}\right) \geq 0$ on $[R, \infty)$.

Next either: (i) $u\left(r, b_{0}\right)$ has a local maximum at some $M_{b_{0}}>R$, or (ii) $u^{\prime}\left(r, b_{0}\right)>$ 0 for $r>R$ and since $u\left(r, b_{0}\right)$ is bounded by (3.1) then there is an $L>0$ such that $u\left(r, b_{0}\right) \rightarrow L$ as $r \rightarrow \infty$. We show now that (ii) is not possible. Suppose therefore that (ii) occurs. We divide this into three cases.
Case 1: $0<\alpha<N$. Multiplying (2.1) by r^{N-1} and integrating on (R, r) gives

$$
\begin{equation*}
-r^{N-1} u^{\prime}=-R^{N-1} b_{0}+\int_{R}^{r} t^{N-1} K(t) f(u) d t . \tag{3.2}
\end{equation*}
$$

Dividing (3.2) by $r^{N} K \rightarrow \infty$ as $r \rightarrow \infty$ since $0<\alpha<N$ and taking limits using L'Hôpital's rule and (H4) gives

$$
\begin{equation*}
-\frac{u^{\prime}}{r K}=\lim _{r \rightarrow \infty} \frac{\int_{R}^{r} t^{N-1} K(t) f(u) d t}{r^{N} K}=\lim _{r \rightarrow \infty} \frac{f(u)}{N+\frac{r K^{\prime}}{K}}=\frac{f(L)}{N-\alpha} \tag{3.3}
\end{equation*}
$$

Thus since $0<\alpha<N$ and $u^{\prime}>0$, it follows that $f(L) \leq 0$ so that

$$
\begin{equation*}
0<L \leq \beta<\gamma \tag{3.4}
\end{equation*}
$$

On the other hand integrating the identity

$$
\left(r^{2(N-1} K E\right)^{\prime}=\left(r^{2(N-1} K\right)^{\prime} F
$$

on (R, r) and using L'Hôpital's rule gives

$$
\begin{aligned}
\lim _{r \rightarrow \infty} E\left(r, b_{0}\right) & =\lim _{r \rightarrow \infty} \frac{1}{2} \frac{u^{\prime 2}}{K}+F(u) \\
& =\lim _{r \rightarrow \infty} \frac{1}{2} \frac{R^{2(N-1)} b_{0}^{2}}{r^{2(N-1)} K}+\frac{\int_{R}^{r}\left(t^{2(N-1)} K\right)^{\prime} F\left(u\left(t, b_{0}\right)\right) d t}{r^{2(N-1)} K}=F(L)
\end{aligned}
$$

Since we showed earlier that $E\left(r, b_{0}\right) \geq 0$ we see then that

$$
\begin{equation*}
0 \leq \lim _{r \rightarrow \infty} E\left(r, b_{0}\right)=F(L) \tag{3.5}
\end{equation*}
$$

Thus $L \geq \gamma$ which contradicts (3.4). Therefore it must be the case that $u\left(r, b_{0}\right)$ has a local maximum at some $M_{b_{0}}$. This completes Case 1.
Case 2: $\alpha=N$. In this case as well it follows that $f(L) \leq 0$ for suppose $f(L)>0$. Then by (H5) the integral on the right-hand side of 3.2 grows like $f(L) \ln (r) \rightarrow \infty$ as $r \rightarrow \infty$ and thus the right-hand side of (3.2) becomes arbitrarily large but the left hand side is negative. Thus it must be that $f(L) \leq 0$ and as in Case 1 we get a contradiction.
Case 3: $N<\alpha<2(N-1)$. For $b>b_{0}$ we know that there is an $z_{b}>R$ such that $u\left(z_{b}, b\right)=0$ so there is an M_{b} with $R<M_{b}<z_{b}$ such that $u(r, b)$ has a local maximum at M_{b}. If the M_{b} are bounded as $b \rightarrow b_{0}^{+}$then a subsequence of the M_{b} converge to some $M_{b_{0}}<\infty$ and then $u\left(r, b_{0}\right)$ has a local maximum at $M_{b_{0}}$ contradicting our assumption that $u^{\prime}\left(r, b_{0}\right)>0$ for $r>R$. So let us assume that $M_{b} \rightarrow \infty$ as $b \rightarrow b_{0}^{+}$.

Since E is non-increasing, it follows that $E(r) \leq E\left(M_{b}\right)$ for $r \geq M_{b}$. Thus

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u) \leq F\left(u\left(M_{b}\right)\right) \text { for } r \geq M_{b} \tag{3.6}
\end{equation*}
$$

Rewriting and integrating (3.6) on $\left[M_{b}, z_{b}\right]$ (using (H5)) gives

$$
\begin{align*}
0 & \leq \int_{0}^{u\left(M_{b}\right)} \frac{1}{\sqrt{2} \sqrt{F\left(u\left(M_{b}\right)\right)-F(t)}} d t \\
& =\int_{M_{b}}^{z_{b}} \frac{\left|u^{\prime}(t)\right|}{\sqrt{2} \sqrt{F\left(u\left(M_{b}\right)\right)-F(u(t))}} d t \tag{3.7}\\
& \leq \int_{M_{b}}^{z_{b}} \sqrt{K} d t \leq \frac{\sqrt{d_{2}}\left(M_{b}^{1-\frac{\alpha}{2}}-z_{b}^{1-\frac{\alpha}{2}}\right)}{\frac{\alpha}{2}-1} .
\end{align*}
$$

Since $\alpha>N \geq 2$ and $M_{b} \rightarrow \infty$ as $b \rightarrow b_{0}^{+}$(thus $z_{b} \rightarrow \infty$) we see that the righthand side of (3.7) goes to 0 as $b \rightarrow b_{0}^{+}$. On the other hand, since $u(r, b) \rightarrow u\left(r, b_{0}\right)$ uniformly on compact subsets of $[R, \infty)$ we see then that $u\left(M_{b}\right) \rightarrow L$ as $b \rightarrow b_{0}^{+}$. Taking limits in 3.7 then gives:

$$
\int_{0}^{L} \frac{1}{\sqrt{2} \sqrt{F(L)-F(t)}} d t=0
$$

which is impossible. Thus the M_{b} must be bounded as $b \rightarrow b_{0}^{+}$which contradicts our assumption that $M_{b} \rightarrow \infty$. Thus $u\left(r, b_{0}\right)$ must have a local maximum $M_{b_{0}}$. This completes Case 3 .

Since we know $u\left(r, b_{0}\right)>0$ for $r>R$ and $u\left(r, b_{0}\right)$ has a local maximum $M_{b_{0}}$ it follows that $u\left(r, b_{0}\right)$ cannot have a local minimum at $m_{b_{0}}$ with $m_{b_{0}}>M_{b_{0}}$ for at such a point we would have $u\left(m_{b_{0}}, b_{0}\right)>0, u^{\prime}\left(m_{b_{0}}, b_{0}\right)=0$, and $u^{\prime \prime}\left(m_{b_{0}}\right) \geq 0$. Thus
from (2.1) we see that $f\left(u\left(m_{b_{0}}, b_{0}\right)\right) \leq 0$ which implies $0<u\left(m_{b_{0}}, b_{0}\right) \leq \beta$. On the other hand since $E\left(r, b_{0}\right) \geq 0$ for all $r \geq R$ then $E\left(m_{b_{0}}, b_{0}\right)=F\left(u\left(m_{b_{0}}, b_{0}\right)\right) \geq 0$ and so $\beta \geq u\left(m_{b_{0}}, b_{0}\right) \geq \gamma>\beta$ which is impossible. Thus it must be that $u^{\prime}\left(r, b_{0}\right)<0$ for $r>M_{b_{0}}$ and hence there is an $L \geq 0$ such that $u\left(r, b_{0}\right) \rightarrow L$ as $r \rightarrow \infty$. Recalling (3.5) we have $E\left(r, b_{0}\right) \rightarrow F(L) \geq 0$ as $r \rightarrow \infty$. Thus $L=0$ or $L \geq \gamma$.

Finally we want to show $L=0$. There are again three cases to consider.
Case 1: $0<\alpha<2$. First suppose $f(L) \neq 0$. Recalling (3.3) it then follows that $\frac{u^{\prime}}{r K} \rightarrow-\frac{f(L)}{N-\alpha}$. Thus for large r we have $u^{\prime} \sim-\frac{f(L)}{N-\alpha} r K$ and from (H5) we have $r K \sim r^{1-\alpha}$ so

$$
\left|u(r)-u\left(r_{0}\right)\right| \sim\left|\frac{f(L)}{N-\alpha}\left[\frac{r^{2-\alpha}-r_{0}^{2-\alpha}}{2-\alpha}\right]\right| \rightarrow \infty \quad \text { as } r \rightarrow \infty \text { since } 0<\alpha<2
$$

contradicting that u is bounded. Thus $f(L)=0$ so $L=0$ or $L=\beta$. But we also know from 3.5 that $F(L) \geq 0$ so $L=0$ or $L \geq \gamma>\beta$. Thus we see that $L \neq \beta$ and so we must have $L=0$.
Case 2: $\alpha=2$. Suppose again $f(L) \neq 0$. This is similar to case 1 but now we have $\left|u(r)-u\left(r_{0}\right)\right| \sim\left|\frac{f(L)}{N-\alpha} \ln \left(r / r_{0}\right)\right| \rightarrow \infty$ contradicting that u is bounded. Thus $f(L)=0$ so $L=0$ or $L=\beta$. Since we also know $F(L) \geq 0$ so $L=0$ or $L \geq \gamma>\beta$. So again we see that $L \neq \beta$ and thus $L=0$.
Case 3: $2<\alpha<2(N-1)$. Here we let

$$
u(r)=u_{1}\left(r^{2-N}\right)
$$

This transforms (2.1) to

$$
\begin{equation*}
u_{1}^{\prime \prime}(t)+h(t) f\left(u_{1}(t)\right)=0 \quad \text { for } 0<t<R^{2-N} \tag{3.8}
\end{equation*}
$$

where

$$
u_{1}\left(R^{2-N}\right)=0, u_{1}^{\prime}\left(R^{2-N}\right)=-\frac{b R^{N-1}}{N-2}<0
$$

and where $h(t)=\frac{1}{(N-2)^{2}} t^{\frac{2(N-1)}{2-N}} K\left(t^{1 /(2-N)}\right)$. From (H4) we have $h^{\prime}(t)<0$ and we see that for small positive t we have $h(t) \sim \frac{1}{t^{q}}$ where $q=\frac{2(N-1)-\alpha}{N-2}$. We note also that for $2<\alpha<2(N-1)$ we have $0<q<2$. Now let

$$
E_{1}=\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right)
$$

Then

$$
E_{1}^{\prime}=-\frac{u_{1}^{\prime 2} h^{\prime}}{2 h^{2}} \geq 0
$$

since $h^{\prime}<0$. We see then from (3.8) that when $u_{1}>\beta$ then $u_{1}^{\prime \prime}<0$ and when $0<u_{1}<\beta$ then $u_{1}^{\prime \prime}>0$. Now for $b>b_{0}$ we know that $u(r, b)$ has a zero (by definition of b_{0}) and thus $u_{1}(t, b)$ has a zero, $z_{1, b}$, with $0<z_{1, b}<R^{2-N}$ for $b>b_{0}$. Therefore u_{1} has a local maximum at some $M_{1, b}$ and an inflection point at some $t_{1, b}$ with $0<z_{1, b}<t_{1, b}<M_{1, b}<R^{2-N}$. Since $E_{1}\left(z_{1, b}\right)>0$ and E_{1} is nondecreasing then it follows that $F\left(u_{1}\left(M_{1, b}, b\right)\right)=E_{1}\left(M_{1, b}\right) \geq E_{1}\left(z_{1, b}\right)>0$ and so $u_{1}\left(M_{1, b}, b\right)>\gamma$. Note also that $u_{1}\left(t_{1, b}, b\right)=\beta$. Since $u_{1}(t, b)$ is concave up on $\left(z_{1, b}, t_{1, b}\right)$ we see then that $u_{1}(t, b)$ lies above the line through $\left(t_{1, b}, \beta\right)$ with slope $u_{1}^{\prime}\left(t_{1, b}, b\right)>0$. Thus:

$$
u_{1}(t, b) \geq \beta+u_{1}^{\prime}\left(t_{1, b}, b\right)\left(t-t_{1, b}\right) \quad \text { on }\left[z_{1, b}, t_{1, b}\right] .
$$

Evaluating this at $t=z_{1, b}$ and rewriting yields

$$
\begin{equation*}
t_{1, b} \geq t_{1, b}-z_{1, b} \geq \frac{\beta}{u^{\prime}\left(t_{1, b}, b\right)} \tag{3.9}
\end{equation*}
$$

In addition, $E_{1}\left(t_{1, b}\right) \leq E_{1}\left(M_{1, b}\right)$ so that there is a constant c_{1} such that for b close to b_{0},

$$
\frac{1}{2} \frac{u_{1}^{\prime 2}\left(t_{1, b}, b\right)}{h\left(t_{1, b}\right)}+F(\beta) \leq F\left(u_{1}\left(M_{1, b}\right), b\right) \leq c_{1}
$$

and thus

$$
\begin{equation*}
0<u_{1}^{\prime}\left(t_{1, b}\right) \leq c_{2} \sqrt{h\left(t_{1, b}\right)} \tag{3.10}
\end{equation*}
$$

where $c_{2}=\sqrt{2\left[c_{1}+|F(\beta)|\right]}$. Combining (3.9)-3.10) gives

$$
\begin{equation*}
\beta \leq t_{1, b} u_{1}^{\prime}\left(t_{1, b}, b\right) \leq c_{2} t_{1, b} \sqrt{h\left(t_{1, b}\right)} \leq c_{3} t_{1, b}^{\frac{2-q}{2}} \tag{3.11}
\end{equation*}
$$

for some constant c_{3} for b close to b_{0}. Since $0<q<2$ we see from (3.11) that $t_{1, b}$ is bounded from below by a positive constant. It then follows by continuous dependence on initial conditions that $t_{1, b_{0}}$ is also bounded from below by a positive constant. In addition, $u_{1}^{\prime}\left(t_{1, b_{0}}, b_{0}\right) \geq 0$ and in fact $u_{1}^{\prime}\left(t_{1, b_{0}}, b_{0}\right)>0$ for if $u_{1}^{\prime}\left(t_{1, b_{0}}\right)=0$ then since $f\left(u_{1}\left(t_{1, b_{0}}\right)\right)=f(\beta)=0$ then $u_{1}^{\prime \prime}\left(t_{1, b_{0}}, b_{0}\right)=0$ implying by uniqueness of solutions of initial value problems that $u_{1}\left(t, b_{0}\right) \equiv \beta$ contradicting that $u_{1}^{\prime}\left(R^{2-N}, b_{0}\right)=-\frac{b_{0} R^{N-1}}{N-2}>0$. Thus $u_{1}^{\prime}\left(t_{1, b_{0}}\right)>0$ and this implies $u_{1}\left(t, b_{0}\right)<\beta$ for $0<t<t_{1, b_{0}}$. Thus $L=\lim _{t \rightarrow 0^{+}} u_{1}\left(t, b_{0}\right) \leq \beta$. But recall from (3.5) that $F(L) \geq 0$ so if $L>0$ then in fact $\beta \geq L \geq \gamma>\beta$ which is impossible so we see it must be the case that $L=0$. Thus $\lim _{t \rightarrow 0^{+}} u_{1}\left(t, b_{0}\right)=0$ and therefore $\lim _{r \rightarrow \infty} u\left(r, b_{0}\right)=0$.

Next, [12, Lemma 4] states that if $u\left(r, b_{k}\right)$ is a solution of 2.1$)-(2.2)$ with k zeros on $(0, \infty)$ then if b is sufficiently close to b_{k} then $u(r, b)$ has at most $k+1$ zeros on $(0, \infty)$. Also [8, Lemma 2.7] proves a similar result on (R, ∞). Applying this lemma with $b=b_{0}$ we see that $u(r, b)$ has at most one zero on (R, ∞) for b close to b_{0}. On the other hand, by the definition of b_{0} if $b>b_{0}$ then $u(r, b)$ has at least one zero on (R, ∞). Therefore: $\left\{b>b_{0} \mid u(r, b)\right.$ has exactly one zero on $\left.(R, \infty)\right\}$ is nonempty and by Lemma 2.2 this set is bounded above. Then we let:

$$
b_{1}=\sup \left\{b>b_{0} \mid u(r, b) \text { has exactly one zero on }(R, \infty)\right\}
$$

In a similar fashion we can show that $u\left(r, b_{1}\right)$ has exactly one zero on (R, ∞) and $u\left(r, b_{1}\right) \rightarrow 0$ as $r \rightarrow \infty$. Similarly we can find $u\left(r, b_{n}\right)$ which has exactly n zeros on (R, ∞) and $u\left(r, b_{n}\right) \rightarrow 0$ as $r \rightarrow \infty$. This completes the proof.

References

[1] H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[2] H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
[5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[6] R. Dhanya, Q. Morris, R. Shivaji; Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, Volume 434, Issue 2, 1533-1548, 2016.
[7] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, Vol. 2015 (2015), No. 82, 1-11.
[8] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, submitted to Journal of Partial Differential Equations, Vol. 30 No. 4, 2017, pp. 1-17.
[9] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, Journal of Mathematical Analysis and Applications, 446, 591-604, 2017.
[10] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semilinear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[11] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[12] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[14] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Janak Joshi
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: JanakrajJoshi@my.unt.edu
Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: iaia@unt.edu

