Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 108, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

INFINITELY MANY SOLUTIONS FOR A SEMILINEAR PROBLEM ON EXTERIOR DOMAINS WITH NONLINEAR **BOUNDARY CONDITION**

JANAK JOSHI, JOSEPH A. IAIA

Communicated by Jerome A. Goldstein

ABSTRACT. In this article we prove the existence of an infinite number of radial solutions to $\Delta u + K(r)f(u) = 0$ with a nonlinear boundary condition on the exterior of the ball of radius R centered at the origin in \mathbb{R}^N such that $\lim_{r\to\infty} u(r) = 0$ with any given number of zeros where $f: \mathbb{R} \to \mathbb{R}$ is odd and there exists a $\beta > 0$ with f < 0 on $(0, \beta), f > 0$ on (β, ∞) with f superlinear for large u, and $K(r) \sim r^{-\alpha}$ with $0 < \alpha < 2(N-1)$.

1. INTRODUCTION

In this article we study radial solutions to

$$\Delta u + K(|x|)f(u) = 0 \quad \text{for } R < |x| < \infty, \tag{1.1}$$

$$\frac{\partial u}{\partial \eta} + c(u)u = 0 \quad \text{when } |x| = R \text{ and } \lim_{|x| \to \infty} u(x) = 0, \tag{1.2}$$

where $u: \mathbb{R}^N \to \mathbb{R}$ with $N \geq 2, R > 0, c: [0, \infty) \to (0, \infty)$ is continuous, $\frac{\partial}{\partial n}$ is the outward normal derivative, f is odd and locally Lipschitz. We assume:

- (H1) f'(0) < 0, there exists $\beta > 0$ such that f(u) < 0 on $(0,\beta)$, f(u) > 0 on $(\beta,\infty).$
- (H2) $f(u) = |u|^{p-1}u + g(u)$ where $p > \text{and } \lim_{u \to \infty} \frac{|g(u)|}{|u|^p} = 0.$ (H3) Denoting $F(u) \equiv \int_0^u f(t) dt$ we assume there exists γ with $0 < \beta < \gamma$ such that F < 0 on $(0, \gamma)$ and F > 0 on (γ, ∞) .
- (H4) K and K' are continuous on $[R,\infty)$ with K(r) > 0, $2(N-1) + \frac{rK'}{K} > 0$ and there exists $\alpha \in (0, 2(N-1))$ such that $\lim_{r \to \infty} \frac{rK'}{K} = -\alpha$. (H5) There exist positive d_1, d_2 such that $d_1 r^{-\alpha} \leq K(r) \leq d_2 r^{-\alpha}$ for $r \geq R$.

Note that (H4) implies $r^{2(N-1)}K$ is increasing. Our main result reads as follows.

Theorem 1.1. Assume (H1)–(H5), $N \ge 2$, and $0 < \alpha < 2(N-1)$. Then for each nonnegative integer n there exists a radial solution, u_n , of (1.1)-(1.2) such that u_n has exactly n zeros on (R, ∞) .

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domain; superlinear; radial solution.

^{©2018} Texas State University.

Submitted July 8, 2017. Published May 8, 2018.

The radial solutions of (1.1) on \mathbb{R}^N and $K(r) \equiv 1$ have been well-studied. These include [1, 2, 3, 10, 12, 14]. Recently there has been an interest in studying these problems on $\mathbb{R}^N \setminus B_R(0)$. These include [5, 6, 7, 11, 13]. In [6] positive solutions of a similar problem were studied for $N < \alpha < 2(N-1)$. There the authors use the mountain pass lemma to prove existence of positive solutions. Here we use a scaling argument as in [9, 12] to prove the existence of infinitely many solutions.

2. Preliminaries

Since we are interested in radial solutions of (1.1)-(1.2), we denote r = |x| and write u(x) = u(|x|) where u satisfies

$$u'' + \frac{N-1}{r}u' + K(r)f(u) = 0 \quad \text{for } R < r < \infty,$$
(2.1)

$$u(R) = b > 0, \quad u'(R) = bc(b) > 0.$$
 (2.2)

We will occasionally write u(r, b) to emphasize the dependence of the solution on b. By the standard existence-uniqueness theorem [4] there is a unique solution of (2.1)-(2.2) on $[R, R + \epsilon)$ for some $\epsilon > 0$. We next consider

$$E(r) = \frac{1}{2} \frac{u^{\prime 2}}{K(r)} + F(u).$$
(2.3)

It is straightforward using (2.1) and (H4) to show that

$$E'(r) = -\frac{u'^2}{2rK} [2(N-1) + \frac{rK'}{K}] \le 0.$$
(2.4)

Thus E is non-increasing. Therefore

$$\frac{1}{2}\frac{u'^2}{K(r)} + F(u) = E(r) \le E(R) = \frac{1}{2}\frac{b^2c^2(b)}{K(R)} + F(b) \text{ for } r \ge R.$$
(2.5)

Since F is bounded from below by (H3), it follows from (2.5) that u and u' are uniformly bounded wherever they are defined from which it follows that the solution of (2.1)-(2.2) is defined on $[R, \infty)$.

Lemma 2.1. Assume (H1)–(H5) and $N \ge 2$. Let u(r,b) be the solution of (2.1)–(2.2) and suppose $0 < \alpha < 2(N-1)$. If b > 0 and b is sufficiently small then u(r,b) > 0 for all r > R.

Proof. We proceed as in [9]. Since u(R,b) = b > 0 and u'(R,b) = bc(b) > 0 we see that u(r,b) > 0 on $(R, R + \delta)$ for some $\delta > 0$. If u'(r,b) > 0 for all $r \ge R$ then u(r,b) > 0 for all r > R and so we are done in this case.

If u is not increasing for all r > R then there exists a local maximum at some M_b with $M_b > R$ and u'(r,b) > 0 on $[R, M_b)$. If $u(M_b, b) < \gamma$ then $E(r) \le E(M_b) < 0$ for $r > M_b$ since E is non-increasing. It follows then that u(r,b) cannot be zero for any $r > M_b$ for if there were such a $z_b > M_b$ then $0 \le \frac{1}{2} \frac{u'^2(z_b)}{K(z_b)} = E(z_b) \le$ $E(M_b) < 0$ which is impossible. Also, since u'(r,b) > 0 on $[R, M_b)$ it follows then that u(r,b) > 0 on (R, ∞) if $u(M_b, b) < \gamma$. So if u(r, b) has a local maximum at M_b with $u(M_b, b) < \gamma$ then we are done in this case as well.

In addition, if $E(R) = \frac{1}{2} \frac{b^2 c^2(b)}{K(R)} + F(b) \le 0$ then E(t) < 0 for t > R and a similar argument shows that u(r, b) cannot be zero for t > R.

So for the rest of this proof we assume that u(r, b) has a local maximum at M_b , $u(M_b, b) \geq \gamma$, u'(r, b) > 0 on $[R, M_b)$, and $E(R) = \frac{1}{2} \frac{b^2 c^2(b)}{K(R)} + F(b) > 0$ for all

sufficiently small b > 0. From this it then follows from (H1) and (H3) that there exists r_b and r_{b_1} with $R < r_b < r_{b_1} < M_b$ such that $u(r_b, b) = \beta$ and $u(r_{b_1}, b) = \frac{\beta + \gamma}{2}$.

From (H5) and from rewriting (2.5) we see that

$$\frac{|u'|}{\sqrt{\frac{b^2 c^2(b)}{K(R)} + 2F(b) - 2F(u)}} \le \sqrt{K} \le \sqrt{d_2} r^{-\frac{\alpha}{2}} \quad \text{for } r \ge R.$$
(2.6)

On $[R, r_b]$ we have u' > 0 and so integrating (2.6) on $[R, r_b]$ when $\alpha \neq 2$ gives

$$\int_{0}^{\beta} \frac{dt}{\sqrt{\frac{b^{2}c^{2}(b)}{K(R)} + 2F(b) - 2F(t)}} = \int_{R}^{r_{b}} \frac{u'(r) dr}{\sqrt{\frac{b^{2}c^{2}(b)}{K(R)} + 2F(b) - 2F(u(r))}}$$

$$\leq \frac{\sqrt{d_{2}}}{\frac{\alpha}{2} - 1} \left(R^{1 - \frac{\alpha}{2}} - r_{b}^{1 - \frac{\alpha}{2}} \right).$$
(2.7)

In the case $\alpha = 2$ the right-hand side of (2.7) is replaced by:

$$\sqrt{d_2}\ln(r_b/R).\tag{2.8}$$

As $b \to 0^+$ the left-hand side of (2.7) goes to $+\infty$ since by (H1) and the definition of F,

$$\sqrt{\frac{b^2 c^2(b)}{K(R)} + 2F(b) - 2F(t)} \le \sqrt{\frac{b^2 c^2(b)}{K(R)} + 2F(b) + 2|f'(0)|t^2}$$

for small positive t thus

$$\int_{0}^{\epsilon} \frac{dt}{\sqrt{\frac{b^{2}c^{2}(b)}{K(R)} + 2F(b) - 2F(t)}} \ge \int_{0}^{\epsilon} \frac{dt}{\sqrt{\frac{b^{2}c^{2}(b)}{K(R)} + 2F(b) + 2|f'(0)|t^{2}}} \to \infty$$
(2.9)

as $b \to 0^+$.

Combining (2.7) and (2.9) we see that if $2 < \alpha < 2(N-1)$ then

$$\frac{\sqrt{d_2}}{\frac{\alpha}{2}-1}R^{1-\frac{\alpha}{2}} \ge \frac{\sqrt{d_2}}{\frac{\alpha}{2}-1} \left(R^{1-\frac{\alpha}{2}} - r_b^{1-\frac{\alpha}{2}}\right) \to \infty \quad \text{as } b \to 0^+$$

which is impossible since R is fixed. Thus it follows that $u(M_b, b) < \gamma$ if b > 0 is sufficiently small and as indicated earlier in this lemma it then follows that u(r, b) > 0 for r > R if b > 0 is sufficiently small.

For the case $0 < \alpha \leq 2$ a lengthier argument is required and the details are carried out in [9]. There it is shown that $E(r_{b_1}) < 0$ for sufficiently small b > 0 and therefore u(r, b) cannot be zero for any $z_b > r_{b_1}$ as indicated earlier in this lemma. This completes the proof.

Lemma 2.2. Assume (H1)–(H5) and $N \ge 2$. Let u(r,b) be the solution of (2.1)–(2.2) and suppose $0 < \alpha < 2(N-1)$. Given a positive integer n then u(r,b) has at least n zeros on $(0,\infty)$ if b > 0 is chosen sufficiently large.

Proof. Let v(r) = u(r+R). Then v satisfies,

$$v''(r) + \frac{N-1}{R+r}v'(r) + K(R+r)f(v) = 0, \qquad (2.10)$$

$$v(0) = b, v'(0) = bc(b).$$
 (2.11)

Now let

$$v_{\lambda}(r) = \lambda^{-\frac{2}{p-1}} v\left(\frac{r}{\lambda}\right) \quad \text{for } \lambda > 0.$$
 (2.12)

 $\mathrm{EJDE}\text{-}2018/108$

Then

$$\begin{split} v_{\lambda}'(r) &= \lambda^{-\frac{2}{p-1}-1} v'\left(\frac{r}{\lambda}\right), \\ v_{\lambda}''(r) &= \lambda^{-\frac{2}{p-1}-2} v''\left(\frac{r}{\lambda}\right). \end{split}$$

Thus

$$v''\left(\frac{r}{\lambda}\right) + \frac{N-1}{R+\frac{r}{\lambda}}v'\left(\frac{r}{\lambda}\right) + K(\frac{r}{\lambda}+R)f\left(v\left(\frac{r}{\lambda}\right)\right) = 0$$

and so it then follows that

$$v_{\lambda}'' + \frac{N-1}{(R\lambda+r)}v_{\lambda}' + \frac{K(\frac{r}{\lambda}+R)}{\lambda^{\frac{2p}{p-1}}}f(\lambda^{\frac{2}{p-1}}v_{\lambda}) = 0.$$
(2.13)

From (H2) we have $f(u) = |u|^{p-1}u + g(u)$ and $\lim_{u\to\infty} \frac{|g(u)|}{|u|^p} = 0$ so rewriting (2.13) gives

$$v_{\lambda}'' + \frac{N-1}{(R\lambda+r)}v_{\lambda}' + \frac{K(\frac{r}{\lambda}+R)}{\lambda^{\frac{2p}{p-1}}} \left[\lambda^{\frac{2p}{p-1}} |v_{\lambda}|^{p-1} v_{\lambda} + g(\lambda^{\frac{2}{p-1}} v_{\lambda})\right] = 0.$$
(2.14)

Thus

$$v_{\lambda}'' + \frac{N-1}{(R\lambda+r)}v_{\lambda}' + K(\frac{r}{\lambda}+R)\left[|v_{\lambda}|^{p-1}v_{\lambda} + \frac{g(\lambda^{\frac{2}{p-1}}v_{\lambda})}{\lambda^{\frac{2p}{p-1}}}\right] = 0,$$
(2.15)

$$v_{\lambda}(0) = \lambda^{\frac{-2}{p-1}}b, \qquad (2.16)$$

$$v'_{\lambda}(0) = \lambda^{\frac{-2}{p-1}-1} bc(b) = \lambda^{-\frac{p+1}{p-1}} bc(b).$$
(2.17)

Now let

$$E_{\lambda}(r) = \frac{v_{\lambda}^{\prime 2}}{2K(\frac{r}{\lambda} + R)} + \frac{F(\lambda^{\frac{2}{p-1}}v_{\lambda})}{\lambda^{\frac{2p}{p-1}}}.$$
(2.18)

A straightforward calculation using (H4) and (2.13) gives

$$E_{\lambda}'(r) = -\frac{v_{\lambda}'^2}{2(\frac{r}{\lambda} + R)K(\frac{r}{\lambda} + R)} \Big[\frac{(\frac{r}{\lambda} + R)K'(\frac{r}{\lambda} + R)}{K(\frac{r}{\lambda} + R)} + 2(N-1)\Big] \le 0$$

for $0 < \alpha < 2(N-1)$. Thus for $r \ge 0$,

$$\frac{v_{\lambda}^{\prime 2}}{2K(\frac{r}{\lambda}+R)} + \frac{F(v_{\lambda})}{\lambda^{\frac{2p}{p-1}}} = E_{\lambda}(r) \le E_{\lambda}(0) = \frac{b^2 c^2(b)}{2\lambda^{\frac{2(p+1)}{p-1}} K(R)} + \frac{F(\lambda^{\frac{-2}{p-1}}b)}{\lambda^{\frac{2p}{p-1}}}.$$
 (2.19)

We now divide the rest of the proof into two cases.

Case 1: $\frac{c(b)}{b^{\frac{p-1}{2}}} \leq C_0$ for all sufficiently large *b* for some constant C_0 . In this case we choose $b = \lambda^{\frac{2}{p-1}}$ so that (2.16)-(2.17) become $v_{\lambda}(0) = 1$ and

$$v_{\lambda}'(0) = \lambda^{\frac{-2}{p-1}-1} bc(b) = \frac{c(b)}{\lambda} = \frac{c(b)}{b^{\frac{p-1}{2}}} \leq C_0.$$

Next using (H2)-(H3) it follows that

$$F(u) = \frac{|u|^{p+1}}{p+1} + G(u)$$
(2.20)

where $G(u) = \int_0^u g(s) \, ds$ and from L'Hôpital's rule it follows that $\frac{G(u)}{|u|^{p+1}} \to 0$ as $u \to \infty$.

4

So from (2.12), (2.19)-(2.20) and since $b = \lambda^{\frac{2}{p-1}}$ we obtain

$$\frac{v_{\lambda}^{\prime 2}}{2K(\frac{r}{\lambda}+R)} + \frac{|v_{\lambda}|^{p+1}}{p+1} + \frac{G(\lambda^{\frac{p}{p-1}}v_{\lambda})}{\lambda^{\frac{2(p+1)}{p-1}}} \le \frac{b^2c^2(b)}{2\lambda^{\frac{2(p+1)}{p-1}}K(R)} + \frac{F(1)}{\lambda^{\frac{2p}{p-1}}}$$
(2.21)

$$= \frac{1}{2K(R)} \left(\frac{c(b)}{b^{\frac{p-1}{2}}}\right)^2 + \frac{F(1)}{\lambda \frac{2p}{p-1}} \le \frac{C_0^2}{2K(R)} + \frac{F(1)}{\lambda \frac{2p}{p-1}}.$$
 (2.22)

So since $\frac{G(u)}{|u|^{p+1}} \to 0$ as $u \to \infty$ it follows that $\frac{|G(u)|}{|u|^{p+1}} \leq \frac{1}{2(p+1)}$ for say u > T. Also, $|G(u)| \leq G_0$ for $|u| \leq T$ since G is continuous on the compact set [0,T] and thus $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1} + G_0$ for all u. Similarly using (H2) it follows that $|g(u)| \leq \frac{1}{2}|u|^p + g_0$ for all u for some constant g_0 where $|g(u)| \leq g_0$ on [0,T]. Therefore for $\lambda > 0$ it follows from (2.21)-(2.22) that

$$\frac{v_{\lambda}'^2}{2K(\frac{r}{\lambda}+R)} + \frac{|v_{\lambda}|^{p+1}}{2(p+1)} \leq \frac{C_0^2}{2K(R)} + \frac{F(1)}{\lambda^{\frac{2p}{p-1}}} + \lambda^{\frac{-2(p+1)}{p-1}}G_0 \leq \frac{C_0^2}{2K(R)} + F(1) + G_0 \text{ for } \lambda > 1$$

It follows from this that $v_{\lambda}(r)$ and $v'_{\lambda}(r)$ are uniformly bounded on $[0, \infty)$ for large λ . It then follows that $\left(\frac{N-1}{R\lambda+r}\right)v'_{\lambda}$ is uniformly bounded on $[0, \infty)$ and also $K(\frac{r}{\lambda} + R)\left[|v_{\lambda}|^{p-1}v_{\lambda} + \frac{g(\lambda^{\frac{2}{p-1}}v_{\lambda})}{\lambda^{\frac{2p}{p-1}}}\right]$ is uniformly bounded on $[0, \infty)$. Then from (2.15) we see that v''_{λ} is uniformly bounded on $[0, \infty)$ for large λ . Therefore by the Arzela-Ascoli theorem it follows that there is a subsequence (still denoted v_{λ}) and continuous functions v_0 and v'_0 such that $v_{\lambda} \to v_0$ and $v'_{\lambda} \to v'_0$ uniformly on compact subsets of $[0, \infty)$ to a solution of

$$v_0'' + K(R)v_0^p = 0,$$

$$v_0(0) = 1, \quad v_0'(0) = d_0 = \lim_{b \to \infty} \frac{c(b)}{b^{\frac{p-1}{2}}} \le C_0.$$
(2.23)

It is now straightforward to show that v_0 has infinitely many zeros on $[0, \infty)$. Thus v_{λ} has at least n zeros for sufficiently large λ and so u(r, b) has at least n zeros for sufficiently large b. This concludes the proof in Case 1.

Case 2: $\frac{c(b)}{b^{\frac{p-1}{2}}} \to \infty$ for some subsequence as $b \to \infty$. Then for these b we let

$$\lambda = (bc(b))^{\frac{p-1}{p+1}}$$
 that is $bc(b) = \lambda^{\frac{p+1}{p-1}}$. (2.24)

From (2.17) and (2.24) we see that

$$v_{\lambda}(0) = \lambda^{-\frac{2}{p-1}} b = \left[\frac{b^{\frac{p-1}{2}}}{c(b)}\right]^{\frac{2}{p+1}} \to 0 \text{ as } b \to \infty \text{ and } v_{\lambda}'(0) = 1.$$

As in case (1) we can show there exist continuous functions v_0 and v'_0 such that for some subsequence $v_{\lambda} \to v_0$ and $v'_{\lambda} \to v'_0$ as $\lambda \to \infty$ uniformly on compact subsets of $[0, \infty)$ and v_0 is a solution of

$$v_0'' + K(R)v_0^p = 0,$$

$$v_0(0) = 0, \quad v_0'(0) = 1.$$
(2.25)

And again it is easy to show that v_0 has infinitely many zeros on $[0, \infty)$. Thus it follows that $v_{\lambda}(r)$ and hence u(r, b) has at least n zeros on $[0, \infty)$ when b is sufficiently large. This completes the proof.

3. PROOF OF THE MAIN THEOREM

Proof. We proceed as we did in [9]. It follows from Lemma 2.1 that

$$\{b > 0 : u(r, b) > 0 \text{ on } (R, \infty)\}$$

is nonempty and from Lemma 2.2 it follows that this set is bounded from above. Hence we set

$$b_0 = \sup\{b|u(r,b) > 0 \text{ on } (R,\infty)\}.$$

We next show that $u(r, b_0) > 0$ on (R, ∞) . This follows because if there is a z > Rsuch that $u(z, b_0) = 0$ then $u'(z, b_0) < 0$ (by uniqueness of solutions of initial value problems) and so $u(r, b_0)$ becomes negative for r slightly larger than z. By continuity with respect to initial conditions it follows that u(r, b) becomes negative for b slightly smaller than b_0 contradicting the definition of b_0 . Thus $u(r, b_0) > 0$ on (R, ∞) . Next it follows by the definition of b_0 that if $b > b_0$ then u(r, b) must have a zero, z_b , where $z_b > R$. We now show that $z_b \to \infty$ as $b \to b_0^+$. If not then the z_b are uniformly bounded and so a subsequence of them (still denoted z_b) converges to some $z_0 \ge R$. Then since $E' \le 0$:

$$\frac{1}{2}\frac{u'^2(r,b)}{K(r)} + F(u(r,b)) \le \frac{1}{2}\frac{b^2c^2(b)}{K(R)} \quad \text{for } r \ge R$$
(3.1)

and since F is bounded from below (by (H3)) it follows that u(r, b) and u'(r, b) are uniformly bounded on $[R, \infty)$ for b near b_0 . In addition it follows from (2.1) that u''(r, b) is also uniformly bounded on $[R, \infty)$ for b near b_0 . Then by the Arzela-Ascoli theorem a subsequence (still denoted u(r, b) and u'(r, b)) converges uniformly to $u(r, b_0)$ and $u'(r, b_0)$ and so we obtain $u(z_0, b_0) = 0$. But we know $u(r, b_0) > 0$ for r > R and so we get a contradiction. Thus $z_b \to \infty$ as $b \to b_0^+$.

We now show that $E(r,b_0) \geq 0$ on $[R,\infty)$. If not then there is an $r_0 > R$ such that $E(r_0,b_0) < 0$. By continuity $E(r_0,b) < 0$ for b slightly larger than b_0 . Also for $b > b_0$ the function u(r,b) has a zero, z_b , (by definition of b_0) and $E(z_b) = \frac{1}{2} \frac{u'^2(z_b,b)}{K(z_b)} \geq 0$. But E is non-increasing so $z_b < r_0$ which contradicts $z_b \to \infty$ as $b \to b_0^+$. Thus, $E(r,b_0) \geq 0$ on $[R,\infty)$.

Next either: (i) $u(r, b_0)$ has a local maximum at some $M_{b_0} > R$, or (ii) $u'(r, b_0) > 0$ for r > R and since $u(r, b_0)$ is bounded by (3.1) then there is an L > 0 such that $u(r, b_0) \to L$ as $r \to \infty$. We show now that (ii) is not possible. Suppose therefore that (ii) occurs. We divide this into three cases.

Case 1: $0 < \alpha < N$. Multiplying (2.1) by r^{N-1} and integrating on (R, r) gives

$$-r^{N-1}u' = -R^{N-1}b_0 + \int_R^r t^{N-1}K(t)f(u)\,dt.$$
(3.2)

Dividing (3.2) by $r^N K \to \infty$ as $r \to \infty$ since $0 < \alpha < N$ and taking limits using L'Hôpital's rule and (H4) gives

$$-\frac{u'}{rK} = \lim_{r \to \infty} \frac{\int_R^r t^{N-1} K(t) f(u) \, dt}{r^N K} = \lim_{r \to \infty} \frac{f(u)}{N + \frac{rK'}{K}} = \frac{f(L)}{N - \alpha}.$$
 (3.3)

Thus since $0 < \alpha < N$ and u' > 0, it follows that $f(L) \leq 0$ so that

$$0 < L \le \beta < \gamma. \tag{3.4}$$

On the other hand integrating the identity

$$(r^{2(N-1}KE)' = (r^{2(N-1}K)'F$$

on (R, r) and using L'Hôpital's rule gives

$$\lim_{r \to \infty} E(r, b_0) = \lim_{r \to \infty} \frac{1}{2} \frac{u'^2}{K} + F(u)$$
$$= \lim_{r \to \infty} \frac{1}{2} \frac{R^{2(N-1)} b_0^2}{r^{2(N-1)} K} + \frac{\int_R^r (t^{2(N-1)} K)' F(u(t, b_0)) dt}{r^{2(N-1)} K} = F(L).$$

Since we showed earlier that $E(r, b_0) \ge 0$ we see then that

$$0 \le \lim_{r \to \infty} E(r, b_0) = F(L).$$
(3.5)

Thus $L \ge \gamma$ which contradicts (3.4). Therefore it must be the case that $u(r, b_0)$ has a local maximum at some M_{b_0} . This completes Case 1.

Case 2: $\alpha = N$. In this case as well it follows that $f(L) \leq 0$ for suppose f(L) > 0. Then by (H5) the integral on the right-hand side of (3.2) grows like $f(L) \ln(r) \to \infty$ as $r \to \infty$ and thus the right-hand side of (3.2) becomes arbitrarily large but the left hand side is negative. Thus it must be that $f(L) \leq 0$ and as in Case 1 we get a contradiction.

Case 3: $N < \alpha < 2(N-1)$. For $b > b_0$ we know that there is an $z_b > R$ such that $u(z_b, b) = 0$ so there is an M_b with $R < M_b < z_b$ such that u(r, b) has a local maximum at M_b . If the M_b are bounded as $b \to b_0^+$ then a subsequence of the M_b converge to some $M_{b_0} < \infty$ and then $u(r, b_0)$ has a local maximum at M_{b_0} contradicting our assumption that $u'(r, b_0) > 0$ for r > R. So let us assume that $M_b \to \infty$ as $b \to b_0^+$.

Since E is non-increasing, it follows that $E(r) \leq E(M_b)$ for $r \geq M_b$. Thus

$$\frac{1}{2}\frac{{u'}^2}{K} + F(u) \le F(u(M_b)) \text{ for } r \ge M_b.$$
(3.6)

Rewriting and integrating (3.6) on $[M_b, z_b]$ (using (H5)) gives

$$0 \leq \int_{0}^{u(M_{b})} \frac{1}{\sqrt{2}\sqrt{F(u(M_{b})) - F(t)}} dt$$

= $\int_{M_{b}}^{z_{b}} \frac{|u'(t)|}{\sqrt{2}\sqrt{F(u(M_{b})) - F(u(t))}} dt$
 $\leq \int_{M_{b}}^{z_{b}} \sqrt{K} dt \leq \frac{\sqrt{d_{2}}(M_{b}^{1-\frac{\alpha}{2}} - z_{b}^{1-\frac{\alpha}{2}})}{\frac{\alpha}{2} - 1}.$ (3.7)

Since $\alpha > N \ge 2$ and $M_b \to \infty$ as $b \to b_0^+$ (thus $z_b \to \infty$) we see that the righthand side of (3.7) goes to 0 as $b \to b_0^+$. On the other hand, since $u(r, b) \to u(r, b_0)$ uniformly on compact subsets of $[R, \infty)$ we see then that $u(M_b) \to L$ as $b \to b_0^+$. Taking limits in (3.7) then gives:

$$\int_{0}^{L} \frac{1}{\sqrt{2}\sqrt{F(L) - F(t)}} \, dt = 0$$

which is impossible. Thus the M_b must be bounded as $b \to b_0^+$ which contradicts our assumption that $M_b \to \infty$. Thus $u(r, b_0)$ must have a local maximum M_{b_0} . This completes Case 3.

Since we know $u(r, b_0) > 0$ for r > R and $u(r, b_0)$ has a local maximum M_{b_0} it follows that $u(r, b_0)$ cannot have a local minimum at m_{b_0} with $m_{b_0} > M_{b_0}$ for at such a point we would have $u(m_{b_0}, b_0) > 0$, $u'(m_{b_0}, b_0) = 0$, and $u''(m_{b_0}) \ge 0$. Thus

J. JOSHI, J. A. IAIA

from (2.1) we see that $f(u(m_{b_0}, b_0)) \leq 0$ which implies $0 < u(m_{b_0}, b_0) \leq \beta$. On the other hand since $E(r, b_0) \geq 0$ for all $r \geq R$ then $E(m_{b_0}, b_0) = F(u(m_{b_0}, b_0)) \geq 0$ and so $\beta \geq u(m_{b_0}, b_0) \geq \gamma > \beta$ which is impossible. Thus it must be that $u'(r, b_0) < 0$ for $r > M_{b_0}$ and hence there is an $L \geq 0$ such that $u(r, b_0) \to L$ as $r \to \infty$. Recalling (3.5) we have $E(r, b_0) \to F(L) \geq 0$ as $r \to \infty$. Thus L = 0 or $L \geq \gamma$.

Finally we want to show L = 0. There are again three cases to consider.

Case 1: $0 < \alpha < 2$. First suppose $f(L) \neq 0$. Recalling (3.3) it then follows that $\frac{u'}{rK} \rightarrow -\frac{f(L)}{N-\alpha}$. Thus for large r we have $u' \sim -\frac{f(L)}{N-\alpha}rK$ and from (H5) we have $rK \sim r^{1-\alpha}$ so

$$|u(r) - u(r_0)| \sim \left|\frac{f(L)}{N - \alpha} \left[\frac{r^{2-\alpha} - r_0^{2-\alpha}}{2 - \alpha}\right]\right| \to \infty \quad \text{as } r \to \infty \text{ since } 0 < \alpha < 2$$

contradicting that u is bounded. Thus f(L) = 0 so L = 0 or $L = \beta$. But we also know from (3.5) that $F(L) \ge 0$ so L = 0 or $L \ge \gamma > \beta$. Thus we see that $L \ne \beta$ and so we must have L = 0.

Case 2: $\alpha = 2$. Suppose again $f(L) \neq 0$. This is similar to case 1 but now we have $|u(r) - u(r_0)| \sim |\frac{f(L)}{N-\alpha} \ln(r/r_0)| \to \infty$ contradicting that u is bounded. Thus f(L) = 0 so L = 0 or $L = \beta$. Since we also know $F(L) \ge 0$ so L = 0 or $L \ge \gamma > \beta$. So again we see that $L \ne \beta$ and thus L = 0.

Case 3: $2 < \alpha < 2(N-1)$. Here we let

$$u(r) = u_1(r^{2-N}).$$

This transforms (2.1) to

$$u_1''(t) + h(t)f(u_1(t)) = 0 \quad \text{for } 0 < t < R^{2-N}$$
(3.8)

where

$$u_1(R^{2-N}) = 0, \ u_1'(R^{2-N}) = -\frac{bR^{N-1}}{N-2} < 0$$

and where $h(t) = \frac{1}{(N-2)^2} t^{\frac{2(N-1)}{2-N}} K(t^{1/(2-N)})$. From (H4) we have h'(t) < 0 and we see that for small positive t we have $h(t) \sim \frac{1}{t^q}$ where $q = \frac{2(N-1)-\alpha}{N-2}$. We note also that for $2 < \alpha < 2(N-1)$ we have 0 < q < 2. Now let

$$E_1 = \frac{1}{2} \frac{u_1'^2}{h(t)} + F(u_1).$$

Then

$$E_1' = -\frac{u_1'^2 h'}{2h^2} \ge 0$$

since h' < 0. We see then from (3.8) that when $u_1 > \beta$ then $u_1'' < 0$ and when $0 < u_1 < \beta$ then $u_1'' > 0$. Now for $b > b_0$ we know that u(r, b) has a zero (by definition of b_0) and thus $u_1(t, b)$ has a zero, $z_{1,b}$, with $0 < z_{1,b} < R^{2-N}$ for $b > b_0$. Therefore u_1 has a local maximum at some $M_{1,b}$ and an inflection point at some $t_{1,b}$ with $0 < z_{1,b} < t_{1,b} < M_{1,b} < R^{2-N}$. Since $E_1(z_{1,b}) > 0$ and E_1 is non-decreasing then it follows that $F(u_1(M_{1,b}, b)) = E_1(M_{1,b}) \ge E_1(z_{1,b}) > 0$ and so $u_1(M_{1,b}, b) > \gamma$. Note also that $u_1(t_{1,b}, b) = \beta$. Since $u_1(t, b)$ is concave up on $(z_{1,b}, t_{1,b})$ we see then that $u_1(t, b)$ lies above the line through $(t_{1,b}, \beta)$ with slope $u_1'(t_{1,b}, b) > 0$. Thus:

$$u_1(t,b) \ge \beta + u'_1(t_{1,b},b)(t-t_{1,b})$$
 on $[z_{1,b},t_{1,b}]$.

Evaluating this at $t = z_{1,b}$ and rewriting yields

$$t_{1,b} \ge t_{1,b} - z_{1,b} \ge \frac{\beta}{u'(t_{1,b},b)}.$$
(3.9)

In addition, $E_1(t_{1,b}) \leq E_1(M_{1,b})$ so that there is a constant c_1 such that for b close to b_0 ,

$$\frac{1}{2}\frac{u_1'^2(t_{1,b},b)}{h(t_{1,b})} + F(\beta) \le F(u_1(M_{1,b}),b) \le c_1$$

and thus

$$0 < u_1'(t_{1,b}) \le c_2 \sqrt{h(t_{1,b})} \tag{3.10}$$

where $c_2 = \sqrt{2[c_1 + |F(\beta)|]}$. Combining (3.9)-(3.10) gives

$$\beta \le t_{1,b} u_1'(t_{1,b}, b) \le c_2 t_{1,b} \sqrt{h(t_{1,b})} \le c_3 t_{1,b}^{\frac{2-q}{2}}$$
(3.11)

for some constant c_3 for b close to b_0 . Since 0 < q < 2 we see from (3.11) that $t_{1,b}$ is bounded from below by a positive constant. It then follows by continuous dependence on initial conditions that t_{1,b_0} is also bounded from below by a positive constant. In addition, $u'_1(t_{1,b_0}, b_0) \ge 0$ and in fact $u'_1(t_{1,b_0}, b_0) > 0$ for if $u'_1(t_{1,b_0}) = 0$ then since $f(u_1(t_{1,b_0})) = f(\beta) = 0$ then $u''_1(t_{1,b_0}, b_0) = 0$ implying by uniqueness of solutions of initial value problems that $u_1(t, b_0) \equiv \beta$ contradicting that $u'_1(R^{2-N}, b_0) = -\frac{b_0R^{N-1}}{N-2} > 0$. Thus $u'_1(t_{1,b_0}) > 0$ and this implies $u_1(t, b_0) < \beta$ for $0 < t < t_{1,b_0}$. Thus $L = \lim_{t \to 0^+} u_1(t, b_0) \le \beta$. But recall from (3.5) that $F(L) \ge 0$ so if L > 0 then in fact $\beta \ge L \ge \gamma > \beta$ which is impossible so we see it must be the case that L = 0. Thus $\lim_{t \to 0^+} u_1(t, b_0) = 0$ and therefore $\lim_{r \to \infty} u(r, b_0) = 0$.

Next, [12, Lemma 4] states that if $u(r, b_k)$ is a solution of (2.1)-(2.2) with k zeros on $(0, \infty)$ then if b is sufficiently close to b_k then u(r, b) has at most k + 1 zeros on $(0, \infty)$. Also [8, Lemma 2.7] proves a similar result on (R, ∞) . Applying this lemma with $b = b_0$ we see that u(r, b) has at most one zero on (R, ∞) for b close to b_0 . On the other hand, by the definition of b_0 if $b > b_0$ then u(r, b) has at least one zero on (R, ∞) . Therefore: $\{b > b_0 | u(r, b)$ has exactly one zero on $(R, \infty)\}$ is nonempty and by Lemma 2.2 this set is bounded above. Then we let:

 $b_1 = \sup\{b > b_0 | u(r, b) \text{ has exactly one zero on } (R, \infty)\}.$

In a similar fashion we can show that $u(r, b_1)$ has exactly one zero on (R, ∞) and $u(r, b_1) \to 0$ as $r \to \infty$. Similarly we can find $u(r, b_n)$ which has exactly n zeros on (R, ∞) and $u(r, b_n) \to 0$ as $r \to \infty$. This completes the proof.

References

- H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
- [3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
- [4] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
- [5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, *Journal of Mathematical Analysis and Applications*, Volume 394, Issue 1, 432-437, 2012.
- [6] R. Dhanya, Q. Morris, R. Shivaji; Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, *Journal of Mathematical Analysis and Applications*, Volume 434, Issue 2, 1533-1548, 2016.

- [7] J. Iaia; Loitering at the hilltop on exterior domains, *Electronic Journal of the Qualitative Theory of Differential Equations*, Vol. 2015 (2015), No. 82, 1-11.
- [8] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, submitted to *Journal of Partial Differential Equations*, Vol. 30 No. 4, 2017, pp. 1-17.
- [9] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, *Journal of Mathematical Analysis and Applications*, 446, 591-604, 2017.
- [10] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semilinear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
- [11] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10, 861-875, 2011.
- [12] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, *Journal of Differential Equations*, Volume 83, Issue 2, 368-373, 1990.
- [13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
- [14] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Janak Joshi

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: JanakrajJoshi@my.unt.edu

Joseph A. Iaia

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: iaia@unt.edu