UNBOUNDED SOLUTIONS FOR SCHRÖDINGER QUASILINEAR ELLIPTIC PROBLEMS WITH PERTURBATION BY A POSITIVE NON-SQUARE DIFFUSION TERM

CARLOS ALBERTO SANTOS, JIAZHENG ZHOU
Communicated by Claudianor O. Alves

$$
\begin{aligned}
& \text { Abstract. In this article, we present a version of Keller-Osserman condition } \\
& \text { for the Schrödinger quasilinear elliptic problem } \\
& \qquad \begin{array}{l}
-\Delta u+\frac{k}{2} u \Delta u^{2}=a(x) g(u) \quad \text { in } \mathbb{R}^{N} \\
u>0 \quad \text { in } \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x)=\infty
\end{array}
\end{aligned}
$$

where $a: \mathbb{R}^{N} \rightarrow[0, \infty)$ and $g:[0, \infty) \rightarrow[0, \infty)$ are suitable continuous functions, $N \geq 1$, and $k>0$ is a parameter. By combining a dual approach and this version of Keller-Osserman condition, we show the existence and multiplicity of solutions.

1. Introduction

In this article, we consider the problem

$$
\begin{gather*}
-\Delta u+\frac{k}{2} u \Delta u^{2}=a(x) g(u) \quad \text { in } \mathbb{R}^{N} \tag{1.1}\\
u>0 \quad \text { in } \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x) \rightarrow \infty
\end{gather*}
$$

where Δ is the Laplacian operator, $a(x)$ is a nonnegative continuous function, $g:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing continuous function that satisfies $g(s)>0$, $s>0, N \geq 1$ and $k>0$ is a parameter.

Equation $\sqrt[1.1]{ }$ is a modified nonlinear Schrödinger equation by the quasilinear and nonconvex term $u \Delta u^{2}$, which is called of square diffusion. A solution of 1.1 is related to standing wave solutions for the quasilinear Schrödinger equation

$$
\begin{equation*}
i z_{t}+\Delta z-\omega(x) z+\kappa \Delta\left(h\left(|z|^{2}\right)\right) h^{\prime}\left(|z|^{2}\right) z+\eta(x, z)=0, \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

where ω is a potential function, h and η are real functions and κ is a real constant. This connection is established by the fact that $z(t, x)=e^{-i \beta t} u(x)$ is a solution to (1.2) if and only if u satisfies the equation in (1.1) for suitable constants ω, h, η and κ. This kind of equations appears in several applications: superfluid film in plasma physics [10]; in models of the self-channeling of a high-power ultrashort laser in

[^0]matter [9] and [16]; in the theory of Heidelberg ferromagnetism and magnus [7]; in dissipative quantum mechanics [1]; and in condensed matter theory [6].

Even for bounded solutions, there are only a few results in the literature studying existence and multiplicity of such solutions to the equation in 1.1 with positive perturbation; that is, $k>0$. One important result, that shows the existence of solutions for a related operator of the equation in 1.1, is due to Alves, Wang and Shen [3] who showed the existence of bounded solutions satisfying

$$
\sup _{x \in \mathbb{R}^{N}}|u(x)| \leq \sqrt{1 / k}
$$

for each $0<k<k_{0}$, for some $k_{0}>0$. In fact, they considered the equation

$$
-\Delta u+V(x) u+\frac{k}{2} u \Delta u^{2}=a(x) g(u) \quad \text { in } \mathbb{R}^{N}
$$

for some appropriate potential V. For more references on this direction, we refer the reader to $4,2,20,19$ and references therein.

On the other hand, after these papers, we wondered whether it is possible to exist unbounded solutions for (1.1); that is, solutions $u(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Surprisingly, under an appropriate version of Keller-Osserman condition to this operator, we were able to show the existence of an infinite number of solutions to (1.1). Our solutions satisfy

$$
\inf _{x \in \mathbb{R}^{N}}|u(x)| \geq \sqrt{1 / k}
$$

for a given $k>0$.
Research about existence of explosive solutions (or unbounded solutions) is motivated principally by its applications in models of population dynamical, subsonic motion of a gas, non-Newtonian fluids, non-Newtonian filtration as well as in the theory of the electric potential in a glowing hollow metal body. Remarkable work about unbounded solutions was done by Keller [8] and Osserman [15], both in 1957. They established necessary and sufficient conditions for the existence of solutions and sub solutions to the semilinear and autonomous problem (that is, $a \equiv 1$)

$$
\begin{gather*}
\Delta u=a(x) g(u) \quad \text { in } \mathbb{R}^{N}, \\
u \geq 0 \quad \text { in } \mathbb{R}^{N}, \lim _{|x| \rightarrow \infty} u(x) \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where g is a non-decreasing continuous function. This is done under the condition

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{d t}{G(t)^{1 / 2}}=\infty, \quad \text { where } G(t)=\int_{0}^{t} g(s) d s, \quad t>0 \tag{1.4}
\end{equation*}
$$

After these works, a function g satisfies the well-known Keller-Osserman condition, for the Laplacian operator, if

$$
\int_{1}^{+\infty} \frac{d t}{G(t)^{1 / 2}}<\infty
$$

Recently, there have been a number of papers trying to obtain "Keller-Osserman conditions" for various operators. The authors have also considered this question for ϕ-Laplacian operator in [18].

For 1.3 non-autonomous, it has arisen an important issues on existence of solutions, namely, "how radial" is $a(x)$ at infinity; that is, how big is the function

$$
a_{\mathrm{osc}}(r):=\bar{a}(r)-\underline{a}(r), \quad r \geq 0
$$

where

$$
\begin{equation*}
\underline{a}(r)=\min \{a(x):|x|=r\}, \quad \bar{a}(r)=\max \{a(x):|x|=r\}, \quad r \geq 0 \tag{1.5}
\end{equation*}
$$

As a consequence of this, we have that $a_{\text {osc }}(r)=0, r \geq r_{0}$, if and only if, a is symmetric radially for $|x| \geq r_{0}$, for some $r_{0} \geq 0$. In particular, if $r_{0}=0$ we say that $a(x)$ is radially symmetric.

Considering $a_{\text {osc }} \equiv 0$, Lair and Wood in [12] proved that

$$
\begin{equation*}
\int_{1}^{\infty} r a(r) d r=\infty \tag{1.6}
\end{equation*}
$$

is a sufficient condition for (1.3) to have radial solution. They considered $g(u)=u^{\gamma}$, $u \geq 0$ with $0<\gamma \leq 1$, that is, g satisfies (1.4).

In 2003, Lair [11] allowed $a(x)$ to be not necessarily radial in the whole space, but he did not allow $a(x)$ to have $a_{\text {osc }}$ too big. More exactly, he assumed

$$
\int_{0}^{\infty} r a_{\text {osc }}(r) \exp (\underline{A}(r)) d r<\infty, \quad \text { where } \underline{A}(r)=\int_{0}^{r} s \underline{a}(s) d s, r \geq 0
$$

and proved that (1.3), with suitable g that includes u^{γ} for $0<\gamma \leq 1$, admits a solution, if and only if, (1.6) holds with \underline{a} in place of a.

In this way, Mabroux and Hansen [13] in 2007 improved the above results, considering the hypothesis

$$
\int_{0}^{\infty} r a_{\mathrm{osc}}(r)(1+\underline{A}(r))^{\gamma /(1-\gamma)} d r<\infty
$$

For a more general operator, Rhouma and Drissi [5] in 2014 proved similar results.
Before stating our main results, we dfine a solution of 1.1) as a positive function $u \in C^{1}\left(\mathbb{R}^{N}\right)$ such that $u \rightarrow \infty$ as $|x| \rightarrow \infty$, and

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(1-k u^{2}\right) \nabla u \nabla \varphi d x-k \int_{\mathbb{R}^{N}}|\nabla u|^{2} u \varphi d x \\
& =\int_{\mathbb{R}^{N}} a(x) g(u) \varphi d x \text { for all } \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
\end{aligned}
$$

Throughout this article we assume that $g:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing continuous function with $g(s)>0$ for $s>0$. Also we use the condition

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{g(t)}{t}>0 \tag{1.7}
\end{equation*}
$$

Our first result reads as follows.
Theorem 1.1. Assume that 1.7 is satisfied and

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{d t}{G_{0}(t)^{1 / 2}}=\infty, \quad \text { where } G_{0}(t)=\int_{0}^{t} g(\sqrt{s}) d s, t>0 \tag{1.8}
\end{equation*}
$$

If $a_{\text {osc }} \equiv 0$ and

$$
\begin{equation*}
\int_{0}^{\infty}\left(s^{1-N} \int_{0}^{s} t^{N-1} a(t) d t\right) d s=\infty \tag{1.9}
\end{equation*}
$$

then for each $\sigma>1$ and $k>0$, there exists a solution $u=u_{\sigma, k} \in C^{1}\left(\mathbb{R}^{N}\right)$ to problem 1.1. Furthermore,

$$
\inf _{x \in \mathbb{R}^{N}} u(x) \geq \sqrt{\sigma / k}
$$

For non-radial potentials $a(x)$, we need to control the size of this non-radiality. So, for each $\sigma>1$, let us assume that $\mathcal{G}=\mathcal{G}_{\sigma}:(0, \infty) \rightarrow(0, \infty)$, defined by

$$
\mathcal{G}(t)=\frac{(\sigma-1) \sqrt{k}}{8 \sqrt{\sigma}} t^{2} / g(t), \quad t>0
$$

is non-decreasing and is invertible; such that

$$
\begin{align*}
0 \leq \bar{H}:= & \frac{1}{\sqrt{\sigma-1}} \int_{0}^{\infty}\left(s^{1-N} \int_{0}^{s} t^{N-1} a_{\mathrm{osc}}(t) d t\right) \tag{1.10}\\
& \times\left[g\left(\mathcal{G}^{-1}\left(s\left(\int_{0}^{s} \bar{a}(t) d t\right)\right)\right)\right] d s<\infty
\end{align*}
$$

Our second result reads as follows.
Theorem 1.2. Assume g satisfies (1.8) and that for $t>0$ the function $g(t) / t^{\delta}$ is non-decreasing for some $\delta \geq \sigma /(\sigma-1)$. Also suppose that $a(x)$ is such that \underline{a} satisfies 1.9 and \bar{a} satisfies 1.10 . Then there exists a solution $u=u_{\alpha, \sigma, k, \varepsilon} \in$ $C^{1}\left(\mathbb{R}^{N}\right)$ of problem (1.1) satisfying

$$
\inf _{x \in \mathbb{R}^{N}} u(x) \geq \sqrt{\sigma / k} \quad \text { and } \quad \alpha \leq u(0) \leq(\alpha+\varepsilon)+\bar{H}
$$

for each $\sigma>1$ and $\alpha, k, \varepsilon>0$ given so that $\alpha>\sqrt{\sigma / k}$.
We note that this work contributes to the literature of quasilinear Schrödinger equation in at least two aspects: Firstly, as far as we know, there are no results considering this kind of operators (a positive perturbation) in the context of unbounded solutions. We mention the authors have already considered in [17] a negative perturbation, that is, $k<0$ in the problem 1.1). Secondly, we present a version of "Keller-Orsemann condition" for this kind of operator that "captures" the influence of the perturbation term.

We organized this article the following way: in section 2 , we establish an equivalent problem to the 1.1 , via a very specific change of variable. In the last section we complete the proof of Theorems 1.1 and 1.2 .

2. Auxiliary results

In this section, a change of variables allows us to transform problem (1.1) into a new problem. In the new problem, we establish a version of Keller-Orsemann condition and show the existence of an entire solution that is unbounded.

First, we note that the problem (1.1) is equivalent to the modified quasilinear Schrödinger problem

$$
\begin{gather*}
\operatorname{div}\left(l^{2}(u) \nabla u\right)-l(u) l^{\prime}(u)|\nabla u|^{2}=a(x) g(u), \quad x \in \mathbb{R}^{N} \\
u>0 \quad \text { in } \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x) \rightarrow \infty \tag{2.1}
\end{gather*}
$$

whenever $u(x)>\sqrt{\sigma / k}$ for $x \in \mathbb{R}^{N}$, where $l(t)=\sqrt{k t^{2}-1}$ for $t>\sqrt{\sigma / k}$ for each $k>0$ and $\sigma>1$ given. In these situations, we conclude that the solutions obtained to (2.1) are solutions of the original problem (1.1).

So, we look for by a positive function $u \in C^{1}\left(\mathbb{R}^{N}\right)$ that satisfies $u \rightarrow \infty$ as $|x| \rightarrow \infty$ and

$$
-\int_{\mathbb{R}^{N}} l^{2}(u) \nabla u \nabla \varphi d x-\int_{\mathbb{R}^{N}} l(u) l^{\prime}(u)|\nabla u|^{2} \varphi d x=\int_{\mathbb{R}^{N}} a(x) g(u) \varphi d x
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$; that is, this $u \in C^{1}\left(\mathbb{R}^{N}\right)$ will be an unbounded solution to (2.1).

To do this, first let us define $l:[1 / \sqrt{k \sigma}, \infty) \rightarrow[0, \infty)$ by

$$
l(t)=l_{\sigma, k}(t)= \begin{cases}\frac{\sqrt{k \sigma}}{\sqrt{\sigma-1}} t-\frac{1}{\sqrt{\sigma-1}} & \text { if } \frac{1}{\sqrt{k \sigma}} \leq t \leq \sqrt{\frac{\sigma}{k}} \\ \sqrt{k t^{2}-1} & \text { if } t>\sqrt{\frac{\sigma}{k}}\end{cases}
$$

for each $\sigma>1$, and set

$$
\begin{equation*}
L(t)=L_{\sigma, k}(t)=\int_{1 / \sqrt{k \sigma}}^{t} l(s) d s \quad \text { for } t \geq 1 / \sqrt{k \sigma} \tag{2.2}
\end{equation*}
$$

It is a consequence of the above definitions that the function $L:[1 / \sqrt{k \sigma}, \infty) \rightarrow$ $[0, \infty)$ is a C^{2}-injective function; that is, the inverse function $L^{-1}:[0, \infty) \rightarrow$ $[1 / \sqrt{k \sigma}, \infty)$ is well-defined and L^{-1} is a C^{2}-function as well. After this, we are able to prove more Lemmas. The first lemma follows from the definitions and properties of l and L.
Lemma 2.1. Under the above conditions, the functions l and L^{-1} satisfy:
(1) $0 \leq l(t) \leq \frac{\sqrt{k \sigma}}{\sqrt{\sigma-1}} t$ for all $t \in[1 / \sqrt{k \sigma}, \sqrt{\sigma / k}]$ and $\frac{\sqrt{(\sigma-1) k}}{\sqrt{\sigma}} t \leq l(t) \leq \sqrt{k} t$ for all $t>\sqrt{\sigma / k}$,
(2) $0 \leq L(t) \leq \frac{\sqrt{k \sigma}}{\sqrt{\sigma-1}} t^{2}$ for all $t \in[1 / \sqrt{k \sigma}, \sqrt{\sigma / k}]$ and

$$
\frac{1}{2} \frac{\sqrt{(\sigma-1) k}}{\sqrt{\sigma}} t^{2}-\frac{1}{2} \frac{\sqrt{(\sigma-1) \sigma}}{\sqrt{k}} \leq L(t) \leq \sqrt{k} t^{2}
$$

for all $t>\sqrt{\sigma / k}$,
(3) $L^{-1}(t) \leq \sqrt{\frac{2 t \sqrt{\sigma}}{\sqrt{(\sigma-1) k}}+\frac{\sigma}{k}}$ for $t>0$, and

$$
L^{-1}(t) \geq \begin{cases}\sqrt[4]{\frac{\sigma-1}{k \sigma}} \sqrt{t} & \text { for } \frac{1}{\sqrt{k \sigma(\sigma-1)}} \leq t \leq \frac{\sqrt{\sigma^{3}}}{\sqrt{k(\sigma-1)}} \\ \sqrt{\frac{t}{\sqrt{k}}} & \text { for } t \geq \frac{\sigma}{\sqrt{k}}\end{cases}
$$

(4) for $t>\sqrt{\sigma / k}$, the function $\frac{t^{\delta}}{l(t)}$ is nondecreasing for each $\delta \geq \frac{\sigma}{\sigma-1}$.

In the sequel, we use the definitions and properties of l, L and L^{-1} to provide solutions (2.1) by establishing solutions to 2.3 below.

Lemma 2.2. Assume $u=L^{-1}(w)$, where $w \in C^{1}\left(\mathbb{R}^{N}\right)$ is a solution of the problem

$$
\begin{gather*}
\Delta w=a(x) \frac{g\left(L^{-1}(w)\right)}{l\left(L^{-1}(w)\right)} \quad \text { in } \mathbb{R}^{N} \tag{2.3}\\
w>\sigma / \sqrt{k} \quad \text { in } \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} w(x)=\infty
\end{gather*}
$$

Then $u \in C^{1}\left(\mathbb{R}^{N}\right)$ is a solution of problem (1.1) that satisfies $u(x) \geq \sqrt{\sigma / k}$ for all $x \in \mathbb{R}^{N}$.
Proof. First, note that $u \geq \sqrt{\sigma / k}$ is a consequence of $w \geq \sigma / \sqrt{k}$. By the regularity of L, we obtain $u \in C^{1}\left(\mathbb{R}^{\bar{N}}\right)$, because $w \in C^{1}\left(\mathbb{R}^{N}\right)$. Besides this, it follows from the behavior of L and L^{-1} that $w(x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$ if and only if $u(x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$.

Since

$$
w=L(u)=\int_{1 / \sqrt{k \sigma}}^{u} l(s) d s
$$

it follows that

$$
\nabla w=l(u) \nabla u=\left(k u^{2}-1\right)^{1 / 2} \nabla u
$$

that is,

$$
\nabla u=\left(k u^{2}-1\right)^{-1 / 2} \nabla w
$$

Thus, for each $\varphi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
\left(1-k u^{2}\right) \nabla u \nabla \varphi=-\left(k u^{2}-1\right)^{1 / 2} \nabla w \nabla \varphi \tag{2.4}
\end{equation*}
$$

On the other hand, since $w \in C^{1}\left(\mathbb{R}^{N}\right)$ is a solution of problem 2.3), we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(k u^{2}-1\right)^{1 / 2} \nabla w \nabla \varphi & =\int_{\mathbb{R}^{N}} \nabla w \nabla\left\{\left(k u^{2}-1\right)^{1 / 2} \varphi\right\}-\int_{\mathbb{R}^{N}} \frac{k u}{k u^{2}-1}|\nabla w|^{2} \varphi \\
& =-\int_{\mathbb{R}^{\mathbb{N}}} a(x) \frac{g(u)}{l(u)}\left(k u^{2}-1\right)^{1 / 2} \varphi-\int_{\mathbb{R}^{\mathbb{N}}} k u|\nabla u|^{2} \varphi \\
& =-\int_{\mathbb{R}^{\mathbb{N}}} a(x) g(u) \varphi-\int_{\mathbb{R}^{\mathbb{N}}} k u|\nabla u|^{2} \varphi
\end{aligned}
$$

Then using 2.4, we have $u \in C^{1}\left(\mathbb{R}^{N}\right)$ is a solution to 1.1). This completes the proof.

3. Proof of main results

Below, we show the existence of a solution to 2.3 and after this, by using the second Lemma above, we are able to show the existence of a solution to Problem (1.3). This arguments relies on ideas found in [14.

Proof of Theorem 1.1. Since $a_{\text {osc }} \equiv 0$, that is, $a(x)=a(|x|)$ for all $x \in \mathbb{R}^{N}$, we have that a radial solution for (2.3) can be obtained by solving the problem

$$
\begin{gather*}
\left(r^{N-1} w^{\prime}\right)^{\prime}=r^{N-1} a(r) \frac{g\left(L^{-1}(w)\right)}{l\left(L^{-1}(w)\right)} \quad \text { in }(0, \infty) \tag{3.1}\\
w^{\prime}(0)=0, \quad w(0)=\alpha \geq 0
\end{gather*}
$$

where $r=|x| \geq 0$ and $\alpha>\sigma / \sqrt{k}$ is a real number, for each $\sigma>1$ and $k>0$.
Since a, g, l and L^{-1} are continuous functions, we can follow the approach in [21] to show that there exist a right maximal extreme $\Gamma(\alpha)>0$, and a function $w_{\alpha} \in C^{2}(0, \Gamma(\alpha)) \cap C^{1}([0, \Gamma(\alpha)))$ solution of the problem (3.1) on $(0, \Gamma(\alpha))$, for each $\alpha>\sigma / \sqrt{k}$ given.

If we assumed that $\Gamma(\alpha)<\infty$ for some $\alpha>\sigma / \sqrt{k}$, then we would obtain, by standard arguments of ordinary differential equations, that either $w_{\alpha}(r) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$or $w_{\alpha}^{\prime}(r) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$; that is, $w_{\alpha}(|x|)$ would satisfy the problem

$$
\begin{gather*}
\left(r^{N-1} w^{\prime}\right)^{\prime}=r^{N-1} a(r) \frac{g\left(L^{-1}(w)\right)}{l\left(L^{-1}(w)\right)} \quad \text { in }(0, \Gamma(\alpha)) \\
w^{\prime}(0)=0, w(0)=\alpha>0 \tag{3.2}\\
\lim _{r \rightarrow \Gamma(\alpha)^{-}} w_{\alpha}(r)=\infty \quad \text { or } \quad \lim _{r \rightarrow \Gamma(\alpha)^{-}} w_{\alpha}^{\prime}(r)=\infty
\end{gather*}
$$

So, using that a solution w of 3.2 is non-decreasing and $l(t) \geq \sqrt{\sigma-1}$ for all $t \geq \sqrt{\sigma / k}$, we obtain that w satisfies

$$
\begin{gather*}
\left(r^{N-1} w^{\prime}\right)^{\prime} \leq \frac{a_{\infty}}{\sqrt{\sigma-1}} r^{N-1} g\left(L^{-1}(w)\right) \quad \text { in }(0, \Gamma(\alpha)) \\
w(0)=\alpha>0, \quad w^{\prime}(0)=0 \tag{3.3}\\
\lim _{r \rightarrow \Gamma(\alpha)^{-}} w_{\alpha}(r)=\infty \quad \text { or } \quad \lim _{r \rightarrow \Gamma(\alpha)^{-}} w_{\alpha}^{\prime}(r)=\infty
\end{gather*}
$$

where $a_{\infty}=\max _{\bar{B}_{\Gamma(\alpha)}} a(x)$.
By integrating the inequality above over $(0, r)$ with $0<r<\Gamma(\alpha)$ and assuming $\left\|w_{\alpha}\right\|_{\infty} \leq C<\infty$ for some $C>0$, we obtain

$$
\limsup _{r \rightarrow \Gamma(\alpha)^{-}} w^{\prime}(r) \leq \Gamma(\alpha)^{1-N} \int_{0}^{\Gamma(\alpha)} t^{N-1} g\left(L^{-1}(w(t))\right) d t<\infty
$$

by the continuity of all involved functions. So, from now on, we assume that $w_{\alpha}(x) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$.

By using $w^{\prime} \geq 0$ again, we can rewrite the inequality in (3.3) as

$$
w^{\prime \prime} \leq \frac{a_{\infty}}{\sqrt{\sigma-1}}\left(g \circ L^{-1}\right)(w) \quad \text { for all } 0<r<\Gamma(\alpha)
$$

this lead us, after multiplying this inequality by w^{\prime} and integrating it on $(0, r)$, to

$$
\frac{1}{2}\left(w^{\prime}(r)\right)^{2} \leq \int_{0}^{r} \frac{a_{\infty}}{\sqrt{\sigma-1}}\left(g \circ L^{-1}\right)(w(s)) w^{\prime}(s) d s=\frac{a_{\infty}}{\sqrt{\sigma-1}} \int_{\alpha}^{w(r)}\left(g \circ L^{-1}\right)(s) d s
$$

that is,

$$
\left(\int_{\alpha}^{w(r)}\left(g \circ L^{-1}\right)(s) d s\right)^{-1 / 2} w^{\prime}(r) \leq \sqrt{2} \sqrt{a_{\infty} / \sqrt{\sigma-1}} \quad \text { for all } 0<r<\Gamma(\alpha)
$$

Now, by integrating in the above inequality over $(0, \Gamma(\alpha))$ and reminding that $w_{\alpha}(x) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$, we obtain

$$
\begin{equation*}
\int_{\alpha}^{\infty}\left(\int_{\alpha}^{t}\left(g \circ L^{-1}\right)(s) d s\right)^{-1 / 2} d t \leq \sqrt{2} \sqrt{a_{\infty} / \sqrt{\sigma-1}} \Gamma(\alpha)<\infty \tag{3.4}
\end{equation*}
$$

On the other hand, from Lemma $\operatorname{2.1}(3)$ and the monotonicity of g, it follows that
that is,

$$
\int_{\alpha}^{t}\left(g \circ L^{-1}\right)(s) d s \leq \int_{\alpha}^{t} g\left(\sqrt{\frac{2 t \sqrt{\sigma}}{\sqrt{(\sigma-1) k}}+\frac{\sigma}{k}}\right) d s \text { for all } t>\alpha
$$

As a consequence of this and (3.4), we have

$$
\int_{\alpha}^{\infty}\left\{\int_{\alpha}^{t} g \operatorname{Big}\left(\sqrt{\frac{2 s \sqrt{\sigma}}{\sqrt{(\sigma-1) k}}+\frac{\sigma}{k}}\right) d s\right\}^{-1 / 2} d t \leq \int_{\alpha}^{\infty}\left\{\int_{\alpha}^{t}\left(g \circ L^{-1}\right)(s) d s\right\}^{-1 / 2} d t
$$

So, by estimating in the last inequality and using (3.4) again, we obtain

$$
\int_{1}^{\infty} G_{0}(t)^{-1 / 2} d t \leq C\left(\sqrt{a_{\infty} / \sqrt{\sigma-1}}\right) \Gamma(\alpha)<\infty
$$

for some real constant $C>0$. This is impossible, because we are assuming that g satisfies 1.8.

It follows from Lemma 2.1 (1), hypothesis 1.7 and $L^{-1}\left(w_{\alpha}\right) \geq \sqrt{\sigma / k}$, that

$$
\begin{equation*}
\frac{g\left(L^{-1}\left(w_{\alpha}(r)\right)\right)}{l\left(L^{-1}\left(w_{\alpha}(r)\right)\right)} \geq \frac{g\left(L^{-1}\left(w_{\alpha}(r)\right)\right)}{\sqrt{k} L^{-1}\left(w_{\alpha}(r)\right)} \geq M>0 \quad \text { for all } r>0 \tag{3.5}
\end{equation*}
$$

and for each $\alpha>\sigma / \sqrt{k}$ given and for some $M>0$, because $w_{\alpha}(r) \geq \alpha$ for all $r \geq 0$.
Since, w_{α} satisfies

$$
\begin{equation*}
w_{\alpha}(r)=\alpha+\int_{0}^{r}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right) d t, \quad r \geq 0 \tag{3.6}
\end{equation*}
$$

it follows from 3.5, that

$$
\begin{equation*}
w_{\alpha}(r) \geq \alpha+M \int_{0}^{r}\left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) d s\right) d t \rightarrow \infty, \quad \text { as } r \rightarrow \infty \tag{3.7}
\end{equation*}
$$

This completes the proof.
Proof of Theorem 1.2. Set $\beta>\alpha>\sigma / \sqrt{k}$. Since the hypothesis $g(t) / t^{\delta}$ being non-increasing implies (1.7), from Theorem 1.1 there exist positive and radially symmetric solutions $w_{\alpha}, w_{\beta} \in C^{1}\left(\mathbb{R}^{N}\right)$ to the problems

$$
\begin{gathered}
\Delta w_{\alpha}=\bar{a}(|x|) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} \quad \text { in } \mathbb{R}^{N} \\
w_{\alpha}(0)=\alpha, \quad \lim _{|x| \rightarrow \infty} w_{\alpha}(x)=\infty
\end{gathered}
$$

and

$$
\begin{gathered}
\Delta w_{\beta}=\underline{a}(|x|) \frac{g\left(L^{-1}\left(w_{\beta}\right)\right)}{l\left(L^{-1}\left(w_{\beta}\right)\right)} \quad \text { in } \mathbb{R}^{N} \\
w_{\beta}(0)=\beta, \quad \lim _{|x| \rightarrow \infty} w_{\beta}(x)=\infty
\end{gathered}
$$

respectively, where \underline{a} and \bar{a} were defined in (1.5).
Besides this, from (3.6), (3.7), w_{α}, g, L^{-1} be non-decreasing and Lemma 2.1.(3), it follows that

$$
\begin{aligned}
w_{\alpha}(r) & \leq 2 \int_{0}^{r}\left(\int_{0}^{t} \bar{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right) d t \\
& \leq 2 g\left(L^{-1}\left(w_{\alpha}(r)\right)\right) \int_{0}^{r}\left(\int_{0}^{t} \frac{\bar{a}(s)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right) d t \\
& \leq 2 g\left(\sqrt{2} \sqrt{\frac{\sigma}{(\sigma-1) k}} w_{\alpha}(r)+\frac{\sigma}{k}\right) \int_{0}^{r}\left(\int_{0}^{t} \frac{\bar{a}(s)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right) d t \\
& \leq 2 g\left(2 \sqrt[4]{\left.\frac{\sigma}{(\sigma-1) k} \sqrt{w_{\alpha}}\right)} \int_{0}^{r}\left(\int_{0}^{t} \frac{\bar{a}(s)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right) d t\right. \\
& \leq \frac{2}{\sqrt{\sigma-1}} g\left(2 \sqrt[4]{\frac{\sigma}{(\sigma-1) k}} \sqrt{w_{\alpha}}\right)\left[r\left(\int_{0}^{r} \bar{a}(t) d t\right)-\int_{0}^{r} t \bar{a}(t) d t\right] \\
& \leq \frac{2}{\sqrt{\sigma-1}} g\left(2 \sqrt[4]{\frac{\sigma}{(\sigma-1) k}} \sqrt{w_{\alpha}}\right) r \int_{0}^{r} \bar{a}(t) d t
\end{aligned}
$$

for all $r>0$ sufficiently large. That is, it follows from the definition of \mathcal{G}, that

$$
2 \sqrt[4]{\frac{\sigma}{(\sigma-1) k}} \sqrt{w_{\alpha}} \leq \mathcal{G}^{-1}\left(r \int_{0}^{r} \bar{a}(t) d t\right) \quad \text { for all } r \gg 0
$$

Now, setting

$$
0<S(\beta)=\sup \left\{r>0: w_{\alpha}(r)<w_{\beta}(r)\right\} \leq \infty
$$

we claim that $S(\beta)=\infty$ for all $\beta>\alpha+\bar{H}$ and for each $\alpha>\sigma / \sqrt{k}$ given. In fact, by assuming this is not true, then there exists a $\beta_{0}>\alpha+\bar{H}$ such that $w_{\alpha}\left(S\left(\beta_{0}\right)\right)=$ $w_{\beta}\left(S\left(\beta_{0}\right)\right)$. So, by using that $g(t) / t^{\delta}$ is non-decreasing for $\delta>\sigma /(\sigma-1)$, Lemma 2.1 and $w_{\alpha} \leq w_{\beta}$ on $\left[0, S\left(\beta_{0}\right)\right]$, we obtain

$$
\begin{align*}
& \beta_{0} \\
& =\alpha+\int_{0}^{S\left(\beta_{0}\right)} t^{1-N}\left[\int_{0}^{t} s^{N-1}\left(\bar{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}-\underline{a}(s) \frac{g\left(L^{-1}\left(w_{\beta}\right)\right)}{l\left(L^{-1}\left(w_{\beta}\right)\right)}\right) d s\right] d t \\
& =\alpha+\int_{0}^{S\left(\beta_{0}\right)} t^{1-N}\left[\int _ { 0 } ^ { t } s ^ { N - 1 } \left(\bar{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}\right.\right. \tag{3.8}\\
& \left.\left.\quad-\underline{a}(s) \frac{g\left(L^{-1}\left(w_{\beta}\right)\right)}{L^{-1}\left(w_{\beta}\right)^{\delta}} \frac{L^{-1}\left(w_{\beta}\right)^{\delta}}{l\left(L^{-1}\left(w_{\beta}\right)\right)}\right) d s\right] d t \\
& \leq \alpha+\int_{0}^{S\left(\beta_{0}\right)} t^{1-N}\left[\int_{0}^{t} s^{N-1}\left(\bar{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}-\underline{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}\right) d s\right] d t
\end{align*}
$$

On the other hand, from g, l and w_{α} being non-decreasing, it follows that

$$
\begin{aligned}
0 & \leq t^{1-N}\left[\int_{0}^{t} s^{N-1}\left(\bar{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}-\underline{a}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)}\right) d s\right] \chi_{[0, S(\beta)]}(t) \\
& =t^{1-N}\left[\int_{0}^{t} s^{N-1} a_{\mathrm{osc}}(s) \frac{g\left(L^{-1}\left(w_{\alpha}\right)\right)}{l\left(L^{-1}\left(w_{\alpha}\right)\right)} d s\right] \\
& \leq \frac{1}{\sqrt{\sigma-1}}\left(t^{1-N} \int_{0}^{t} s^{N-1} a_{\mathrm{osc}}(s) d s\right) g\left(\mathcal{G}^{-1}\left(t \int_{0}^{t} \bar{a}(s) d s\right)\right):=\mathcal{H}(t),
\end{aligned}
$$

for $t \gg 0$, where $\chi_{[0, S(\beta)]}$ stands for the characteristic function of $[0, S(\beta)]$.
So, from the hypothesis (1.10) and (3.8), it follows that

$$
\beta_{0} \leq \alpha+\int_{0}^{\infty} \mathcal{H}(s) d s \leq \alpha+\bar{H}
$$

but this is impossible.
Now, by setting $\beta=(\alpha+\epsilon)+\bar{H}$, for each $\alpha>\sigma / \sqrt{k}$ and $\epsilon>0$ given, and by considering the problem

$$
\begin{gather*}
\Delta w=a(x) \frac{g\left(L^{-1}(w)\right)}{l\left(L^{-1}(w)\right)} \quad \text { in } B_{n}(0), \tag{3.9}\\
w \geq 0 \text { in } B_{n}(0), \quad w=w_{\alpha} \quad \text { on } \partial B_{n}(0),
\end{gather*}
$$

we can infer by standard methods of sub and super solutions that there exists a $w_{n}=w_{n, \alpha} \in C^{1}\left(\bar{B}_{n}\right)$ solution of 3.9 satisfying $\sigma / \sqrt{k}<\alpha \leq w_{\alpha} \leq w_{n} \leq w_{\beta}$ in B_{n} for all $n \in \mathbb{N}$.

So, by defining $w_{m}^{n}=\left.w_{m}\right|_{B_{n}}$ for $m>n$ and for each $n \in \mathbb{N}$ given, where w_{m} is a solution of Problem $\sqrt{3.9}$) in the ball $B_{m}(0)$, we obtain that $\left\{w_{m}^{n}\right\}$ is a bounded m-sequence in $C^{1, \nu_{n}}\left(\bar{B}_{n}\right)$ for some $0<\nu_{n} \leq 1$ by Regularity theory.

Hence, we can extract subsequences of $\left\{w_{m}^{n}\right\}$ such that

$$
\begin{aligned}
& w_{2}^{1}, w_{3}^{1}, w_{4}^{1}, \ldots \xrightarrow{C^{1}\left(\bar{B}_{1}\right)} w^{1}, \\
& w_{3}^{2}, w_{4}^{2}, w_{5}^{2}, \ldots \xrightarrow{C^{1}\left(\bar{B}_{2}\right)} w^{2}, \\
& w_{4}^{3}, w_{5}^{3}, w_{6}^{3}, \ldots \xrightarrow{C^{1}\left(\bar{B}_{3}\right)} w^{3},
\end{aligned}
$$

So, the function $w: \mathbb{R}^{N} \rightarrow(0, \infty)$ given by $w(x)=w^{n}(x)$ for $x \in B_{n}$ is well-defined and the sequence $\left\{w_{2 n}^{n}\right\}$ satisfies $w_{2 n}^{n} \rightarrow w$ in $C^{1}(K)$ for any compact set $K \subset \mathbb{R}^{N}$ with $\sigma / \sqrt{k}<\alpha \leq w_{\alpha} \leq w \leq w_{\beta}$; that is, $w \in C^{1}\left(\mathbb{R}^{N}\right)$ and is a solution of 1.1).

Acknowledgements. Carlos Alberto Santos was supported by CAPES/Brazil Proc. no. 2788/2015-02. Jiazheng Zhou was supported by CNPq/Brazil Proc. no. 232373/2014-0.

References

[1] S. Adachi, T. Watanabe; Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal., 75 (2012), 819-833.
[2] J. F. L. Aires, M. A. S. Souto; Equation with positive coefficient in the quasilinear term and vanishing potential, Topol. Methods Nonlinear Anal., 46 (2015), 813-833.
[3] C. Alves, Y. Wang, Y. Shen; Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259 (2015), No 1, 318-343.
[4] A. Ambrosetti, Z.-Q. Wang; Positive solutions to a class of quasilinear elliptic equations on R, Discrete Contin. Dyn. Syst., 9 (2003), 55-68.
[5] N. Belhaj Rhouma, A. Drissi; Large and entire large solutions for a class of nonlinear problems, Appl. Math. Comput., 232 (2014), 272-284.
[6] J. Byeon, Z. Wang; Standing waves with a critical frequency for nonlinear Schrödinger equatons, Arch. Ration. Mech. Anal., 165 (2002,) 295-316.
[7] R. Hasse; A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.
[8] J. B. Keller; On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
[9] A. Kosevich, B. Ivanov, A. Kovalev; Magnetic solitons, Phys. Rep., 194 (1990), 117-238.
[10] S. Kurihara; Large amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.
[11] A. Lair; Nonradial large solutions of sublinear elliptic equations, Appl. Anal., 82 (2003), 431-437.
[12] A. Lair, A. Wood; Large solutions of semilinear elliptic problems, Nonlinear Anal., 37 (1999), 805-812.
[13] K. Mabrouk, W. Hansen; Nonradial large solutions of sublinear elliptic, J. Math. Anal. Appl., 330 (2007), 1025-1041.
[14] A. Mohammed, G. Porcu, G. Porru; Large solutions to some non-linear ODE with singular coefficients, Nonlinear Anal., 47 (2001), 513-524.
[15] R. Osserman; On the inequality $\Delta u \geq f(u)$, Pacific. J. Math., 7 (1957), 1641-1647.
[16] G. Quispel, H. Capel; Equation of motion for the Heisenberg spin chain, Pysica A, 110 (1982), 41-80.
[17] C. A. Santos, J. Zhou; Infinite many blow-up solutions for a Schrödinger quasilinear elliptic problem with a non-square diffusion term, Complex Var. Elliptic Equ., 62 (2017), 887-899.
[18] C. A. Santos, J. Zhou, J. A. Santos; Necessary and sufficient conditions for existence of blow-up solutions for elliptic problems in Orlicz-Sobolev spaces, Math. Nachr., 291 (2018), 160-177.
[19] U. B. Severo, E. Gloss, E. D. da Silva; On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, J. Differential Equations, 263-6 (2017), 35503580.
[20] Y. J. Wang; A class of quasilinear Schrödinger equations with critical or supercritical exponents, Comput. Math. Appl., 70 (2015), 562-572.
[21] H. Yang; On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in \mathbb{R}^{N}, Commun. Pure Appl. Anal., 4, No 1 (2005), 187-198.

Carlos Alberto Santos
Universidade de Brasília, Departamento de Matemática, 70910-900, Brasílía - DF, Brazil
E-mail address: csantos@unb.br
Jiazheng Zhou
Universidade de Brasília, Departamento de Matemática, 70910-900, Brasílía - DF, Brazil E-mail address: jiazzheng@gmail.com

[^0]: 2010 Mathematics Subject Classification. 35J10, 35J62, 35B08, 35B09, 35B44.
 Key words and phrases. Schrödinger equations; blow up solutions; quasilinear problem; non-square diffusion; multiplicity of solutions.
 (C) 2018 Texas State University.

 Submitted October 10, 2017. Published May 3, 2018.

