Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 102, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

UNBOUNDED SOLUTIONS FOR SCHRÖDINGER QUASILINEAR ELLIPTIC PROBLEMS WITH PERTURBATION BY A POSITIVE NON-SQUARE DIFFUSION TERM

CARLOS ALBERTO SANTOS, JIAZHENG ZHOU

Communicated by Claudianor O. Alves

ABSTRACT. In this article, we present a version of Keller-Osserman condition for the Schrödinger quasilinear elliptic problem

$$\begin{aligned} -\Delta u + \frac{k}{2}u\Delta u^2 &= a(x)g(u) \quad \text{in } \mathbb{R}^N, \\ u > 0 \quad \text{in } \mathbb{R}^N, \quad \lim_{\|x\| \to \infty} u(x) &= \infty, \end{aligned}$$

where $a: \mathbb{R}^N \to [0,\infty)$ and $g: [0,\infty) \to [0,\infty)$ are suitable continuous functions, $N \geq 1$, and k > 0 is a parameter. By combining a dual approach and this version of Keller-Osserman condition, we show the existence and multiplicity of solutions.

1. INTRODUCTION

In this article, we consider the problem

$$-\Delta u + \frac{k}{2}u\Delta u^2 = a(x)g(u) \quad \text{in } \mathbb{R}^N,$$

$$u > 0 \quad \text{in } \mathbb{R}^N, \quad \lim_{|x| \to \infty} u(x) \to \infty,$$

(1.1)

where Δ is the *Laplacian* operator, a(x) is a nonnegative continuous function, $g: [0, \infty) \to [0, \infty)$ is a nondecreasing continuous function that satisfies g(s) > 0, s > 0, $N \ge 1$ and k > 0 is a parameter.

Equation (1.1) is a modified nonlinear Schrödinger equation by the quasilinear and nonconvex term $u\Delta u^2$, which is called of square diffusion. A solution of (1.1) is related to standing wave solutions for the quasilinear Schrödinger equation

$$iz_t + \Delta z - \omega(x)z + \kappa \Delta(h(|z|^2))h'(|z|^2)z + \eta(x,z) = 0, \quad x \in \mathbb{R}^N,$$
(1.2)

where ω is a potential function, h and η are real functions and κ is a real constant. This connection is established by the fact that $z(t, x) = e^{-i\beta t}u(x)$ is a solution to (1.2) if and only if u satisfies the equation in (1.1) for suitable constants ω , h, η and κ . This kind of equations appears in several applications: superfluid film in plasma physics [10]; in models of the self-channeling of a high-power ultrashort laser in

²⁰¹⁰ Mathematics Subject Classification. 35J10, 35J62, 35B08, 35B09, 35B44.

Key words and phrases. Schrödinger equations; blow up solutions; quasilinear problem; non-square diffusion: multiplicity of solutions.

^{©2018} Texas State University.

Submitted October 10, 2017. Published May 3, 2018.

matter [9] and [16]; in the theory of Heidelberg ferromagnetism and magnus [7]; in dissipative quantum mechanics [1]; and in condensed matter theory [6].

Even for bounded solutions, there are only a few results in the literature studying existence and multiplicity of such solutions to the equation in (1.1) with positive perturbation; that is, k > 0. One important result, that shows the existence of solutions for a related operator of the equation in (1.1), is due to Alves, Wang and Shen [3] who showed the existence of bounded solutions satisfying

$$\sup_{x \in \mathbb{R}^N} |u(x)| \le \sqrt{1/k}$$

for each $0 < k < k_0$, for some $k_0 > 0$. In fact, they considered the equation

$$-\Delta u + V(x)u + \frac{k}{2}u\Delta u^2 = a(x)g(u) \quad \text{in } \mathbb{R}^N$$

for some appropriate potential V. For more references on this direction, we refer the reader to [4, 2, 20, 19] and references therein.

On the other hand, after these papers, we wondered whether it is possible to exist unbounded solutions for (1.1); that is, solutions $u(x) \to \infty$ as $|x| \to \infty$. Surprisingly, under an appropriate version of Keller-Osserman condition to this operator, we were able to show the existence of an infinite number of solutions to (1.1). Our solutions satisfy

$$\inf_{x \in \mathbb{R}^N} |u(x)| \ge \sqrt{1/k}$$

for a given k > 0.

Research about existence of explosive solutions (or unbounded solutions) is motivated principally by its applications in models of population dynamical, subsonic motion of a gas, non-Newtonian fluids, non-Newtonian filtration as well as in the theory of the electric potential in a glowing hollow metal body. Remarkable work about unbounded solutions was done by Keller [8] and Osserman [15], both in 1957. They established necessary and sufficient conditions for the existence of solutions and sub solutions to the semilinear and autonomous problem (that is, $a \equiv 1$)

$$\Delta u = a(x)g(u) \quad \text{in } \mathbb{R}^N,$$

$$u \ge 0 \quad \text{in } \mathbb{R}^N, \quad \lim_{|x| \to \infty} u(x) \to \infty,$$
 (1.3)

where g is a non-decreasing continuous function. This is done under the condition

$$\int_{1}^{+\infty} \frac{dt}{G(t)^{1/2}} = \infty, \quad \text{where } G(t) = \int_{0}^{t} g(s)ds, \quad t > 0.$$
(1.4)

After these works, a function g satisfies the well-known Keller-Osserman condition, for the Laplacian operator, if

$$\int_{1}^{+\infty} \frac{dt}{G(t)^{1/2}} < \infty$$

Recently, there have been a number of papers trying to obtain "Keller-Osserman conditions" for various operators. The authors have also considered this question for ϕ -Laplacian operator in [18].

For (1.3) non-autonomous, it has arisen an important issues on existence of solutions, namely, "how radial" is a(x) at infinity; that is, how big is the function

$$a_{\rm osc}(r) := \overline{a}(r) - \underline{a}(r), \quad r \ge 0,$$

 $\mathrm{EJDE}\text{-}2018/102$

where

$$\underline{a}(r) = \min\{a(x) : |x| = r\}, \quad \overline{a}(r) = \max\{a(x) : |x| = r\}, \quad r \ge 0.$$
(1.5)

As a consequence of this, we have that $a_{\text{osc}}(r) = 0$, $r \ge r_0$, if and only if, a is symmetric radially for $|x| \ge r_0$, for some $r_0 \ge 0$. In particular, if $r_0 = 0$ we say that a(x) is radially symmetric.

Considering $a_{\text{osc}} \equiv 0$, Lair and Wood in [12] proved that

$$\int_{1}^{\infty} ra(r)dr = \infty \tag{1.6}$$

is a sufficient condition for (1.3) to have radial solution. They considered $g(u) = u^{\gamma}$, $u \ge 0$ with $0 < \gamma \le 1$, that is, g satisfies (1.4).

In 2003, Lair [11] allowed a(x) to be not necessarily radial in the whole space, but he did not allow a(x) to have a_{osc} too big. More exactly, he assumed

$$\int_0^\infty r a_{\rm osc}(r) \exp(\underline{A}(r)) dr < \infty, \quad \text{where } \underline{A}(r) = \int_0^r s \underline{a}(s) ds, \ r \ge 0$$

and proved that (1.3), with suitable g that includes u^{γ} for $0 < \gamma \leq 1$, admits a solution, if and only if, (1.6) holds with \underline{a} in place of a.

In this way, Mabroux and Hansen [13] in 2007 improved the above results, considering the hypothesis

$$\int_0^\infty r a_{\rm osc}(r) (1 + \underline{A}(r))^{\gamma/(1-\gamma)} dr < \infty \,.$$

For a more general operator, Rhouma and Drissi [5] in 2014 proved similar results.

Before stating our main results, we drine a solution of (1.1) as a positive function $u \in C^1(\mathbb{R}^N)$ such that $u \to \infty$ as $|x| \to \infty$, and

$$\begin{split} &\int_{\mathbb{R}^N} (1-ku^2) \nabla u \nabla \varphi dx - k \int_{\mathbb{R}^N} |\nabla u|^2 u \varphi dx \\ &= \int_{\mathbb{R}^N} a(x) g(u) \varphi dx \quad \text{for all } \varphi \in C_0^\infty(\mathbb{R}^N). \end{split}$$

Throughout this article we assume that $g : [0, \infty) \to [0, \infty)$ is a nondecreasing continuous function with g(s) > 0 for s > 0. Also we use the condition

$$\liminf_{t \to \infty} \frac{g(t)}{t} > 0. \tag{1.7}$$

Our first result reads as follows.

Theorem 1.1. Assume that (1.7) is satisfied and

$$\int_{1}^{+\infty} \frac{dt}{G_0(t)^{1/2}} = \infty, \quad \text{where } G_0(t) = \int_{0}^{t} g(\sqrt{s}) ds, \ t > 0.$$
(1.8)

If $a_{\rm osc} \equiv 0$ and

$$\int_0^\infty \left(s^{1-N} \int_0^s t^{N-1} a(t) dt\right) ds = \infty, \tag{1.9}$$

then for each $\sigma > 1$ and k > 0, there exists a solution $u = u_{\sigma,k} \in C^1(\mathbb{R}^N)$ to problem (1.1). Furthermore,

$$\inf_{x\in\mathbb{R}^N} u(x) \geq \sqrt{\sigma/k} \, .$$

For non-radial potentials a(x), we need to control the size of this non-radiality. So, for each $\sigma > 1$, let us assume that $\mathcal{G} = \mathcal{G}_{\sigma} : (0, \infty) \to (0, \infty)$, defined by

$$\mathcal{G}(t) = \frac{(\sigma - 1)\sqrt{k}}{8\sqrt{\sigma}}t^2/g(t), \quad t > 0,$$

is non-decreasing and is invertible; such that

$$0 \leq \overline{H} := \frac{1}{\sqrt{\sigma - 1}} \int_0^\infty \left(s^{1-N} \int_0^s t^{N-1} a_{\rm osc}(t) dt \right) \\ \times \left[g \left(\mathcal{G}^{-1} \left(s \left(\int_0^s \overline{a}(t) dt \right) \right) \right) \right] ds < \infty \,.$$

$$(1.10)$$

Our second result reads as follows.

Theorem 1.2. Assume g satisfies (1.8) and that for t > 0 the function $g(t)/t^{\delta}$ is non-decreasing for some $\delta \geq \sigma/(\sigma-1)$. Also suppose that a(x) is such that \underline{a} satisfies (1.9) and \overline{a} satisfies (1.10). Then there exists a solution $u = u_{\alpha,\sigma,k,\varepsilon} \in C^1(\mathbb{R}^N)$ of problem (1.1) satisfying

$$\inf_{x \in \mathbb{R}^N} u(x) \ge \sqrt{\sigma/k} \quad and \quad \alpha \le u(0) \le (\alpha + \varepsilon) + \overline{H}$$

for each $\sigma > 1$ and $\alpha, k, \varepsilon > 0$ given so that $\alpha > \sqrt{\sigma/k}$.

We note that this work contributes to the literature of quasilinear Schrödinger equation in at least two aspects: Firstly, as far as we know, there are no results considering this kind of operators (a positive perturbation) in the context of unbounded solutions. We mention the authors have already considered in [17] a negative perturbation, that is, k < 0 in the problem (1.1). Secondly, we present a version of "Keller-Orsemann condition" for this kind of operator that "captures" the influence of the perturbation term.

We organized this article the following way: in section 2, we establish an equivalent problem to the (1.1), via a very specific change of variable. In the last section we complete the proof of Theorems 1.1 and 1.2.

2. AUXILIARY RESULTS

In this section, a change of variables allows us to transform problem (1.1) into a new problem. In the new problem, we establish a version of Keller-Orsemann condition and show the existence of an entire solution that is unbounded.

First, we note that the problem (1.1) is equivalent to the modified quasilinear Schrödinger problem

$$\operatorname{div}(l^{2}(u)\nabla u) - l(u)l'(u)|\nabla u|^{2} = a(x)g(u), \quad x \in \mathbb{R}^{N},$$

$$u > 0 \quad \text{in } \mathbb{R}^{N}, \quad \lim_{|x| \to \infty} u(x) \to \infty,$$
(2.1)

whenever $u(x) > \sqrt{\sigma/k}$ for $x \in \mathbb{R}^N$, where $l(t) = \sqrt{kt^2 - 1}$ for $t > \sqrt{\sigma/k}$ for each k > 0 and $\sigma > 1$ given. In these situations, we conclude that the solutions obtained to (2.1) are solutions of the original problem (1.1).

So, we look for by a positive function $u \in C^1(\mathbb{R}^N)$ that satisfies $u \to \infty$ as $|x| \to \infty$ and

$$-\int_{\mathbb{R}^N} l^2(u)\nabla u\nabla\varphi dx - \int_{\mathbb{R}^N} l(u)l'(u)|\nabla u|^2\varphi dx = \int_{\mathbb{R}^N} a(x)g(u)\varphi dx$$

for all $\varphi \in C_0^{\infty}(\mathbb{R}^N)$; that is, this $u \in C^1(\mathbb{R}^N)$ will be an unbounded solution to (2.1).

To do this, first let us define $l: [1/\sqrt{k\sigma}, \infty) \to [0, \infty)$ by

$$l(t) = l_{\sigma,k}(t) = \begin{cases} \frac{\sqrt{k\sigma}}{\sqrt{\sigma-1}}t - \frac{1}{\sqrt{\sigma-1}} & \text{if } \frac{1}{\sqrt{k\sigma}} \le t \le \sqrt{\frac{\sigma}{k}}, \\ \sqrt{kt^2 - 1} & \text{if } t > \sqrt{\frac{\sigma}{k}}, \end{cases}$$

for each $\sigma > 1$, and set

$$L(t) = L_{\sigma,k}(t) = \int_{1/\sqrt{k\sigma}}^{t} l(s)ds \quad \text{for } t \ge 1/\sqrt{k\sigma}.$$
 (2.2)

It is a consequence of the above definitions that the function $L: [1/\sqrt{k\sigma}, \infty) \rightarrow [0, \infty)$ is a C^2 -injective function; that is, the inverse function $L^{-1}: [0, \infty) \rightarrow [1/\sqrt{k\sigma}, \infty)$ is well-defined and L^{-1} is a C^2 -function as well. After this, we are able to prove more Lemmas. The first lemma follows from the definitions and properties of l and L.

Lemma 2.1. Under the above conditions, the functions l and L^{-1} satisfy:

(1) for $t > \sqrt{\sigma/n}$, we function l(t) is non-activating for each $0 \le \sigma^{-1}$.

In the sequel, we use the definitions and properties of l, L and L^{-1} to provide solutions (2.1) by establishing solutions to (2.3) below.

Lemma 2.2. Assume $u = L^{-1}(w)$, where $w \in C^1(\mathbb{R}^N)$ is a solution of the problem

$$\Delta w = a(x) \frac{g(L^{-1}(w))}{l(L^{-1}(w))} \quad in \ \mathbb{R}^N,$$

$$w > \sigma/\sqrt{k} \quad in \ \mathbb{R}^N, \quad \lim_{|x| \to \infty} w(x) = \infty.$$
(2.3)

Then $u \in C^1(\mathbb{R}^N)$ is a solution of problem (1.1) that satisfies $u(x) \ge \sqrt{\sigma/k}$ for all $x \in \mathbb{R}^N$.

Proof. First, note that $u \ge \sqrt{\sigma/k}$ is a consequence of $w \ge \sigma/\sqrt{k}$. By the regularity of L, we obtain $u \in C^1(\mathbb{R}^N)$, because $w \in C^1(\mathbb{R}^N)$. Besides this, it follows from the behavior of L and L^{-1} that $w(x) \to +\infty$ as $|x| \to +\infty$ if and only if $u(x) \to +\infty$ as $|x| \to +\infty$.

Since

$$w = L(u) = \int_{1/\sqrt{k\sigma}}^{u} l(s)ds,$$

it follows that

$$\nabla w = l(u)\nabla u = (ku^2 - 1)^{1/2}\nabla u;$$

that is,

$$\nabla u = (ku^2 - 1)^{-1/2} \nabla w.$$

Thus, for each $\varphi \in C_0^1(\mathbb{R}^N)$, we have

$$(1 - ku^2)\nabla u\nabla\varphi = -(ku^2 - 1)^{1/2}\nabla w\nabla\varphi.$$
(2.4)

On the other hand, since $w \in C^1(\mathbb{R}^N)$ is a solution of problem (2.3), we have

$$\begin{split} \int_{\mathbb{R}^N} (ku^2 - 1)^{1/2} \nabla w \nabla \varphi &= \int_{\mathbb{R}^N} \nabla w \nabla \{ (ku^2 - 1)^{1/2} \varphi \} - \int_{\mathbb{R}^N} \frac{ku}{ku^2 - 1} |\nabla w|^2 \varphi \\ &= -\int_{\mathbb{R}^N} a(x) \frac{g(u)}{l(u)} (ku^2 - 1)^{1/2} \varphi - \int_{\mathbb{R}^N} ku |\nabla u|^2 \varphi \\ &= -\int_{\mathbb{R}^N} a(x) g(u) \varphi - \int_{\mathbb{R}^N} ku |\nabla u|^2 \varphi. \end{split}$$

Then using (2.4), we have $u \in C^1(\mathbb{R}^N)$ is a solution to (1.1). This completes the proof.

3. Proof of main results

Below, we show the existence of a solution to (2.3) and after this, by using the second Lemma above, we are able to show the existence of a solution to Problem (1.3). This arguments relies on ideas found in [14].

Proof of Theorem 1.1. Since $a_{\text{osc}} \equiv 0$, that is, a(x) = a(|x|) for all $x \in \mathbb{R}^N$, we have that a radial solution for (2.3) can be obtained by solving the problem

$$(r^{N-1}w')' = r^{N-1}a(r)\frac{g(L^{-1}(w))}{l(L^{-1}(w))} \quad \text{in } (0,\infty),$$

$$w'(0) = 0, \quad w(0) = \alpha \ge 0,$$

(3.1)

where $r = |x| \ge 0$ and $\alpha > \sigma/\sqrt{k}$ is a real number, for each $\sigma > 1$ and k > 0.

Since a, g, l and L^{-1} are continuous functions, we can follow the approach in [21] to show that there exist a right maximal extreme $\Gamma(\alpha) > 0$, and a function $w_{\alpha} \in C^{2}(0, \Gamma(\alpha)) \cap C^{1}([0, \Gamma(\alpha)))$ solution of the problem (3.1) on $(0, \Gamma(\alpha))$, for each $\alpha > \sigma/\sqrt{k}$ given.

If we assumed that $\Gamma(\alpha) < \infty$ for some $\alpha > \sigma/\sqrt{k}$, then we would obtain, by standard arguments of ordinary differential equations, that either $w_{\alpha}(r) \to \infty$ as $r \to \Gamma(\alpha)^-$ or $w'_{\alpha}(r) \to \infty$ as $r \to \Gamma(\alpha)^-$; that is, $w_{\alpha}(|x|)$ would satisfy the problem

$$(r^{N-1}w')' = r^{N-1}a(r)\frac{g(L^{-1}(w))}{l(L^{-1}(w))} \quad \text{in } (0, \Gamma(\alpha)),$$

$$w'(0) = 0, \ w(0) = \alpha > 0,$$

$$\lim_{r \to \Gamma(\alpha)^{-}} w_{\alpha}(r) = \infty \quad \text{or} \quad \lim_{r \to \Gamma(\alpha)^{-}} w'_{\alpha}(r) = \infty.$$
(3.2)

6

So, using that a solution w of (3.2) is non-decreasing and $l(t) \ge \sqrt{\sigma-1}$ for all $t \ge \sqrt{\sigma/k}$, we obtain that w satisfies

$$(r^{N-1}w')' \leq \frac{a_{\infty}}{\sqrt{\sigma-1}} r^{N-1}g(L^{-1}(w)) \quad \text{in } (0,\Gamma(\alpha)),$$
$$w(0) = \alpha > 0, \quad w'(0) = 0,$$
$$(3.3)$$
$$\lim_{r \to \Gamma(\alpha)^{-}} w_{\alpha}(r) = \infty \quad \text{or} \quad \lim_{r \to \Gamma(\alpha)^{-}} w'_{\alpha}(r) = \infty,$$

where $a_{\infty} = \max_{\bar{B}_{\Gamma(\alpha)}} a(x)$.

By integrating the inequality above over (0, r) with $0 < r < \Gamma(\alpha)$ and assuming $||w_{\alpha}||_{\infty} \leq C < \infty$ for some C > 0, we obtain

$$\limsup_{r \to \Gamma(\alpha)^{-}} w'(r) \le \Gamma(\alpha)^{1-N} \int_0^{\Gamma(\alpha)} t^{N-1} g(L^{-1}(w(t))) dt < \infty$$

by the continuity of all involved functions. So, from now on, we assume that $w_{\alpha}(x) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$.

By using $w' \ge 0$ again, we can rewrite the inequality in (3.3) as

$$w'' \le \frac{a_{\infty}}{\sqrt{\sigma - 1}} (g \circ L^{-1})(w) \text{ for all } 0 < r < \Gamma(\alpha)$$

this lead us, after multiplying this inequality by w' and integrating it on (0, r), to

$$\frac{1}{2} \Big(w'(r) \Big)^2 \le \int_0^r \frac{a_\infty}{\sqrt{\sigma - 1}} (g \circ L^{-1})(w(s)) w'(s) ds = \frac{a_\infty}{\sqrt{\sigma - 1}} \int_\alpha^{w(r)} (g \circ L^{-1})(s) ds;$$

that is,

$$\left(\int_{\alpha}^{w(r)} (g \circ L^{-1})(s) ds\right)^{-1/2} w'(r) \le \sqrt{2}\sqrt{a_{\infty}/\sqrt{\sigma-1}} \quad \text{for all } 0 < r < \Gamma(\alpha).$$

Now, by integrating in the above inequality over $(0, \Gamma(\alpha))$ and reminding that $w_{\alpha}(x) \rightarrow \infty$ as $r \rightarrow \Gamma(\alpha)^{-}$, we obtain

$$\int_{\alpha}^{\infty} \left(\int_{\alpha}^{t} (g \circ L^{-1})(s) ds \right)^{-1/2} dt \le \sqrt{2} \sqrt{a_{\infty}/\sqrt{\sigma - 1}} \Gamma(\alpha) < \infty.$$
(3.4)

On the other hand, from Lemma 2.1-(3) and the monotonicity of g, it follows that

$$(g \circ L^{-1})(t) \le g\left(\sqrt{\frac{2t\sqrt{\sigma}}{\sqrt{(\sigma-1)k}}} + \frac{\sigma}{k}\right) \text{ for all } t > \sigma/\sqrt{k};$$

that is,

$$\int_{\alpha}^{t} (g \circ L^{-1})(s) ds \leq \int_{\alpha}^{t} g\left(\sqrt{\frac{2t\sqrt{\sigma}}{\sqrt{(\sigma-1)k}} + \frac{\sigma}{k}}\right) ds \text{ for all } t > \alpha.$$

As a consequence of this and (3.4), we have

$$\int_{\alpha}^{\infty} \left\{ \int_{\alpha}^{t} g \; Big(\sqrt{\frac{2s\sqrt{\sigma}}{\sqrt{(\sigma-1)k}} + \frac{\sigma}{k}}) ds \right\}^{-1/2} dt \le \int_{\alpha}^{\infty} \left\{ \int_{\alpha}^{t} (g \circ L^{-1})(s) ds \right\}^{-1/2} dt.$$

So, by estimating in the last inequality and using (3.4) again, we obtain

$$\int_{1}^{\infty} G_0(t)^{-1/2} dt \le C\left(\sqrt{a_{\infty}/\sqrt{\sigma-1}}\right) \Gamma(\alpha) < \infty,$$

for some real constant C > 0. This is impossible, because we are assuming that gsatisfies (1.8).

It follows from Lemma 2.1-(1), hypothesis (1.7) and $L^{-1}(w_{\alpha}) \geq \sqrt{\sigma/k}$, that

$$\frac{g(L^{-1}(w_{\alpha}(r)))}{l(L^{-1}(w_{\alpha}(r)))} \ge \frac{g(L^{-1}(w_{\alpha}(r)))}{\sqrt{k}L^{-1}(w_{\alpha}(r))} \ge M > 0 \quad \text{for all } r > 0,$$
(3.5)

and for each $\alpha > \sigma/\sqrt{k}$ given and for some M > 0, because $w_{\alpha}(r) \ge \alpha$ for all $r \ge 0$. Since, w_{α} satisfies

$$w_{\alpha}(r) = \alpha + \int_{0}^{r} \left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} ds \right) dt, \quad r \ge 0,$$
(3.6)

it follows from (3.5), that

$$w_{\alpha}(r) \ge \alpha + M \int_{0}^{r} \left(t^{1-N} \int_{0}^{t} s^{N-1} a(s) ds \right) dt \to \infty, \quad \text{as } r \to \infty.$$
(3.7) completes the proof.

This completes the proof.

Proof of Theorem 1.2. Set $\beta > \alpha > \sigma/\sqrt{k}$. Since the hypothesis $g(t)/t^{\delta}$ being non-increasing implies (1.7), from Theorem 1.1 there exist positive and radially symmetric solutions $w_{\alpha}, w_{\beta} \in C^1(\mathbb{R}^N)$ to the problems

$$\Delta w_{\alpha} = \overline{a}(|x|) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} \quad \text{in } \mathbb{R}^{N},$$
$$w_{\alpha}(0) = \alpha, \quad \lim_{|x| \to \infty} w_{\alpha}(x) = \infty,$$

and

$$\Delta w_{\beta} = \underline{a}(|x|) \frac{g(L^{-1}(w_{\beta}))}{l(L^{-1}(w_{\beta}))} \quad \text{in } \mathbb{R}^{N},$$
$$w_{\beta}(0) = \beta, \quad \lim_{|x| \to \infty} w_{\beta}(x) = \infty,$$

respectively, where \underline{a} and \overline{a} were defined in (1.5).

Besides this, from (3.6), (3.7), w_{α}, g, L^{-1} be non-decreasing and Lemma 2.1-(3), it follows that

$$\begin{split} w_{\alpha}(r) &\leq 2 \int_{0}^{r} \Big(\int_{0}^{t} \overline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} ds \Big) dt \\ &\leq 2g(L^{-1}(w_{\alpha}(r))) \int_{0}^{r} \Big(\int_{0}^{t} \frac{\overline{a}(s)}{l(L^{-1}(w_{\alpha}))} ds \Big) dt \\ &\leq 2g\Big(\sqrt{2\sqrt{\frac{\sigma}{(\sigma-1)k}}} w_{\alpha}(r) + \frac{\sigma}{k} \Big) \int_{0}^{r} \Big(\int_{0}^{t} \frac{\overline{a}(s)}{l(L^{-1}(w_{\alpha}))} ds \Big) dt \\ &\leq 2g\Big(2\sqrt[4]{\frac{\sigma}{(\sigma-1)k}} \sqrt{w_{\alpha}} \Big) \int_{0}^{r} \Big(\int_{0}^{t} \frac{\overline{a}(s)}{l(L^{-1}(w_{\alpha}))} ds \Big) dt \\ &\leq \frac{2}{\sqrt{\sigma-1}} g\Big(2\sqrt[4]{\frac{\sigma}{(\sigma-1)k}} \sqrt{w_{\alpha}} \Big) \Big[r\Big(\int_{0}^{r} \overline{a}(t) dt \Big) - \int_{0}^{r} t\overline{a}(t) dt \Big] \\ &\leq \frac{2}{\sqrt{\sigma-1}} g\Big(2\sqrt[4]{\frac{\sigma}{(\sigma-1)k}} \sqrt{w_{\alpha}} \Big) r \int_{0}^{r} \overline{a}(t) dt. \end{split}$$

$$2\sqrt[4]{\frac{\sigma}{(\sigma-1)k}}\sqrt{w_{\alpha}} \le \mathcal{G}^{-1}\left(r\int_{0}^{r}\overline{a}(t)dt\right) \quad \text{for all } r >> 0.$$

Now, setting

$$0 < S(\beta) = \sup\{r > 0 : w_{\alpha}(r) < w_{\beta}(r)\} \le \infty,$$

we claim that $S(\beta) = \infty$ for all $\beta > \alpha + \overline{H}$ and for each $\alpha > \sigma/\sqrt{k}$ given. In fact, by assuming this is not true, then there exists a $\beta_0 > \alpha + \overline{H}$ such that $w_{\alpha}(S(\beta_0)) = w_{\beta}(S(\beta_0))$. So, by using that $g(t)/t^{\delta}$ is non-decreasing for $\delta > \sigma/(\sigma - 1)$, Lemma 2.1 and $w_{\alpha} \leq w_{\beta}$ on $[0, S(\beta_0)]$, we obtain

 β_0

$$= \alpha + \int_{0}^{S(\beta_{0})} t^{1-N} \Big[\int_{0}^{t} s^{N-1} \Big(\overline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} - \underline{a}(s) \frac{g(L^{-1}(w_{\beta}))}{l(L^{-1}(w_{\beta}))} \Big) ds \Big] dt$$

$$= \alpha + \int_{0}^{S(\beta_{0})} t^{1-N} \Big[\int_{0}^{t} s^{N-1} \Big(\overline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} - \underline{a}(s) \frac{g(L^{-1}(w_{\beta}))}{L^{-1}(w_{\beta})^{\delta}} \frac{L^{-1}(w_{\beta})^{\delta}}{l(L^{-1}(w_{\beta}))} \Big) ds \Big] dt$$

$$\leq \alpha + \int_{0}^{S(\beta_{0})} t^{1-N} \Big[\int_{0}^{t} s^{N-1} \Big(\overline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} - \underline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} \Big) ds \Big] dt .$$

(3.8)

On the other hand, from g, l and w_{α} being non-decreasing, it follows that

$$\begin{split} 0 &\leq t^{1-N} \Big[\int_0^t s^{N-1} \Big(\overline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} - \underline{a}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} \Big) ds \Big] \chi_{[0,S(\beta)]}(t) \\ &= t^{1-N} \Big[\int_0^t s^{N-1} a_{\text{osc}}(s) \frac{g(L^{-1}(w_{\alpha}))}{l(L^{-1}(w_{\alpha}))} ds \Big] \\ &\leq \frac{1}{\sqrt{\sigma - 1}} \Big(t^{1-N} \int_0^t s^{N-1} a_{\text{osc}}(s) ds \Big) g \Big(\mathcal{G}^{-1} \Big(t \int_0^t \overline{a}(s) ds \Big) \Big) := \mathcal{H}(t), \end{split}$$

for $t \gg 0$, where $\chi_{[0,S(\beta)]}$ stands for the characteristic function of $[0, S(\beta)]$.

So, from the hypothesis (1.10) and (3.8), it follows that

$$\beta_0 \le \alpha + \int_0^\infty \mathcal{H}(s) ds \le \alpha + \overline{H},$$

but this is impossible.

Now, by setting $\beta = (\alpha + \epsilon) + \overline{H}$, for each $\alpha > \sigma/\sqrt{k}$ and $\epsilon > 0$ given, and by considering the problem

$$\Delta w = a(x) \frac{g(L^{-1}(w))}{l(L^{-1}(w))} \quad \text{in } B_n(0),$$

$$w \ge 0 \text{ in } B_n(0), \quad w = w_\alpha \quad \text{on } \partial B_n(0),$$
(3.9)

we can infer by standard methods of sub and super solutions that there exists a $w_n = w_{n,\alpha} \in C^1(\overline{B}_n)$ solution of (3.9) satisfying $\sigma/\sqrt{k} < \alpha \leq w_\alpha \leq w_\beta \leq w_\beta$ in B_n for all $n \in \mathbb{N}$.

So, by defining $w_m^n = w_m|_{B_n}$ for m > n and for each $n \in \mathbb{N}$ given, where w_m is a solution of Problem (3.9) in the ball $B_m(0)$, we obtain that $\{w_m^n\}$ is a bounded *m*-sequence in $C^{1,\nu_n}(\bar{B}_n)$ for some $0 < \nu_n \leq 1$ by Regularity theory.

Hence, we can extract subsequences of $\{w_m^n\}$ such that

$$\begin{split} & w_2^1, w_3^1, w_4^1, \dots \xrightarrow{C^1(\bar{B}_1)} w^1, \\ & w_3^2, w_4^2, w_5^2, \dots \xrightarrow{C^1(\bar{B}_2)} w^2, \\ & w_4^3, w_5^3, w_6^3, \dots \xrightarrow{C^1(\bar{B}_3)} w^3, \end{split}$$

So, the function $w : \mathbb{R}^N \to (0, \infty)$ given by $w(x) = w^n(x)$ for $x \in B_n$ is well-defined and the sequence $\{w_{2n}^n\}$ satisfies $w_{2n}^n \to w$ in $C^1(K)$ for any compact set $K \subset \mathbb{R}^N$ with $\sigma/\sqrt{k} < \alpha \le w_\alpha \le w \le w_\beta$; that is, $w \in C^1(\mathbb{R}^N)$ and is a solution of (1.1). \Box

Acknowledgements. Carlos Alberto Santos was supported by CAPES/Brazil Proc. no. 2788/2015-02. Jiazheng Zhou was supported by CNPq/Brazil Proc. no. 232373/2014-0.

References

- S. Adachi, T. Watanabe; Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal., 75 (2012), 819-833.
- [2] J. F. L. Aires, M. A. S. Souto; Equation with positive coefficient in the quasilinear term and vanishing potential, Topol. Methods Nonlinear Anal., 46 (2015), 813-833.
- [3] C. Alves, Y. Wang, Y. Shen; Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259 (2015), No 1, 318-343.
- [4] A. Ambrosetti, Z.-Q. Wang; Positive solutions to a class of quasilinear elliptic equations on *R*, Discrete Contin. Dyn. Syst., 9 (2003), 55-68.
- [5] N. Belhaj Rhouma, A. Drissi; Large and entire large solutions for a class of nonlinear problems, Appl. Math. Comput., 232 (2014), 272-284.
- [6] J. Byeon, Z. Wang; Standing waves with a critical frequency for nonlinear Schrödinger equatons, Arch. Ration. Mech. Anal., 165 (2002,) 295-316.
- [7] R. Hasse; A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.
- [8] J. B. Keller; On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
- [9] A. Kosevich, B. Ivanov, A. Kovalev; Magnetic solitons, Phys. Rep., 194 (1990), 117-238.
- [10] S. Kurihara; Large amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.
- [11] A. Lair; Nonradial large solutions of sublinear elliptic equations, Appl. Anal., 82 (2003), 431-437.
- [12] A. Lair, A. Wood; Large solutions of semilinear elliptic problems, Nonlinear Anal., 37 (1999), 805-812.
- [13] K. Mabrouk, W. Hansen; Nonradial large solutions of sublinear elliptic, J. Math. Anal. Appl., 330 (2007), 1025-1041.
- [14] A. Mohammed, G. Porcu, G. Porru; Large solutions to some non-linear ODE with singular coefficients, Nonlinear Anal., 47 (2001), 513-524.
- [15] R. Osserman; On the inequality $\Delta u \ge f(u)$, Pacific. J. Math., 7 (1957), 1641-1647.
- [16] G. Quispel, H. Capel; Equation of motion for the Heisenberg spin chain, Pysica A, 110 (1982), 41-80.
- [17] C. A. Santos, J. Zhou; Infinite many blow-up solutions for a Schrödinger quasilinear elliptic problem with a non-square diffusion term, Complex Var. Elliptic Equ., 62 (2017), 887-899.
- [18] C. A. Santos, J. Zhou, J. A. Santos; Necessary and sufficient conditions for existence of blow-up solutions for elliptic problems in Orlicz-Sobolev spaces, Math. Nachr., 291 (2018), 160-177.
- [19] U. B. Severo, E. Gloss, E. D. da Silva; On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, J. Differential Equations, 263-6 (2017), 3550-3580.

- [20] Y. J. Wang; A class of quasilinear Schrödinger equations with critical or supercritical exponents, Comput. Math. Appl., 70 (2015), 562-572.
- [21] H. Yang; On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in \mathbb{R}^N , Commun. Pure Appl. Anal., 4, No 1 (2005), 187-198.

Carlos Alberto Santos

UNIVERSIDADE DE BRASÍLIA, DEPARTAMENTO DE MATEMÁTICA, 70910-900, BRASÍLIA - DF, BRAZIL *E-mail address*: csantos@unb.br

JIAZHENG ZHOU

UNIVERSIDADE DE BRASÍLIA, DEPARTAMENTO DE MATEMÁTICA, 70910-900, BRASÍLIA - DF, BRAZIL *E-mail address*: jiazzheng@gmail.com