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EXTREMAL NORM FOR POTENTIALS OF STURM-LIOUVILLE
EIGENVALUE PROBLEMS WITH SEPARATED BOUNDARY

CONDITIONS

HONGJIE GUO, JIANGANG QI

Abstract. For the n-th eigenvalue of a Sturm-Liouville eigenvalue problem

with separated boundary conditions, we express the infimum of the L1[0, 1]

norm of potentials, in terms of a parameter λ and the boundary conditions.
Also we indicate where the infimum can be attained. As an application, we

obtain the extremum of the n-th eigenvalue of a problem for potentials on a

sphere in L1[0, 1].

1. Introduction

Consider the Sturm-Liouville eigenvalue problem

− y′′ + qy = λy, y = y(x), x ∈ [0, 1] (1.1)

associated with the separated boundary conditions

cosα y(0)− sinα y′(0) = 0, cosβ y(1)− sinβ y′(1) = 0, (1.2)

where the potential q ∈ L1[0, 1] and α, β ∈ [0, π). We denote by λn(q) the n-th
eigenvalue of the problem (1.1) with (1.2). Then we have

λ1(q) < λ2(q) < · · · < λn(q) < . . . , λn(q)→∞, n→∞
from the classical spectral theory of Sturm-Liouville problems. For presenting ar-
ticle, we write (1.2) in the equivalent form

y(0)− k1y
′(0) = 0, y(1) + k2y

′(1) = 0, (1.3)

where k1 =∞ or k2 =∞ are allowed. Particularly, k1 = k2 = 0 and k1 = k2 =∞
yields the Dirichlet condition and the Neumann condition, respectively. For λ ∈ R,
let

Ωn(λ) =
{
q : q ∈ L1[0, 1], λn(q) = λ

}
, n ≥ 1 (1.4)

denote the set of all potentials in L1[0, 1] with the same n-th eigenvalue λ and let

En(λ) = inf
{
‖q‖ : q ∈ Ωn(λ)}, (1.5)

where ‖ · ‖ stands for the L1-norm. Clearly, En(λ) is the infimum of L1-norms of
elements in Ωn(λ). In this paper, we give explicit expression of En(λ) in terms of λ
and the parameters k1, k2 for n ≥ 1. Furthermore, we specify the cases where the
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infimum can or cannot be attained in L1[0, 1] and show an immediate application
to the extremum problem of eigenvalues on an L1-sphere.

We denote the spectrum of (1.1)-(1.3) by σ(q). For such problem we can study
the infimum L1-norm of the elements in Ω(λ1, . . . , λn), where

Ω(λ1, . . . , λn) =
{
q : q ∈ L1[0, 1], λj ∈ σ(q), 1 ≤ j ≤ n}

for given n distinct real numbers λj , j = 1, . . . , n. Of course, it is a kind of inverse
spectral problem: recovering some information of the potential from finite spectral
data. The set Ω(λ1, . . . , λn) is an infinite and unbounded subset of L1[0, 1] [12,
Corollary 1, p.77]. This kind of inverse problem is clearly different from the classical
one, which studies how to determine the potential uniquely using suitable spectral
data. In 1946, Borg wrote the first important paper [1] on this subject. From then
on, a number of publications have been devoted to this topic [4, 5, 6, 7, 12].

On the other hand, the problem investigated in this article may be viewed as
the dual to the extremal problems of eigenvalues with potentials on an L1-sphere.
Extremal problems of eigenvalues with potentials in a given class of functions orig-
inated from the famous Lagrange problem: find the strongest column which is the
body of revolution of a plane curve around some line located in the same plane,
see [2]. In [3, 9, 15], the extremal values of the first eigenvalue for Dirichlet condi-
tion or separated boundary conditions (1.3) with k1 = k2 > 0 have been studied.
The analogous problem was also considered for equation (1.1) associated with the
separated boundary conditions (1.3) with k1 ≥ k2 > 0 in [8]. Such problem for
potentials in a weighted integrable function space is studied in [14].

For problem (1.1) associated with Dirichlet or Numann boundary conditions, the
extremal values of λn(q) on an L1-sphere were obtained in [16, 17] by applying the
variational method and (strong) continuity of λn(q) in q with respect to the weak
topology in L1[0, 1]. Recently, Qi and Chen [13] gave the formula of En(λ) for the
problem of (1.1) with Dirichlet condition and they also solved the corresponding
extremal problems of eigenvalues as an application.

The results of this paper are generalizations of the results in [13]. The main
ingredient in the proof of our results is a generalized Lyapunov inequality. Although
the idea is similar to that one in [13], two differences should be pointed out. One is
that we give a theoretical and simple proof for the generalized Lyapunov inequality
for the problem (1.1) with the separated boundary conditions(1.3) by Mercer’s
theorem instead of the method used in [13], which is hard applied to the present
cases. The other is that, for λ ≥ λn(0), the technique used in [13] to calculate
En(λ) in a set of positive and even potentials is not applicable to the cases studied
in this paper.

Let Ωn(λ) be defined as in (1.4) and the parameters k1, k2 ≥ 0. The main results
of the article read as follows.

Theorem 1.1. Let λ1(0) be the first eigenvalue of problem (1.1)-(1.3) with q = 0,
and E1(λ) be given by (1.5) with n = 1.

(i) If 0 ≤ k1 ≤ k2, then

E1(λ) := E1(λ, k1, k2) :=

{
H1(λ, k1, k2), for λ < λ1(0),
K1(λ, k1, k2), for λ ≥ λ1(0).

(1.6)

(ii) If k1 > k2 ≥ 0, then

E1(λ) = E1(λ, k2, k1), for λ ∈ R. (1.7)
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Moreover, E1(λ) is attainable in Ω1(λ) for λ ∈ [λ1(0),∞), but not for λ ∈ (−∞, λ1(0)).

Theorem 1.2. Let λn(0) be the n-th eigenvalue of problem (1.1)-(1.3) with q = 0
and En(λ) be given by (1.5) with n ≥ 2.

(i) If 0 ≤ k1 ≤ k2, then

En(λ) := En(λ, k1, k2) :=

{
Hn(λ, k1, k2), for λ < λn(0),
Kn(λ, k1, k2), for λ ≥ λn(0).

(1.8)

(ii) If k1 > k2 ≥ 0, then

En(λ) = En(λ, k2, k1), for λ ∈ R. (1.9)

Moreover, En(λ) is attainable in Ωn(λ) for λ ∈ [λn(0),∞), but not for λ ∈
(−∞, λn(0)).

Here the functions H1(λ, k1, k2), K1(λ, k1, k2), Hn(λ, k1, k2) and En(λ, k1, k2)
are defined as in (3.2), (3.15), (3.18) and (3.19), respectively.

Furthermore, we observe that Hn(λ, k1, k2) are decreasing and En(λ, k1, k2) are
increasing in terms of λ for n ≥ 1. So from theorems 1.1 and 1.2, we directly have
both the infimum and supremum of λn(q) on Sr := {q ∈ L1[0, 1] : ‖q‖ = r} for all
r > 0.

Corollary 1.3. Let q ∈ L1[0, 1]. Denote the n-th eigenvalue of the problem (1.1)-
(1.3) by λn(q). Then we have

inf{λn(q) : q ∈ Sr} = H−1
n (r), (1.10)

sup{λn(q) : q ∈ Sr} = K−1
n (r), r > 0, n ≥ 1, (1.11)

where H−1
n and K−1

n are the inverse functions of Hn and Kn, respectively.

As it was pointed out in Theorems 1.1 and 1.2, the infimum of λn(q) on Sr cannot
be attained, while the supermum can be attained. As special cases: k1 = k2 = 0
and k1 = k2 =∞, we immediately obtain the extremal norms of the potentials for
Drichlet and Neumann problems, respectively.

Corollary 1.4. If k1 = k2 = 0, then

En(λ) =

2n
√
λ cot

√
λ

2n , λ < π2,
√
λ
(√
λ− nπ

)
, λ ≥ π2.

(1.12)

If k1 = k2 =∞, then

E1(λ) =

{√
−λ tanh

√
−λ, λ < 0,

λ, λ ≥ 0,

En(λ) =

2(n− 1)
√
λ cot

√
λ

2(n−1) , λ < (n− 1)2π2, n ≥ 2
√
λ
(√
λ− (n− 1)π

)
, λ ≥ (n− 1)2π2, n ≥ 2.

(1.13)

Formula (1.12) is one of the results in [13]. Applying formula (1.13) to Corollary
1.3 yields the extremal values of the n-th eigenvalue for Neumann problem, which
are the same as the results in [16, 17].

This article is organized as follows. Section 2 is devoted to the Mercer’s the-
orem for Sturm-Liouville eigenvalue problems and the generalized Lyapunov-type
inequality. The proofs of theorems 1.1 and 1.2 are given in Section 3.
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2. Lyapunov-type inequalities

In this section we derive a generalized Lyapunov inequality for problem (1.1)-
(1.3). The classical Lyapunov inequality has been generalized for problem (1.1)
with Dirichlet condition in [13]. But the method used in [13] is difficult to apply
to the cases studied here. We will use Mercer’s theorem [10] to prove our result,
which can be restated as follows.

Theorem 2.1 ([10]). Let K(x, t) be a continuous symmetric function in the finite
closed square [a, b]× [a, b] and let T be a linear integral operator on L2[a, b] with the
kernel K(x, t). If T has only positive (or negative) eigenvalues, or if it has only a
finite number of eigenvalues of one sign, the expansion

K(x, t) =
∞∑
n=1

µnϕn(x)ϕn(t)

is valid and converges absolutely and uniformly, where µn are the eigenvalues of T
and ϕn are the corresponding orthonormal eigenfunctions for n ≥ 1.

For self contained, we give the Mercer’s theorem for Sturm-Liouville eigenvalue
problems. Consider the problem

− (p(x)y′(x))′ + q(x)y(x) = µw(x)y(x), x ∈ [a, b] (2.1)

associated with the separated boundary conditions

y(a)− k1y
′(a) = 0, y(b) + k2y

′(b) = 0 (2.2)

In what follows, we always assume that

p(x) > 0, w(x) ≥ 0 a.e. on [a, b]; 1/p, q, w ∈ L1[a, b]; k1, k2 ∈ (−∞,∞] (2.3)

and µ is the spectral parameter.

Lemma 2.2. Assume that each eigenvalue µn of eigenvalue problem (2.1) with
(2.2) is non zero for n ≥ 1. Then∫ b

a

G(x, x)w(x)dx =
∞∑
n=1

1
µn
, (2.4)

where G(x, t) is the Green’s function at µ = 0.

Proof. The idea is to use Theorem 2.1. From the assumption that 0 is not an
eigenvalue of problem (2.1) with (2.2), from the theory of boundary value problems,
the above problem is equivalent the integral equation

y(x) = µ

∫ b

a

G(x, t)y(t)w(t)dt,

where G(x, t) is the Green’s function at µ = 0. Defined the operator T by

Ty(x) =
∫ b

a

G(x, t)y(t)w(t)dt, for y ∈ L2
w[a, b].

On account of the properties of Green’s function, we have that T is an operator
with the continuous symmetric kernel G(x, t). Then it is a compact and self-adjoint
operator in the Hilbert space L2

w[a, b]. By the spectral theory of compact and self-
adjoint operators in the Hilbert space, we obtain that all the eigenvalues of T
are 1/µn, n = 1, 2, . . . . Moreover, these eigenvalues have only a finite number of
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negative values. Denoting by ϕn the orthonormal eigenfunctions corresponding to
1/µn for n ≥ 1, and employing Theorem 2.1 yields that the expansion

G(x, x) =
∞∑
n=1

1
µn
ϕ2
n(x) (2.5)

is valid and converges absolutely and uniformly. Multiplying both sides of (2.5) by
w(x), integrating over [a, b], and applying the normality of ϕn(x) gives∫ b

a

G(x, x)w(x)dx =
∞∑
n=1

1
µn
,

which is the desired formula. �

We now turn to the main result of this section. That is, we give a generalized
Lyapunov inequality for the boundary value problem

− (p(x)y′(x))′ + q(x)y(x) = w(x)y(x), x ∈ [a, b] (2.6)

with separated boundary conditions (2.2).

Theorem 2.3. Assume that problem (2.1) with (2.2) has only positive eigenvalues.
If problem (2.6) with (2.2) has non-trivial solutions, then∫ b

a

w(x)dx >
1

maxx∈[a,b]G(x, x)
=: M, (2.7)

where G(x, t) is the Green’s function at µ = 0. Moreover, the inequality (2.7) is
sharp in the sense of distributions.

To prove that inequality (2.7) is sharp, we need some knowledge of Dirac delta
distribution. The Dirac delta distribution δ at point c ∈ (a, b) is defined by∫ b

a

δ(x− c)f(x)dx = f(c), ∀f ∈ C[a, b].

A sequence (fn) from L1[a, b] is said to converge weakly to δ(x− c) if∫ b

a

fn(x)ϕ(x)dx→
∫ b

a

δ(x− c)ϕ(x)dx, ∀ϕ ∈ C[a, b].

For this we write fn
w→ δ(x− c). In particular, if fn

w→ δ(x− c), then∫ b

a

fn(x)dx→
∫ b

a

δ(x− c)dx = 1.

It is well known that there exists a sequence (fn) ∈ L1[a, b] such that fn
w→ δ(x−c).

For example, we can take

fn(x) =

{
n/2, x ∈ [c− 1

n , c+ 1
n ],

0, otherwise.

Proof of the theorem 2.3. We first prove that the inequality (2.7) holds. Let µn
be the eigenvalues of the problem (2.1) with (2.2) for n ≥ 1. It follows from the
assumption that µn > 0. In addition, 1 is one of the eigenvalues of (2.1) with (2.2)
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because the problem (2.6) with (2.2) has non-trivial solutions. Thus 0 < µ1 ≤ 1.
This together with Lemma 2.2 gives that∫ b

a

G(x, x)w(x)dx > 1.

Using(2.5), µn > 0 and the continuity of G(x, x) on [a, b], we have∫ b

a

w(x)dx >
1

maxx∈[a,b]G(x, x)
=: M.

Note that inequality (2.7) is strict, i.e., the integral of w is not minimized in
L1[a, b]. However, the lower bound M is best, namely, it is the limit of the integral
of a sequence of weight functions in L1[a, b], which satisfies the condition of Theorem
2.3. To see this, let u(x) and v(x) be linearly independent solutions of −(py′)′+qy =
0 satisfying (2.2) at a and b, respectively. Then we have

G(x, x) = − 1
W
u(x)v(x), for x ∈ [a, b],

where W is the modified Wronskian determinant of u and v.
Let G(c, c) = max{G(x, x) : x ∈ [a, b]} =: 1/M . Take wc(x) = δ(x − c)M and

consider the boundary value problem

− (py′)′ + qy = wcy, y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0. (2.8)

The solution of (2.8) is understood as a function y ∈ AC[a, b] with py′ ∈ AC([a, c)∪
(c, b]) satisfying

−(p(x)y′(x))′ + q(x)y(x) = 0, x ∈ [a, b], x 6= c,

y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0,

(py′)(c− 0)− (py′)(c+ 0) = y(c)M.

(2.9)

It is easy to verify that (2.8) has a non-trivial solution

ϕ(x) =

{
v(c)u(x), x ∈ [a, c],
u(c)v(x), x ∈ [c, b].

Denote by µ(wc) the eigenvalue of problem (2.1) with (2.2) for q = wc. Then we
have µ(wc) = 1. Let (wn) be a sequence such that wn

w→ wc and let µ(wn) be one
of the eigenvalues of (2.1) with (2.2) for q = wn. Using an argument similar to the
one used in [11], we can show that µ(wn)→ µ(wc) = 1. Take w̃n = µ(wn)wn, then
w̃n satisfies the condition of Theorem 2.3 and

∫ b
a
w̃n(x)dx →

∫ b
a
wc(x)dx = M .

This completes the proof. �

3. Proofs of Theorems 1.1 and 1.2

It suffices to prove the two theorems for the case k1 ≤ k2, because the case k1 ≥
k2 can be transformed into the former one by the transformation ŷ(x) = y(1− x).
To this end, we prepare some lemmas. First, let us calculate M in (2.7) with q = −λ
for λ < λ1(0), that is, we consider the problem

− y′′(x)− λy(x) = w(x)y(x), y(0)− k1y
′(0) = 0, y(1) + k2y

′(1) = 0, (3.1)

where x ∈ [0, 1] and k2 ≥ k1 ≥ 0.
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Lemma 3.1. Let λ1(0) be the first eigenvalue of problem (1.1)-(1.3) with q = 0. If
(3.1) has a non-trivial solution for λ ∈ (−∞, λ1(0)), then∫ 1

0

w(x)dx

>

2
√
λ cot

√
λ

2 (1 + θ1 + θ2), −1
k2
2
< λ < λ1(0), 0 ≤ θ2 − θ1 < 1,

√
λ cot

√
λ(1 + θ1) + 1

k2
, λ ≤ −1

k2
2

or θ2 − θ1 ≥ 1

=: H1(λ, k1, k2, θ1, θ2) =: H1(λ, k1, k2),

(3.2)

where θj = θj(λ, kj) = 1√
λ

arctan(kj
√
λ) is the principal values of the complex

function, for j = 1, 2.

Proof. First, we show that the inequality∫ 1

0

w(x)dx >
1

maxx∈[0,1]G(x, x)
=: M (3.3)

holds, where G(x, t) is the Green’s function of the problem

− y′′ − λy = µwy, y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0 (3.4)

at µ = 0. We need only show that w(x) satisfies the assumption of Theorem 2.3.
According to Rayleigh-Ritz principle, the signs of the eigenvalues for the problem
(3.4) are the same as those signs for

− y′′ − λy = µy, y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0. (3.5)

However, it is easy to see that the eigenvalues of (3.5) are positive for λ ∈ (−∞, λ1(0)).
Thus inequality (3.3) holds by Theorem 2.3.

Now we give the expression of M in terms of λ and parameters k1, k2. Note
that λ1(0) is nonnegative in case k1, k2 ≥ 0 by a straightforward computation. For
λ ∈ (−∞, λ1(0)), we divide the problem into three cases: 0 < λ ≤ λ1(0), λ < 0 and
λ = 0. Set ρ =

√
λ.

If 0 < λ ≤ λ1(0). Let

u(x) = sin ρx+ k1ρ cos ρx = sin ρ(x+ θ1),

v(x) = sin ρ(1− x) + k2ρ cos ρ(1− x) = sin ρ(1− x+ θ2),
(3.6)

where θj = (1/ρ) arctan (kjρ) for j = 1, 2. Then u(x) and v(x) are linearly inde-
pendent solutions of −y′′ − λy = 0 which satisfy the boundary condition at 0 and
1, respectively. A direct calculation yields

G(x, x) = − 1
W
u(x)v(x)

=
cos ρ(1 + θ2 − θ1 − 2x)− cos ρ(1 + θ1 + θ2)

2ρ sin ρ(1 + θ1 + θ2)
, x ∈ [0, 1],

(3.7)

and ∫ 1

0

w(x)dx >
1

maxx∈[0,1]G(x, x)

=

{
2ρ cot ρ2 (1 + θ1 + θ2), 0 ≤ θ2 − θ1 ≤ 1,
ρ cot ρ(1 + θ1) + 1

k2
, θ2 − θ1 > 1.

(3.8)
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If λ < 0, the proof is analogous to the above case, except substituting iρ := i
√
−λ

for ρ in (3.6). In such a case, u(x) and v(x) have the following forms

u(x) =


i sinh ρ(x+ θ1), k1ρ < 1,
ieρx, k1ρ = 1,
i cosh ρ(x+ θ1), k1ρ > 1,

v(x) =


i sinh ρ(1− x+ θ2), k2ρ < 1,
ieρ(1−x), k2ρ = 1,
i cosh ρ(1− x+ θ2), k1ρ < 1.

where θj := (1/ρ)artanh(kjρ),∞, or (1/ρ)arccoth(kjρ) according to kjρ < 1, kjρ =
1, or kjρ > 1 for j = 1, 2, respectively. Then some tedious manipulation gives rise
to

∫ 1

0

w(x)dx >


2ρ coth ρ

2 (1 + θ1 + θ2), k1ρ ≤ k2ρ < 1, 0 ≤ θ2 − θ1 ≤ 1,
ρ coth ρ(1 + θ1) + 1

k2
, k1ρ ≤ 1 ≤ k2ρ or θ2 − θ1 > 1,

ρ tanh ρ(1 + θ1) + 1
k2
, k2ρ ≥ k1ρ > 1.

(3.9)

If λ = 0, we choose

u(x) = x+ k1, v(x) = 1− x+ k2;

then a simple computation yields∫ 1

0

w(x)dx >

{
4

1+k1+k2
, k2 − k1 ≤ 1,

1
1+k1

+ 1
k2
, k2 − k1 > 1.

(3.10)

This result is exactly the limits of the other two cases as λ → 0. Therefore, we
obtain the expression of M for all three cases.

To simplify the above formulas, we use complex functions to express (3.8), (3.9)
and (3.10). Let θj be the principle values of θj(ρ) = (1/ρ) arctan(kjρ) for ρ =

√
λ

and j = 1, 2. Then we have∫ 1

0

w(x)dx >

{
2
√
λ cot

√
λ

2 (1 + θ1 + θ2), −1
k2
2
< λ < λ1(0), 0 ≤ θ2 − θ1 < 1,

√
λ cot

√
λ(1 + θ1) + 1

k2
, λ ≤ −1

k2
2

or θ2 − θ1 ≥ 1

= H1(λ, k1, k2).

The proof is complete. �

Next we set Ωn(λ) =
{
q : q ∈ L1[0, 1], λn(q) = λ} in (1.4), and En(λ) =

inf
{
‖q‖ : q ∈ Ωn(λ)

}
in (1.5). Let λn(0) be the n-th eigenvalue of (1.1)-(1.3) with

q = 0. To set up a formula for En(λ), we calculate it separately in two smaller sets

Ω−n = {q : q ∈ Ωn(λ), q(x) ≤ 0 a.e. on [0, 1]}, for λ < λn(0),

Ω+
n = {q : q ∈ Ωn(λ), q(x) ≥ 0 a.e. on [0, 1]}, for λ ≥ λn(0).

Lemma 3.2. For n ≥ 1, we have

En(λ) = inf{‖q‖ : q ∈ Ω−n }, for λ < λn(0), (3.11)

En(λ) = inf{‖q‖ : q ∈ Ω+
n }, for λ ≥ λn(0). (3.12)

The proof of the above lemma can be obtained as in [13, Lemma 3.2]; we omit
it here. With the help of the Lemma 3.2, we need only to calculate En(λ) in Ω−n
for λ < λn(0) and that one in Ω+

n for λ ≥ λn(0) in the following proofs.
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Proof of Theorem 1.1. Our first goal is to give the formula of E1(λ) for λ < λ1(0),
that is, we will evaluate E1(λ) in Ω−1 . If q ∈ Ω−1 then q(x) ≤ 0 and λ1(q) = λ <
λ1(0). We rewrite problem (1.1)-(1.3) as

− y′′ − λ1(q)y = wy, y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0, (3.13)

where λ1(q) = λ and w(x) = −q(x) ≥ 0. Then problem (3.13) has non-trivial
solutions, it follows from Lemma 3.1 that

‖q‖ =
∫ 1

0

w(x)dx

>

{
2
√
λ cot

√
λ

2 (1 + θ1 + θ2), −1
k2
2
< λ < λ1(0), 0 ≤ θ2 − θ1 < 1,

√
λ cot

√
λ(1 + θ1) + 1

k2
, λ ≤ −1

k2
2

or θ2 − θ1 ≥ 1

= H1(λ, k1, k2, θ1, θ2) = H1(λ, k1, k2).

(3.14)

Since the above inequality is sharp by Theorem 2.3, we have E1(λ) = H1(λ, k1, k2)
for λ < λ1(0).

Next, we give the formula of E1(λ) for λ ≥ λ1(0). Let ρ =
√
λ and θj =

(1/ρ) arctan(kjρ) for j = 1, 2. It follows the proof of Lemma 3.1 that λ1(0) is
non-negative. This together with λ ≥ λ1(0) yields 0 < π/2ρ − θj < 1 for j = 1, 2.
Set

q0(x) =

{
λ, x ∈ [ π2ρ − θ1, 1−

π
2ρ + θ2],

0, otherwise.

Then, it is easy to check that q0 ∈ Ω+
1 . We claim that

‖q‖ ≥ ‖q0‖ = ρ
[
ρ(1 + θ1 + θ2)− π

]
=
√
λ
[√

λ
(
1 + θ1 + θ2

)
− π

]
=: K1(λ, k1, k2), ∀q ∈ Ω+

1 .
(3.15)

Suppose on the contrary that there exists q ∈ Ω+
1 such that ‖q0‖ > ‖q‖. Let

u(x) be the corresponding eigenfunction of

−y′′ + q0y = λy, y(0)− k1y
′(0) = y(1) + k2y

′(1) = 0.

In view of the definition of q0 we can choose u(x) as

u(x) =


sin ρ(x+ θ1), x ∈ [0, π2ρ − θ1),
1, x ∈ [ π2ρ − θ1, 1−

π
2ρ + θ2],

sin ρ(1− x+ θ2), x ∈ (1− π
2ρ + θ2, 1]

for which max{u2(x) : x ∈ [0, 1]} = 1 and∫ 1

0

q0u
2 =

∫ 1− π
2ρ+θ2

π
2ρ−θ1

q0 = ‖q0‖ > ‖q‖ =
∫ 1

0

q · 1 ≥
∫ 1

0

qu2. (3.16)

Combing the inequality (3.16) and the Rayleigh-Ritz principle, we obtain

λ = λ1(q0) =
1∫ 1

0
|u|2

(∫ 1

0

(u′ 2 + q0u
2) + k1(u′(0))2 + k2(u′(1))2

)
>

1∫ 1

0
|u|2

(∫ 1

0

(u′ 2 + qu2) + k1(u′(0))2 + k2(u′(1))2
)

≥ λ1(q) = λ,
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which is a contradiction. This proves E1(λ) = K1(λ, k1, k2) for λ ≥ λ1(0). the
proof is complete. �

Proof of Theorem 1.2. Let λn(q) = λ and vn(x) be the corresponding eigenfunc-
tion. Then vn(x) has exactly n − 1 zeros tj in (0, 1), 0 < t1 < t2 · · · < tn−1 < 1.
Denote t0 = 0 and tn = 1, then λn(q) is the first eigenvalue of the following prob-
lems:

−y′′ + qy = µy, y(t0)− k1y
′(t0) = y(t1) = 0;

−y′′ + qy = µy, y(tj−1) = y(tj) = 0, 2 ≤ j ≤ n− 1;

−y′′ + qy = µy, y(tn−1) = y(tn) + k2y
′(tn) = 0.

Let δj = tj − tj−1 and λ
δj
1 (0) be the first eigenvalues for the above problems with

q = 0 for j = 1, 2, . . . , n. For q ∈ Ω−n , it follows from q ≤ 0 that

λ ≤ λδj1 (0), j = 1, 2, . . . , n.

Denote by θj the principle values of θj(λ) = 1√
λ

arctan(kj
√
λ) for λ ∈ R and

j = 1, 2. Then, by Theorem 1.1 and a variable transformation, we have∫ t1

t0

|q(x)|dx ≥ H1(δ21λ, 0, k1/δ1, 0, θ1/δ1)/δ1;∫ tj

tj−1

|q(x)|dx ≥ H1(δ2jλ, 0, 0, 0, 0)/δj , 2 ≤ j ≤ n− 1;∫ tn

tn−1

|q(x)|dx ≥ H1(δ2nλ, 0, k2/δn, 0, θ2/δn)/δn.

(3.17)

Summing up the above inequalities from j = 1 to j = n. From (3.8) and (3.9), we
see that the functions on the right-hand sides of the inequalities in (3.17) are either
cot functions or coth functions. Hence, due to the convexity of these functions, we
have∫ 1

0

|q(x)|dx

>


2n
√
λ cot

√
λ

2n (1 + θ1 + θ2), −1
k2
2
< λ < λn(0), θ1 < 1

2(n−1) , θ2 <
1+θ1
2n−1 ,

(2n− 1)
√
λ cot

√
λ

2n−1 (1 + θ1) + 1
k2
, −1

k2
1
< λ ≤ −1

k2
2
, θ1 <

1
2(n−1) or θ2 ≥

1+θ1
2n−1 ,

2(n− 1)
√
λ cot

√
λ

2(n−1) + 1
k1

+ 1
k2
, λ ≤ −1

k2
1

or θ1 ≥ 1
2(n−1)

=: Hn(λ, k1, k2).
(3.18)

Then, we can employ the same argument as used in the case n = 1 to prove that
Hn(λ, k1, k2) is the infimum of ‖q‖ in Ω−n .

Similarly, for q ∈ Ω+
n , we obtain

‖q‖ ≥
√
λ
[√
λ
(
1 + θ1 + θ2

)
− nπ

]
=: Kn(λ, k1, k2). (3.19)

Finally, Kn(λ) is the infimum since it is attained at q̂ ∈ Ωn(λ) defined by

q̂(x) =

{
0, x ∈ [0, π2ρ − θ1) ∪ ( 1

n −
π
2ρ + θ2,

1
n ],

λ, x ∈ [ π2ρ − θ1,
1
n −

π
2ρ + θ2]
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on [0, 1/n], and q̂(x + 1
n ) = q̂(x) for x ∈ [0, n−1

n ]. Therefore, En(λ) = Kn(λ) for
λ ≥ λn(0). The proof is complete. �
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