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MULTIPLE SOLUTIONS OF A p-KIRCHHOFF EQUATION WITH
SINGULAR AND CRITICAL NONLINEARITIES

QIN LI, ZUODONG YANG, ZHAOSHENG FENG

Abstract. In this article, we explore the existence of multiple solutions for a

p-Kirchhoff equation with the nonlinearity containing both singular and critical
terms. By means of the concentration compactness principle and Ekeland’s

variational principle, we obtain two positive weak solutions.

1. Introduction

Consider the p-Kirchhoff equation

−M(‖u‖p)∆pu = λup
∗−1 + ρ(x)u−γ , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in RN , M(s) = a + bsm, 4pu = div(|∇u|p−2∇u) is
the p-Laplacian operator with 1 < p < N , and λ > 0 is a real parameter. Here,
γ ∈ (0, 1) is a constant, ρ(x) : Ω → R is a given non-negative function in Lp(Ω),
and p∗ = Np/(N − p) is the critical Sobolev exponent.

Problem (1.1) displays some meaningful features. It is nonlocal due to the pres-
ence of the Kirchhoff-type coefficient M which makes the equation no longer a
pointwise identity. Moreover, it involves singular and critical terms. To the best of
our knowledge, not much has been known on the Kirchhoff nonlocal structure with
the presence of singular and critical nonlinearities in quasilinear elliptic problems.

Recently, considerable attention has been given to the existence of positive so-
lutions by variational methods for the problem [3, 2, 6, 1]:

−M
(∫

Ω

|∇u|2dx
)

∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

and the stationary analogue of the Kirchhoff equation [4]:

utt −M
(∫

Ω

|∇xu|2dx
)

∆xu = f(x, t), (1.3)

where M(s) = a+ bs, a > 0 and b > 0. Equation (1.3) was proposed by Kirchhoff
[1] as an extension of the classical D’Alembert’s wave equation for free vibrations
of elastic strings. Sun et al [8, 9] considered the existence of solutions to a related
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singular elliptic problem. By using the concentration compactness principle [5] and
Ekeland’s variational principle [7], the existence of two positive weak solutions was
presented when the parameter λ is small enough.

Since problem (1.1) contains a critical term, it becomes difficult for us to apply
variational methods directly and does not have the compact embedding W 1,p(Ω) ↪→
Lp

∗
(Ω). It is also noted that the singular term leads to the non-differentiability

of the associated functional Iλ on W 1,p
0 (Ω), so the critical point theory becomes

invalid. Based on this fact, in this study we attempt to use the concentration
compactness principle, Vitali’s theorem as well as Ekeland’s variational principle
to explore the existence of multiple solutions of (1.1).

Following the traditional notation, we let X = W 1,p
0 (Ω) be the standard Sobolev

space endowed with the norm

‖u‖ =
(∫

Ω

|∇u|pdx
)1/p

and ‖u‖σ denotes the norm in Lσ(Ω) by

‖u‖σ =
(∫

Ω

|u|σdx
)1/σ

.

Let S be the best Sobolev constant as

S = inf
{ ‖u‖p
‖u‖pp∗

, u ∈ X and u 6= 0
}
. (1.4)

Then, the infimum is never achieved if Ω 6= RN .
For u ∈ X, we define Iλ: X → R by

Iλ(u) =
1
p
M̂(‖u‖p)− λ

p∗

∫
Ω

|u|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u|1−γdx,

where M̂(s) =
∫ s

0
M(t)dt = as+ b

m+1s
m+1. By analyzing the associated minimiza-

tion problems for the functional Iλ, one can study weak solutions for (1.1).
Note that if u is a weak solution of (1.1), then u satisfies

M(‖u‖p)
∫

Ω

|∇u|pdx− λ
∫

Ω

|u|p
∗
dx−

∫
Ω

ρ(x)|u|1−γdx = 0.

So we define a set

Λ =
{
u ∈ X|M(‖u‖p)

∫
Ω

|∇u|pdx− λ
∫

Ω

|u|p
∗
dx−

∫
Ω

ρ(x)|u|1−γdx = 0
}
.

We consider

hu(t) =
1
p
M̂(tp‖u‖p)− λtp

∗

p∗

∫
Ω

|u|p
∗
dx− t1−γ

1− γ

∫
Ω

ρ(x)|u|1−γdx.

A straightforward calculation gives

h′u(t) = M(tp‖u‖p)tp−1||u||p − λtp
∗−1

∫
Ω

|u|p
∗
dx− t−γ

∫
Ω

ρ(x)|u|1−γdx

and

h′′u(t) = a(p− 1)tp−2‖u‖p + b[p(m+ 1)− 1]tp(m+1)−2‖u‖p(m+1)

− λ(p∗ − 1)tp
∗−2

∫
Ω

|u|p
∗
dx+ γt−γ−1

∫
Ω

ρ(x)|u|1−γdx.
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So we have

h′′u(1) = a(p+ γ − 1)‖u‖p + b[p(m+ 1) + γ − 1]‖u‖p(m+1) − λ(p∗ + γ − 1)‖u‖p
∗

p∗ .

It is natural to split Λ into three parts corresponding to the local minima, the
local maxima and the point of inflection. Accordingly, we define

Λ+ = {u ∈ Λ|h′′(u)(1) > 0},
Λ0 = {u ∈ Λ|h′′(u)(1) = 0},
Λ− = {u ∈ Λ|h′′(u)(1) < 0}.

Throughout this paper, we make the following assumptions:
(A1) M(s) = a+ bsm, where a, b, m > 0;
(A2) 1 < p < p(m+ 1) < p∗ and 0 < γ < 1;
(A3) ρ : Ω → R is a given non-negative and nontrivial function in Lp(Ω), and

there exists some Θ > 0 such that if ‖ρ‖p ≤ Θ, then Λ− 6= ∅.
We summarize our main results as follows.

Theorem 1.1. Assume that conditions (A1)–(A3) hold. Then there exists λ∗ > 0
small enough such that for any λ ∈ (0, λ∗), there exist at least two weak positive
solutions u1, u2 ∈ X to problem (1.1). Moreover, u1 is a local minimizer of Iλ in
X with Iλ(u1) < 0, and u2 is a minimizer of Iλ on Λ− with Iλ(u2) ≥ 0.

The remainder of this article is organized as follows. In Section 2, we present
some preliminary results, and Section 3 is dedicated to the proof of main results.

2. Preliminaries

Lemma 2.1. The energy functional Iλ has a local minimum c in X with c < 0.

Proof. By Hölder’s and Sobolev inequalities, there exist positive constants C0 and
C1 such that ∫

Ω

ρ(x)|u|1−γdx ≤ ‖ρ‖p||u||1−γp∗ |Ω|
(p−1)p∗−p(1−γ)

pp∗

≤ C0‖ρ‖p‖u‖1−γp∗

≤ C1‖ρ‖p‖u‖1−γ .
From (1.4), we have∫

Ω

|u|p
∗
dx ≤ S−

p∗
p

(∫
Ω

|∇u|pdx
)p∗/p

, u ∈ X. (2.1)

Thus, it gives

Iλ(u) ≥ a

p
‖u‖p +

b

p(m+ 1)
‖u‖p(m+1) − λ

p∗
S−

p∗
p ‖u‖p

∗
− C2‖ρ‖p‖u‖1−γ

≥ 2
p

√
ab

m+ 1
‖u‖

p(m+2)
2 − λ

p∗
S−

p∗
p ‖u‖p

∗
− C2‖ρ‖p‖u‖1−γ .

Since 1 − γ < p(m+2)
2 < p∗, there exists λ1 > 0 such that for any λ ∈ (0, λ1),

there are R, ξ > 0 satisfying Iλ(u) ≥ ξ for all u ∈ X with ‖u‖ = R and Iλ(u)
is bounded from below on BR = {u ∈ X|‖u‖ ≤ R}. Then, c = infu∈BR Iλ(u) is
well-defined for the fixed λ ∈ (0, λ1). Since 0 < 1 − γ < 1, we have Iλ(tσ) < 0 for
all σ 6= 0 and small t > 0. Thus, we arrive at c = infu∈BR Iλ(u) < 0. �
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Lemma 2.2. There exists u1 ∈ BR satisfying Iλ(u1) = c.

Proof. From Lemma 2.1, there exists a minimizing sequence {uk} ⊂ BR such that
Iλ(uk)→ c < 0. Since Iλ(uk) = Iλ(|uk|), we can assume uk ≥ 0. Due to ||u|| ≤ R,
there exists a subsequence (still denoted by {uk}) satisfying

uk ⇀ u1 in X.

From (2.1) we know that uk is bounded in Lp
∗
(Ω). Since X is self-reflexive, and

BR is closed and convex, we see u1 ∈ BR.
By the concentration-compactness principle [5], there exist non-negative bounded

measures η and µ such that

|uk|p
∗
⇀ η and |∇uk|p ⇀ µ

weakly in the sense of measures. Furthermore, there exists a countable index set
J , a collection of points {xj}j∈J ⊂ Ω and two numbers µj , ηj > 0 such that

η = |u1|p
∗

+
∑
j∈J

ηjδxj and µ ≥ |∇u1|p +
∑
j∈J

µjδxj ,

where δxj is the Dirac measure concentrated at xj , and ηj and µj satisfy

Sη
p/p∗

j ≤ µj .
Letting k →∞ leads to∫

Ω

|∇uk|pdx→
∫

Ω

dµ ≥
∫

Ω

|∇u1|pdx+
∑
j∈J

Sη
p/p∗

j ,

and ∫
Ω

|uk|p
∗
dx→

∫
Ω

dη =
∫

Ω

|u1|p
∗
dx+

∑
j∈J

ηj . (2.2)

By Vitali’s theorem, we find

lim
k→∞

∫
Ω

ρ(x)|uk|1−γdx =
∫

Ω

ρ(x)|u1|1−γdx.

Then, we deduce that

c = lim
k→∞

{1
p
M̂(‖uk‖p)−

λ

p∗

∫
Ω

|uk|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|uk|1−γdx
}

= lim
k→∞

{a
p
‖uk‖p +

b

p(m+ 1)
‖uk‖p(m+1) − λ

p∗

∫
Ω

|uk|p
∗
dx

− 1
1− γ

∫
Ω

ρ(x)|uk|1−γdx
}

≥ a

p

(∫
Ω

|∇u1|pdx+
∑
j∈J

Sη
p/p∗

j

)
+

b

p(m+ 1)

(∫
Ω

|∇u1|pdx+
∑
j∈J

Sη
p/p∗

j

)m+1

− λ

p∗

(∫
Ω

|u1|p
∗
dx+

∑
j∈J

ηj

)
− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx

≥ 1
p
M̂
(
‖u1‖p

)
− λ

p∗

∫
Ω

|u1|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx

+
a

p

∑
j∈J

Sη
p/p∗

j +
b

p(m+ 1)

(∑
j∈J

Sη
p/p∗

j

)m+1

− λ

p∗

∑
j∈J

ηj .
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That is,

c ≥ 1
p
M̂(‖u1‖p)− λ

p∗

∫
Ω

|u1|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx.

From the definition of c, it gives

c ≤ 1
p
M̂(‖u1‖p)− λ

p∗

∫
Ω

|u1|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx.

Thus, we have

c =
1
p
M̂(‖u1‖p)− λ

p∗

∫
Ω

|u1|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx.

Suppose that J 6= ∅. By way of contradiction, from (2.2) we obtain∫
Ω

dη >

∫
Ω

|u1|p
∗
dx,∑

j∈J
ηj =

∫
Ω

dη −
∫

Ω

|u1|p
∗
dx > 0.

On the other hand, one can find that

c ≤ 1
p
M̂(‖u1‖p)− λ

p∗

∫
Ω

|u1|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u1|1−γdx

≤ c− a

p

∑
j∈J

Sη
p/p∗

j − b

p(m+ 1)

(∑
j∈J

Sη
p/p∗

j

)m+1

+
λ

p∗

∑
j∈J

ηj

≤ c− a

p

∑
j∈J

Sη
p/p∗

j +
λ

p∗

∑
j∈J

ηj .

If for all j ∈ J and 0 < ηj < 1, we have ηp/p
∗

j > ηj and

c ≤ c− a

p

∑
j∈J

Sη
p/p∗

j +
λ

p∗

∑
j∈J

ηj ≤ c+
( λ
p∗
− aS

p

)∑
j∈J

ηj .

This yields a contradiction when λ < ap∗S/p.
If there exists a subsequence {ηj} (j ∈ K = {1, 2, . . . }) such that ηj ≥ 1, where

K is a finite set, we choose λ < λ̃2, and let λ̃2 satisfy( λ̃2

p∗
− aS

p

)∑
j∈J

ηj +
λ̃2

p∗

∑
ηj≥1

ηj −
a

p

∑
ηj≥1

Sη
p/p∗

j < 0.

Then, we see that

c ≤ c− a

p

∑
j∈J

Sη
p/p∗

j +
λ

p∗

∑
j∈J

ηj

≤ c+
( λ
p∗
− aS

p

)∑
j∈J

ηj +
λ

p∗

∑
ηj≥1

ηj −
a

p

∑
ηj≥1

Sη
p/p∗

j < c.

This leads to another contradiction. Consequently, J = ∅ by choosing λ < λ2 =
min{ap

∗S
p , λ̃2}. �

Lemma 2.3. The functional Iλ is coercive on Λ.
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Proof. For any u ∈ Λ, it holds

M(‖u‖p)‖u‖p − λ
∫

Ω

|u|p
∗
dx−

∫
Ω

ρ(x)|u|1−γdx = 0.

Then, we have

Iλ(u) =
1
p
M̂(‖u‖p)− λ

p∗

∫
Ω

|u|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u|1−γdx

=
1
p
M̂(‖u‖p)− 1

p∗
M(‖u‖p)||u||p +

( 1
p∗
− 1

1− γ

)∫
Ω

ρ(x)|u|1−γdx

≥ a
(1
p
− 1
p∗

)
‖u‖p + b

[ 1
p(m+ 1)

− 1
p∗
]
‖u‖p(m+1)

+
( 1
p∗
− 1

1− γ

)
C1||ρ||p‖u‖1−γ .

Since 0 < 1 − γ < 1 < p < p(m + 1) < p∗, we deduce that lim||u||→∞ Iλ(u) =
+∞. �

Lemma 2.4. There exists λ3 > 0, such that Λ0 = {0} for all λ ∈ (0, λ3).

Proof. By contradiction, we suppose that there exists some u ∈ Λ0\{0} satisfying

a(p+ γ − 1)‖u‖p + b[p(m+ 1) + γ − 1]‖u‖p(m+1) = λ(p∗ + γ − 1)‖u‖p
∗

p∗ (2.3)

and

a
p∗ − p

p∗ + γ − 1
‖u‖p + b

p∗ − p(m+ 1)
p∗ + γ − 1

‖u‖p(m+1) =
∫

Ω

ρ(x)|u|1−γdx. (2.4)

By (2.1) and (2.3), it follows Young’s inequality that

2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]‖u‖

p(m+2)
2 ≤ λ(p∗ + γ − 1)S−

p∗
p ‖u‖p

∗
.

Since p(m+2)
2 < p∗, it follows that

‖u‖ ≥
{2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)
Sp

∗/p
} 2

2p∗−p(m+2)
.

By (2.1) and (2.4), and using Young’s inequality again, we obtain

2
√
ab(p∗ − p)[p∗ − p(m+ 1)]

p∗ + γ − 1
‖u‖

p(m+2)
2 ≤ C1‖ρ‖p‖u‖1−γ .

When p(m+2)
2 > 1 > 1− γ > 0, we see that

‖u‖ ≤
{ C1(p∗ + γ − 1)‖ρ‖p

2
√
ab(p∗ − p)[p∗ − p(m+ 1)]

} 2
p(m+2)−2(1−γ)

.

This yields a contradiction if we choose

λ < λ3 =
2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]Sp

∗/p

p∗ + γ − 1

×
{2
√
ab(p∗ − p)[p∗ − p(m+ 1)]
C1(p∗ + γ − 1)‖ρ‖p

} 2p∗−p(m+2)
p(m+2)−2(1−γ)

.

Consequently, for all λ ∈ (0, λ3), it holds Λ0 = {0}. �

Lemma 2.5. Λ− is closed in X.
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Proof. Let {un} ⊂ Λ− satisfy un → u in X. There exists a subsequence (still
denoted by {un}) such that un → u a.e. in Ω, and limn→∞ ‖un‖p∗ = ‖u‖p∗ . By
the definition of Λ−, it gives

a(p+ γ − 1)‖un‖p + b[p(m+ 1) + γ − 1]‖un‖p(m+1) − λ(p∗ + γ − 1)‖un‖p
∗

p∗ < 0.

So we have

lim
n→∞

{
a(p+ γ − 1)

∫
Ω

|∇un|pdx+ b[p(m+ 1) + γ − 1]
(∫

Ω

|∇un|pdx
)m+1

− λ(p∗ + γ − 1)
∫

Ω

|un|p
∗
dx

}
≤ 0.

Clearly, we see that u ∈ Λ0 ∪Λ−. If Λ− is not closed, then u ∈ Λ0. By Lemma 2.4,
we obtain u ≡ 0.

On the other hand, for any {un} ⊂ Λ− we have∫
Ω

|un|p
∗
dx

>
a(p+ γ − 1)
λ(p∗ + γ − 1)

∫
Ω

|∇un|pdx+
b[p(m+ 1) + γ − 1]
λ(p∗ + γ − 1)

(∫
Ω

|∇un|pdx
)m+1

≥
2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)

(∫
Ω

|∇un|pdx
)m+2

2

≥
2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)

[
S
(∫

Ω

|un|p
∗
dx
)p/p∗]m+2

2

=
2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)
S
m+2

2

(∫
Ω

|un|p
∗
dx
) p(m+2)

2p∗
.

That is,(∫
Ω

|un|p
∗
dx
)1/p∗

>
{2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)
S
m+2

2

} 2
2p∗−p(m+2)

.

As n→∞, one can see that

‖u‖p∗ ≥
{2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)

} 2
2p∗−p(m+2)

S
m+2

2p∗−p(m+2) > 0. (2.5)

This yields a contradiction to the fact u = 0. Thus, u ∈ Λ− and Λ− is closed in
X. �

Lemma 2.6. There exists λ4 > 0 such that for any u ∈ Λ− and any λ ∈ (0, λ4),
Iλ(u) ≥ 0 holds.

Proof. By contradiction, we suppose that there exists ũ ∈ Λ− satisfying Iλ(ũ) < 0.
That is,

1
p
M̂(‖ũ‖p)− λ

p∗

∫
Ω

|ũ|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|ũ|1−γdx < 0.

Note that
1
p
M̂(‖ũ‖p) > 1

p(m+ 1)
[a‖ũ‖p + b‖ũ‖p(m+1)] =

1
p(m+ 1)

M(‖ũ‖p)‖ũ‖p.
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So we have
1

p(m+ 1)
M(‖ũ‖p)‖ũ‖p − λ

p∗

∫
Ω

|ũ|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|ũ|1−γdx < 0

and

λ
[ 1
p(m+ 1)

− 1
p∗
] ∫

Ω

|ũ|p
∗
dx−

[ 1
1− γ

− 1
p(m+ 1)

] ∫
Ω

ρ(x)|ũ|1−γdx < 0.

By (2.1), we obtain

λ
[ 1
p(m+ 1)

− 1
p∗
] ∫

Ω

|ũ|p
∗
dx <

[ 1
1− γ

− 1
p(m+ 1)

]
C0‖ρ(x)‖p‖ũ‖1−γp∗ .

This leads to

‖ũ‖p
∗+γ−1
p∗ <

p∗[p(m+ 1) + γ − 1]C0‖ρ‖p
λ[p∗ − p(m+ 1)](1− γ)

.

By choosing

λ4 =
{2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

p∗ + γ − 1
S
m+2

2

} 2(p∗+γ−1)
p(m+2)−2(1−γ)

×
{ [p∗ − p(m+ 1)](1− γ)
p∗[p(m+ 1) + γ − 1]C0‖ρ‖p

} 2p∗−p(m+2)
p(m+2)−2(1−γ)

,

for all λ < λ4 we have

‖u‖p∗ <
{2
√
ab(p+ γ − 1)[p(m+ 1) + γ − 1]

λ(p∗ + γ − 1)

} 2
2p∗−p(m+2)

S
m+2

2p∗−p(m+2) .

This yields a contradiction to inequality (2.5). Hence, the proof of Lemma 2.6 is
complete. �

Lemma 2.7. If u ∈ Λ−, then there exist an ε > 0 and a differentiable function
f = f(w) > 0, where w ∈ W 1,p

0 (Ω) and ‖w‖ < ε such that f(0) = 1 and f(w)(u +
w) ∈ Λ− for all w ∈W 1,p

0 (Ω).

Proof. Define F : R×W 1,p
0 (Ω)→ R by

F (t, w) = atp+γ−1

∫
Ω

|∇(u+ w)|pdx+ btp(m+1)+γ−1

(∫
Ω

|∇(u+ w)|pdx
)m+1

− λtp
∗+γ−1

∫
Ω

|u+ w|p
∗
dx−

∫
Ω

ρ(x)|u+ w|1−γdx.

Since u ∈ Λ− ⊂ Λ, we have F (1, 0) = 0, and

Ft(1, 0) = a(p+ γ − 1)‖u‖p + b[p(m+ 1) + γ − 1]‖u‖p(m+1)

− λ(p∗ + γ − 1)‖u‖p
∗

p∗ < 0.

According to the implicit function theorem at the point (1, 0), there exist an
ε > 0 and a continuous function f = f(w) > 0, where w ∈ W 1,p

0 (Ω) and ‖w‖ < ε,
such that

f(0) = 1 and f(w)(u+ w) ∈ Λ for all w ∈W 1,p
0 (Ω).

Clearly, we can take ε > 0 sufficiently small (< ε) satisfying

f(w)(u+ w) ∈ Λ− ∀w ∈W 1,p
0 (Ω) and |w‖ < ε.

�
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Lemma 2.8. For all λ > 0, problem (1.1) has a weak solution u2 in X.

Proof. From (A3) and Lemma 2.3, we know Λ− 6= ∅ and c− = infu∈Λ− Iλ(u) >
−∞ is well-defined. By Ekeland’s variational principle, there exists a minimizing
sequence {vk} ⊂ Λ− satisfying

Iλ(vk) < c− +
1
k

and Iλ(vk) ≤ Iλ(v) +
1
k
‖v − vk‖ ∀v ∈ Λ−.

Since Iλ(vk) = Iλ(|vk|), we assume vk ≥ 0 in Ω and (up to a subsequence if
necessary) it converges to a function, denoted by u2 ≥ 0. Then, we have

vk ⇀ u2in X and vk → u2 a.e. in Ω.

Let u = vk ∈ Λ−, w = tϕ, ϕ ∈W 1,p
0 (Ω), and t > 0 be small enough. There exists a

differentiable function fk(t) = fk(tϕ) satisfying

fk(0) = 1 and fk(t)(vk + tϕ) ∈ Λ−.

Since Λ− ⊂ Λ, it follows that

fpk (t)M(fpk (t)‖vk + tϕ‖p)‖vk + tϕ‖p − λfp
∗

k (t)
∫

Ω

|vk + tϕ|p
∗
dx

− f1−γ
k (t)

∫
Ω

ρ(x)|vk + tϕ|1−γdx = 0

and
M(‖vk‖p)‖vk‖p − λ

∫
Ω

|vk|p
∗
dx−

∫
Ω

ρ(x)|vk|1−γdx = 0.

By Ekeland’s variational principle, we have
1
k

[|fk(t)− 1|‖vk‖+ tfk(t)‖ϕ‖]

≥ 1
k

[fk(t)(vk + tϕ)− vk]

≥ Iλ(vk)− Iλ[fk(t)(vk + tϕ)]

=
1
p
M̂(‖vk‖p)−

1
p
M̂(fpk (t)‖vk + tϕ‖p) +

λfp
∗

k (t)
p∗

∫
Ω

|vk + tϕ|p
∗
dx

− λ

p∗

∫
Ω

|vk|p
∗
dx+

f1−γ
k (t)
1− γ

∫
Ω

ρ(x)|vk + tϕ|1−γdx− 1
1− γ

∫
Ω

ρ(x)|vk|1−γdx

=
1
p
M̂(‖vk‖p)−

1
p
M̂(fpk (t)‖vk + tϕ‖p) +

(λfp∗k (t)
p∗

− λ

p∗

)∫
Ω

|vk + tϕ|p
∗
dx

+
λ

p∗

[ ∫
Ω

|vk + tϕ|p
∗
dx−

∫
Ω

|vk|p
∗
dx
]

+
1

1− γ
[f1−γ
k (t)− 1]

∫
Ω

ρ(x)|vk + tϕ|1−γdx

+
1

1− γ

[ ∫
Ω

ρ(x)|vk + tϕ|1−γdx−
∫

Ω

ρ(x)|vk|1−γdx
]
.

Dividing it by t > 0 and letting t→ 0, we find
1
k

[|f ′k(0)|‖vk‖+ ‖ϕ‖]

≥ −M(‖vk‖p)f ′k(0)‖vk‖p −M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇ϕdx
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+ λf ′k(0)
∫

Ω

|vk|p
∗
dx+ λ

∫
Ω

vp
∗−1
k ϕdx+ f ′k(0)

∫
Ω

ρ(x)|vk|1−γdx

+
∫

Ω

ρ(x)v−γk ϕdx

= −f ′k(0)[M(‖vk‖p)‖vk‖p − λ
∫

Ω

|vk|p
∗
dx−

∫
Ω

ρ(x)|vk|1−γdx]

−M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇ϕdx+ λ

∫
Ω

vp
∗−1
k ϕdx+

∫
Ω

ρ(x)v−γk ϕdx

= −M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇ϕdx+ λ

∫
Ω

vp
∗−1
k ϕdx+

∫
Ω

ρ(x)v−γk ϕdx.

So we have∫
Ω

ρ(x)v−γk ϕdx

≤ 1
k

[|f ′k(0)|‖vk‖+ ‖ϕ‖] +M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇ϕdx− λ
∫

Ω

vp
∗−1
k ϕdx.

Since there exists C3 > 0 such that |f ′k(0)| ≤ C3, as k →∞ it follows from Fatou’s
Lemma that∫

Ω

ρ(x)(u2)−γϕdx ≤ lim
k→∞

inf
∫

Ω

ρ(x)v−γk ϕdx

≤M(‖u2‖p)
∫

Ω

|∇u2|p−2∇u2 · ∇ϕdx− λ
∫

Ω

(u2)p
∗−1ϕdx.

Note that ϕ is arbitrary. The above inequality also holds for −ϕ:∫
Ω

ρ(x)(u2)−γϕdx ≥M(‖u2‖p)
∫

Ω

|∇u2|p−2∇u2 · ∇ϕdx− λ
∫

Ω

(u2)p
∗−1ϕdx.

Thus, we see that

M(‖u2‖p)
∫

Ω

|∇u2|p−2∇u2 · ∇ϕdx− λ
∫

Ω

(u2)p
∗−1ϕdx−

∫
Ω

ρ(x)(u2)−γϕdx = 0,

where ϕ ∈W 1,p
0 (Ω). This implies that u2 is a weak solution of (1.1). �

Lemma 2.9. There exists λ5 > 0 such that u2 ∈ Λ− for any λ ∈ (0, λ5).

Proof. For any u ∈ Λ− ⊂ Λ, we have

Iλ(u) =
1
p
M̂(‖u‖p)− λ

p∗

∫
Ω

|u|p
∗
dx− 1

1− γ

∫
Ω

ρ(x)|u|1−γdx

=
1
p
M̂(‖u‖p)− λ

p∗

∫
Ω

|u|p
∗
dx

− 1
1− γ

[
M(‖u‖p)‖u‖p − λ

∫
Ω

|u|p
∗
dx
]

=
1
p
M̂(‖u‖p)− 1

1− γ
M(‖u‖p)‖u‖p − λ

( 1
p∗
− 1

1− γ

)∫
Ω

|u|p
∗
dx

= −a(p+ γ − 1)‖u‖p

p(1− γ)
− b[p(m+ 1) + γ − 1]‖u‖p(m+1)

p(m+ 1)(1− γ)

− λ
( 1
p∗
− 1

1− γ

)∫
Ω

|u|p
∗
dx
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< − 1
p(m+ 1)(1− γ)

[
a(p+ γ − 1)‖u‖p + b[p(m+ 1) + γ − 1]‖u‖p(m+1)

]
− λ
( 1
p∗
− 1

1− γ

)∫
Ω

|u|p
∗
dx

<
1

p(m+ 1)(1− γ)
λ(p∗ + γ − 1)

∫
Ω

|u|p
∗
dx− λ

( 1
p∗
− 1

1− γ

)∫
Ω

|u|p
∗
dx

= λ
[ p∗ + γ − 1
p(m+ 1)(1− γ)

− 1
p∗

+
1

1− γ

] ∫
Ω

|u|p
∗
dx

= λ(p∗ + γ − 1)
[ 1
p(m+ 1)(1− γ)

+
1

p∗(1− γ)

] ∫
Ω

|u|p
∗
dx.

One can see c− = infu∈Λ− Iλ(u) < 1
N (aS)N/p if we choose λ < λ̃5, where λ̃5 satisfies

λ̃5(p∗ + γ − 1)
[ 1
p(m+ 1)(1− γ)

+
1

p∗(1− γ)

] ∫
Ω

|u|p
∗
dx <

1
N

(aS)N/p.

Now, we show that u2 ∈ Λ−. Since Λ− is closed and vk ⇀ u2 in X, we only need
to prove ‖vk‖ → ‖u2‖. Similar to the proof of the existence of u1, we assume that

|∇vk|p ⇀ µ, |vk|p
∗
⇀ η,

η = |u2|p
∗

+
∑
j∈J

ηjδxj , µ ≥ |∇u2|p +
∑
j∈J

µjδxj ,

where η and µ are non-negative bounded measures on Ω, and numbers µj > 0 and
ηj > 0 satisfy µj ≥ Sηp/p

∗

j . So we have∫
Ω

|∇vk|pdx→
∫

Ω

dµ < +∞ (2.6)

and ∫
Ω

|vk|p
∗
dx→

∫
Ω

dη < +∞.

Choose ψ ∈ C∞0 (RN ) with 0 ≤ ψ ≤ 1, and take ψ = 1 if |x| < 1 and ψ = 0 if
|x| ≥ 2 and ‖∇ψ‖∞ ≤ 2.

We fix ε > 0 and j ∈ J and set

ψε,j = ψ
(x− xj

ε

)
.

Lemma (2.8) leads to

M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇ϕdx− λ
∫

Ω

vp
∗−1
k ϕdx−

∫
Ω

ρ(x)v−γk ϕdx = ok(1)

as k →∞, for all ϕ ∈W 1,p
0 (Ω). Since ψε,jvk ∈W 1,p

0 (Ω), we have

M(‖vk‖p)
∫

Ω

|∇vk|p−2∇vk · ∇(ψε,jvk)dx

− λ
∫

Ω

vp
∗−1
k (ψε,jvk)dx−

∫
Ω

ρ(x)v−γk (ψε,jvk)dx = ok(1).
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A direct calculation gives

M(‖vk‖p)
∫

Ω

|∇vk|pψε,jdx

= −M(‖vk‖p)
∫

Ω

|∇vk|p−2vk(∇vk · ∇ψε,j)dx

+ λ

∫
Ω

vp
∗

k ψε,jdx+
∫

Ω

ρ(x)v1−γ
k ψε,jdx+ ok(1).

(2.7)

From (2.6) and (A1), we obtain

lim
k→∞

supM(‖vk‖p) < +∞.

By Hölder’s inequality,

lim
k→∞

sup |M(‖vk‖p)
∫
B(xj ,2ε)

|∇vk|p−2vk(∇vk · ∇ψε,j)dx|

≤ lim
k→∞

C4

∫
B(xj ,2ε)

|∇vk|p−1|vk∇ψε,j |dx

≤ lim
k→∞

C4

(∫
B(xj ,2ε)

|∇vk|pdx
) p−1

p
(∫

B(xj ,2ε)

|vk∇ψε,j |pdx
)1/p

≤ C5

(∫
B(xj ,2ε)

|u2|p
∗
dx
)1/p∗(∫

B(xj ,2ε)

|∇ψε,j |Ndx
)1/N

≤ C6(
∫
B(xj ,2ε)

|u2|p
∗
dx)1/p∗ .

As k →∞, from (2.7) it follows that

a

∫
B(xj ,2ε)

ψε,jdµ

≤M(‖vk‖p)
∫
B(xj ,2ε)

ψε,jdµ

≤ C6(
∫
B(xj ,2ε)

|u2|p
∗
dx)1/p∗ + λ

∫
B(xj ,2ε)

ψε,jdη +
∫
B(xj ,2ε)

ρ(x)(u2)1−γψε,jdx.

Letting ε→ 0, we have aµj ≤ ληj and ληj ≥ aSηp/p
∗

j . So, ηj = 0 or ηj ≥ (aSλ )N/p.
Next, we show that ηj ≥ (aSλ )N/p is impossible. By contradiction, we suppose

that there exists some j0 satisfying ηj0 ≥ (aSλ )N/p. Then

c− = lim
k→∞

Iλ(vk)

= lim
k→∞

{
Iλ(vk)− 1

p(m+ 1)

[
M(‖vk‖p)‖vk‖p − λ

∫
Ω

|vk|p
∗
dx

−
∫

Ω

ρ(x)|vk|1−γdx
]}

= lim
k→∞

{
a
[1
p
− 1
p(m+ 1)

]
‖vk‖p + λ

[ 1
p(m+ 1)

− 1
p∗
] ∫

Ω

|vk|p
∗
dx

+
[ 1
p(m+ 1)

− 1
1− γ

] ∫
Ω

ρ(x)|vk|1−γdx
}



EJDE-2017/84 p-KIRCHHOFF EQUATION 13

≥ a
[1
p
− 1
p(m+ 1)

] ∫
Ω

|∇u2|pdx+ a
[1
p
− 1
p(m+ 1)

]∑
j∈J

µj

+ λ
[ 1
p(m+ 1)

− 1
p∗
] ∫

Ω

|u2|p
∗
dx+ λ

[ 1
p(m+ 1)

− 1
p∗
]∑
j∈J

ηj

+
[ 1
p(m+ 1)

− 1
1− γ

] ∫
Ω

ρ(x)|u2|1−γdx

> a
[1
p
− 1
p(m+ 1)

]
S
(aS
λ

)N/p∗ + λ
[ 1
p(m+ 1)

− 1
p∗
](aS

λ

)N/p
+ λ
[ 1
p(m+ 1)

− 1
p∗
]
‖u2‖p

∗

p∗ +
[ 1
p(m+ 1)

− 1
1− γ

]
C0‖ρ‖p‖u2‖1−γp∗

=
1
N

(aS)N/pλ1−Np + λ
[ 1
p(m+ 1)

− 1
p∗
]
‖u2‖p

∗

p∗

+
[ 1
p(m+ 1)

− 1
1− γ

]
C0‖ρ‖p‖u2‖1−γp∗

>
1
N

(aS)N/p.

Take ˜̃λ5 > 0 such that the last inequality holds for λ < ˜̃λ5. This yields a contra-

diction with the fact c− < 1
N (aS)N/p. Consequently, choosing λ5 = min{λ̃5,

˜̃
λ5},

we find ηj = 0, |vk|p
∗
⇀ η = |u2|p∗ , and u2 ∈ Λ− for all λ ∈ (0, λ5). �

3. Proof of Theorem 1.1

Let λ∗ = min{λi} (i = 1, 2, 3, 4, 5). It is easy to see that Lemmas 2.1-2.9 hold
for all λ ∈ (0, λ∗). We only need to prove that u1 is a weak positive solution of
(1.1) and u2 > 0 in Ω.

From Lemma 2.2, we see that

min
t∈R

Iλ(u1 + tϕ) = Iλ(u1 + tϕ)|t=0 = Iλ(u1), ∀ϕ ∈W 1,p
0 (Ω).

This implies that

M(‖u1‖p)
∫

Ω

|∇u1|p−2∇u1 · ∇ϕdx− λ
∫

Ω

(u1)p
∗−1ϕdx−

∫
Ω

ρ(x)(u1)−γϕdx = 0,

for all ϕ ∈W 1,p
0 (Ω). Thus, u1 is a weak solution of (1.1).

Since u1 ≥ 0 for any ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0 and t > 0, we have

0 ≤ Iλ
(
u1 + tϕ

)
− Iλ

(
u1
)

=
1
p
M̂
(
‖u1 + tϕ‖p

)
− 1
p
M̂
(
‖u1‖p

)
+

λ

p∗

[ ∫
Ω

|u1|p
∗
dx−

∫
Ω

|u1 + tϕ|p
∗
dx
]

+
1

1− γ

[ ∫
Ω

ρ(x)|u1|1−γdx−
∫

Ω

ρ(x)|u1 + tϕ|1−γdx
]

≤ 1
p
M̂
(
‖u1 + tϕ‖p

)
− 1
p
M̂
(
‖u1‖p

)
.

That is,
1
p
M̂
(
‖u1 + tϕ‖p)− 1

p
M̂(‖u1‖p

)
≥ 0 ∀ϕ ∈W 1,p

0 (Ω) and all ϕ ≥ 0.
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Dividing by t > 0 and letting t→ 0 yields

M(‖u1‖p)
∫

Ω

|∇u1|p−2∇u1 · ∇ϕdx ≥ 0.

This implies that u1 ∈W 1,p
0 (Ω) and

−M(‖u1‖p)∆pu ≥ 0 in Ω.

By the strong maximum principle, we deduce that u1 > 0 in Ω. From Lemmas
2.8 and 2.9, we see that the solution u2 is the minimizer of Iλ in Λ−. Then, one
can see that u2 > 0 in Ω by the same arguments as the proof of positivity of u1.
Consequently, the proof of Theorem 1.1 is complete.
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