Nadia Mezouar, Mama Abdelli, Amira Rachah
Abstract:
In this article we consider a nonlinear viscoelastic Petrovsky equation
in a bounded domain with a delay term in the weakly nonlinear internal feedback:
We prove the existence of global solutions in suitable Sobolev spaces by
using the energy method combined with Faedo-Galarkin method under condition
on the weight of the delay term in the feedback and the weight
of the term without delay. Furthermore, we study general stability
estimates by using some properties of convex functions.
Submitted February 1, 2017. Published February 27, 2017.
Math Subject Classifications: 35A01, 74G25, 35B35, 35B25, 26A51.
Key Words: Global solution; delay term; general decay; multiplier method;
weak frictional damping; convexity; viscoelastic Petrovsky equation.
Show me the PDF file (331 KB), TEX file for this article.
Nadia Mezouar Laboratoire of Mathematics Djillali Liabes University P.O. Box 89, Sidi Bel Abbes 22000, Algeria email: nadia_dz12@yahoo.fr | |
Mama Abdelli Laboratoire of Mathematics Djillali Liabes University P.O. Box 89, Sidi Bel Abbes 22000, Algeria email: abdelli_mama@yahoo.fr | |
Amira Rachah Laboratoire de Mathématiques pour l'Industrie et la Physique Institut de Mathématiques de Toulouse Université Paul Sabatier F-31062 Toulouse Cedex 9, France email: amira.rachah@math.univ-toulouse.fr |
Return to the EJDE web page