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SPECTRAL PROPERTIES OF A FOURTH-ORDER EIGENVALUE
PROBLEM WITH SPECTRAL PARAMETER IN THE

BOUNDARY CONDITIONS

ZIYATKHAN S. ALIYEV, FAIQ M. NAMAZOV

Abstract. In this article we consider eigenvalue problems for fourth-order

ordinary differential equation with spectral parameter in boundary conditions.
We study the location of eigenvalues on the real axis, find the multiplicities of

eigenvalues, investigate the oscillation properties of eigenfunctions, and the ba-

sis properties in the space Lp, 1 < p <∞, of the subsystems of eigenfunctions
of this problem.

1. Introduction

We consider the eigenvalue problem

y(4)(x)− (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

y′′(0) = y′′(1) = 0, (1.2)

Ty(0)− aλy(0) = 0, (1.3)

Ty(1)− cλy(1) = 0, (1.4)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′− qy′, q(x) is positive and absolutely
continuous function on [0, 1], a, c are real constants such that a > 0, c < 0.

Problem (1.1)-(1.4) arises in the dynamical boundary-value problem describing
free bending vibrations of a homogeneous rod of constant rigidity, in cross sections
of which the longitudinal force acts, both ends of which are fixed elastically and
on these ends the servocontrol forces in acting. For more details on the physical
meaning of this problem, see [12, 25].

The study of boundary-value problems for ordinary differential operators with
spectral parameter in boundary conditions has a long history. In his Memoire [24]
Poisson solved the problem of the motion of a body suspended by the end of an
inextensible thread. Krylov [19] and Timoshenko [30] considered the problem of
the longitudinal vibrations of the rod, which is one of the most interesting exactly
solvable models. Additional information on specific physical problems leading to
the boundary-value problems for ordinary differential operators with spectral pa-
rameter in boundary conditions can be found in the books [12, 19, 25, 29, 30] and
in the papers [10, 11, 13, 15, 21, 28, 31]. Spectral problems for ordinary differential

2010 Mathematics Subject Classification. 34B05, 34B09, 34B24.
Key words and phrases. Bending vibrations of a homogeneous rod; fourth order ODE;

oscillation properties of eigenfunctions; basis properties of eigenfunctions.
c©2017 Texas State University.

Submitted August 29, 2017. Published December 14, 2017.

1



2 Z. S. ALIYEV, F. M. NAMAZOV EJDE-2017/307

operators with spectral parameter in the boundary conditions have been considered
in various formulations by many authors [1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17,
18, 20, 21, 22, 23, 24, 26, 27, 28, 31]. In [3, 5, 13, 14, 15, 18, 20, 23, 26, 27, 31] the
authors studied the basis property in various function spaces of the root functions
systems of the Sturm-Liouville problem with spectral parameter in the boundary
conditions. The basis properties of subsystems of root functions in the space Lp,
1 < p < ∞, of the boundary-value problems for fourth order ordinary differential
equations with spectral parameter in one of the boundary conditions are studied in
[1, 2, 6, 17].

In the recent paper [4] the basis properties of eigenfunctions of a fourth-order
eigenvalue problem with spectral parameter entering in two of the boundary condi-
tions at the point x = 1 are studied. In this paper, are found sufficient conditions
for the subsystems of eigenfunctions of this problem to form a basis in the space
Lp(0, 1), 1 < p <∞.

The purpose of the present paper is to study the basis property of the subsystems
of eigenfunctions of boundary-value problem (1.1)-(1.4) in Lp(0, 1), 1 < p <∞.

This article has the following structure. Some statements necessary in the se-
quel are given in Section 2. In Section 3 we investigate the main properties of
solution of problem (1.1)-(1.3) which play an essential role in the study of the oscil-
latory properties of eigenfunctions of (1.1)-(1.4). In Section 4 we give an operator
interpretation of boundary-value problem (1.1)-(1.4), where we associate with the
problem a self-adjoint operator in the Hilbert space L2(0, 1)⊕C2, and provide some
spectral properties of the corresponding operator. Here we study the structure of
root subspaces, the location of eigenvalues on the real axis and the oscillation prop-
erties of eigenfunctions of problem (1.1)-(1.4). We show that the eigenvalues of
boundary-value problem (1.1)-(1.4) are nonnegative, simple and they form an in-
finitely increasing sequence. In Section 5 we obtain sufficient conditions for the
subsystems of eigenfunctions of (1.1)-(1.4) to form a basis in the space Lp(0, 1),
1 < p < ∞. More precisely, we prove that the system of eigenfunctions of this
problem after removing two eigenfunctions corresponding to eigenvalues with num-
bers of different parity forms a basis in the space Lp(0, 1), 1 < p <∞, which is an
unconditional basis for p = 2.

2. Preliminaries

To study the spectral properties of problem (1.1)-(1.4), we will need the following
statements.

Lemma 2.1 ([8, Lemma 2.1]). Let y(x, λ) be a nontrivial solution of equation (1.1)
for λ > 0. If y, y′, y′′, T y are nonnegative and not all equal zero at x0 ∈ (0, 1),
then they are positive for x ∈ (x0, 1]. If y,−y′, y′′,−Ty are nonnegative and not all
equal zero at x0 ∈ (0, 1), then they are positive for x ∈ [0, x0).

Lemma 2.2 ([8, Lemma 2.2]). Let y(x, λ) be a nontrivial solution of problem (1.1),
(1.2) for λ > 0. If y(x0, λ) = 0 or y′′(x0, λ) = 0, then y′(x, λ)Ty(x, λ) < 0
in a some neighborhood of x0 ∈ (0, 1); if y′(x0, λ) = 0 or Ty(x0, λ) = 0, then
y(x, λ)y′′(x, λ) < 0 in a some neighborhood of x0 ∈ (0, 1).

Consider the boundary condition

y(0) cosβ + Ty(0) sinβ = 0, (2.1)



EJDE-2017/307 FOURTH-ORDER EIGENVALUE PROBLEM 3

y(1) cos δ − Ty(1) sin δ = 0, (2.2)

where β, δ ∈ [0, π2 ].
Alongside boundary-value problem (1.1)-(1.4) we shall consider the spectral

problem (1.1), (1.2), (2.1), (2.2) and (1.1), (1.2), (2.1), (1.4). The spectral proper-
ties of problem (1.1), (1.2), (2.1), (2.2) have been investigated in [8], and of problem
(1.1), (1.2), (2.1), (1.4) have been investigated in [2, 6, 17].

Theorem 2.3 ([8, Thms. 5.4 and 5.5]). The eigenvalues of boundary-value problem
(1.1), (1.2), (2.1), (2.2) are real, simple and form an infinitely increasing sequence
{λk(β, δ)}∞k=1 such that λ1(β, δ) > 0 for β+δ < π and λ1

(
π
2 ,

π
2

)
= 0. Moreover, the

eigenfunction u
(β, δ)
k (x) corresponding to the eigenvalue λk(β, δ) has k − 1 simple

zeros in the interval (0, 1).

Theorem 2.4 ([17, Thm. 2.2]). The eigenvalues of boundary-value problem (1.1),
(1.2), (2.1), (1.4) are real, simple and form an infinitely increasing sequence
{λ̃k(β)}∞k=1 such that λ̃1(β) > 0 for β < π/2 and λ̃1(π/2) = 0. Moreover, the
eigenfunction ũ

(β)
k (x) corresponding to the eigenvalue λ̃k(β) has k− 1 simple zeros

in the interval (0, 1).

Remark 2.5. By making the change of variables x′ = 1 − x and applying the
conclusion of the Theorem 2.4 we have: the eigenvalues of problem (1.1)-(1.3),
(2.2), are real, simple and form an infinitely increasing sequence {λk(δ)}∞k=1 such
that λ1(δ) > 0 for δ ∈ [0, π/2) and λ1(π/2) = 0; moreover, the eigenfunction u(δ)

k (x)
corresponding to the eigenvalue λk(δ) has k − 1 simple zeros in the interval (0, 1).

3. Properties of solution to (1.1)-(1.3)

Theorem 3.1. For each fixed λ ∈ C there exists a nontrivial solutions y(x, λ) of
problem (1.1)-(1.3), which is unique up to a constant coefficient. Moreover, the
function y(x, λ) for each fixed x ∈ [0, 1] is an entire function of λ.

The proof of this theorem is similar to that of [16, Lemma 2] with the use of
Lemma 2.1.

Remark 3.2. Since any solution y(x, λ) of problem (1.1)-(1.3) has a representation
y(x, λ) = u(x, λ) + iv(x, λ), where the functions u(x, λ) and v(x, λ) are real valued,
and the coefficients q(x) and a are real, it follows that the functions u(x, λ) and
v(x, λ) are solutions of problem (1.1)-(1.3) for λ ∈ R. If u(x, λ) is a nontrivial
solution of (1.1)-(1.3), then u(0, λ) 6= 0 for λ > 0 and u(1, λ) 6= 0 for λ ≤ 0. Indeed,
if u(0, λ) = 0 for λ > 0, then it follows from (1.2)-(1.3) that u(0, λ) = u′′(0, λ) =
Tu(0, λ) = 0 for λ > 0. Hence u′(0, λ) 6= 0 for λ > 0 and it follows by continuity
that u′(x, λ) 6= 0 in an open interval (0, a) for some a ∈ (0, 1). We can assume
without loss of generality that u′(x, λ) > 0 for x ∈ (0, a). Then u(x, λ) > 0 for
x ∈ (0, a). Since λ > 0 it follows by (1.1) that (Tu(x, λ))′ > 0 for x ∈ (0, a), so that
Tu(x, λ) > 0 in (0, a). In view of the equality Tu(x, λ) = u′′′(x, λ) − q(x)u′(x, λ)
we obtain that u′′′(x, λ) > q(x)u′(x, λ) > 0 for x ∈ (0, a). Hence u′′(x, λ) > 0 in
(0, a). Then the first statement of Lemma 2.1 implies that u′′(1, λ) > 0. But the
boundary condition (1.2) implies that u′′(1, λ) = 0, a contradiction. If u(1, λ) = 0
for λ ≤ 0, then the function u(x, λ) solves the problem (1.1)-(1.3), (2.2) for δ = 0
which contradicts the condition λ ≤ 0 in view of Remark 2.5.
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Now let y(x, λ) be a solution of problem (1.1)-(1.3), normalized for example by
the condition

y(0, λ) = 1, (3.1)
if λ > 0, and by

y(1, λ) = 1, (3.2)
if λ ≤ 0. If λ > 0 (λ ≤ 0), then it follows from representation w(x, λ) = u(x, λ) +
iv(x, λ) that u(0, λ) = 1 and v(0, λ) = 0 (u(1, λ) = 1 and v(1, λ) = 0). Hence the
above reasoning we see that v(x, λ) ≡ 0 for λ ∈ R, i.e. y(x, λ) = u(x, λ) for λ ∈ R.
Therefore, the solution y(x, λ) of (1.1)-(1.3), (3.1) for λ > 0 and of (1.1)-(1.3), (3.2)
for λ ≤ 0 is a real valued for λ ∈ R.

In the sequel we assume that the function y(x, λ), x ∈ [0, 1], λ ∈ C, is a solution
of problem (1.1)-(1.3), (3.1) for λ > 0 and of problem (1.1)-(1.3), (3.2) for λ ≤ 0.
Consider the equation

y(x, λ) = 0,
for x ∈ [0, 1] and λ ∈ R. The zeros of this equation are functions of λ.

Lemma 3.3. Let λ ∈ R. Then every zero x(λ) ∈ (0, 1] of the function y(x, λ) is
simple and is a C1 function of λ.

Proof. Let x0 ∈ (0, 1] and λ0 > 0 such that y(x0, λ0) = y′(x0, λ0) = 0. If x0 ∈
(0, 1) and y′′(x0, λ0) Ty(x0, λ0) ≥ 0, then the first statement of Lemma 2.1 implies
that y′′(1, λ0) > 0. This is in contradiction with the condition y′′(1, λ0) = 0. If
x0 ∈ (0, 1) and y′′(x0, λ0)Ty(x0, λ0) < 0, then the second part of the same lemma
yield a contradiction with the boundary condition y′′(0, λ0) = 0. If x0 = 1, then by
(1.2) we have y(1, λ0) = y′(1, λ0) = y′′(1, λ0) = 0. Let b ∈ (0, 1) be the fixed point
such that y′′(x, λ0) 6= 0 for x ∈ (b, 1). We can assume without loss of generality
that y′′(x, λ0) > 0 for x ∈ (b, 1). Then y′(x, λ0) < 0, y(x, λ0) > 0 for x ∈ (b, 1) and
Ty(1, λ0) = y′′′(1, λ0) < 0. Since λ0 > 0 it follows by (1.1) that (Ty(x, λ0))′ > 0
for x ∈ (b, 1), so that Ty(x, λ0) < 0 for x ∈ (b, 1). Hence the second statement of
Lemma 2.1 implies that y′′(0, λ0) > 0 which contradicts the condition y′′(0, λ0) = 0.

Now let x0 ∈ (0, 1] and λ0 ≤ 0 such that y(x0, λ0) = y′(x0, λ0) = 0. Then λ0 is a
nonpositive eigenvalue of the problem defined on [0, x0] and determined by equation
(1.1) with the boundary conditions y′′(0) = 0, (1.3) and y(x0) = y′(x0) = 0. By
Remark 2.5 all the eigenvalues of this problem are positive, contradiction.

The smoothness of the function x(λ) follows from the implicit function theorem.
The proof of this lemma is complete. �

From the continuity of the zeros of y(x, λ) as functions of λ, together with Re-
mark 3.2 (see (3.1), (3.2)), it follows an important corollary.

Corollary 3.4. As λ > 0 (λ ≤ 0) varies the function y(x, λ) can lose or gain zeros
only by these zeros leaving or entering the interval [0, 1] through its endpoint x = 1
(x = 0).

We consider the function

F (x, λ) =
y(x, λ)
Ty(x, λ)

.

It follows by Lemmas 2.2, 3.3 and Remark 2.5 that the function H(x, λ) is a finite
order meromorphic function of λ for all finite λ and fixed x ∈ (0, 1].

Let Mk = (λk−1(0), λk(0)), k ∈ N, where λ0(0) = −∞.
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Obviously, the eigenvalues λk(0) and λk(π/2) k ∈ N, of problem (1.1)-(1.3),
(2.2) for δ = 0 and δ = π/2 are zeros of the entire functions y(1, λ) and Ty(1, λ),
respectively. We note that the function

G(λ) =
1

F (1, λ)
=
Ty(1, λ)
y(1, λ)

is defined for
λ ∈M ≡

(
∪∞k=1Mk

)
∪ (C\R),

and is a meromorphic function of finite order, λk(π/2) and λk(0), k ∈ N, are the
zeros and poles of this function, respectively.

Lemma 3.5. For each λ ∈M the following relation holds

dG(λ)
dλ

=
1

y2(1, λ)

{∫ 1

0

y2(x, λ)dx+ ay2(0, λ)
}
. (3.3)

Proof. By (1.1) we have

(Ty(x, µ))′ y(x, λ)− (Ty(x, λ))′ y(x, µ) = (µ− λ) y(x, µ)y(x, λ).

Integrating this relation from 0 to 1, using the formula for the integration by parts
and taking into account boundary conditions (1.2) and (1.3) we obtain

y(1, λ)Ty(1, µ)− y(1, µ)Ty(1, λ)

= (µ− λ)
{∫ 1

0

y(x, µ)y(x, λ) dx+ ay(0, µ)y(0, λ)
} (3.4)

In view of (3.4) for λ, µ ∈Mk, k ∈ N, we have

Ty(1, µ)
y(1, µ)

− Ty(1, λ)
y(1, λ)

= (µ− λ)

∫ 1

0
y(x, µ)y(x, λ)dx+ ay(0, µ)y(0, λ)

y(1, µ)y(1, λ)
(3.5)

Dividing both sides of relation (3.5) by µ − λ (µ 6= λ) and passing to the limit as
µ→ λ we obtain (3.3). The proof of this lemma is complete. �

It follows from (3.3) that

∂F (1, λ)
∂λ

= −
∫ 1

0
y2(x, λ)dx+ ay2(0, λ)

(Ty(1, λ))2
< 0. (3.6)

Lemma 3.6. It holds
lim

λ→−∞
G(λ) = −∞. (3.7)

The proof of this Lemma is similar to that of [4, Lemma 3.4]; we omit it.

Remark 3.7. It follows from the relation Ty(1, λ1(π/2)) = 0 that G(0) = 0.

Remark 3.8. By Remarks 2.5 and 3.7, and Lemmas 3.5 and 3.6, we have

0 = λ1

(π
2

)
< λ1(0) < λ2

(π
2

)
< λ2(0) < . . . . (3.8)

Lemma 3.9. Let x0 ∈ (0, 1] and λ0 > 0 such that y(x0, λ0) = 0. Then

∂F (x0, λ0)
∂x

< 0.
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Proof. Let x0 ∈ (0, 1] and λ0 > 0 such that y(x0, λ0) = 0. If x0 ∈ (0, 1), then it
follows from Lemma 2.2 that Ty(x0, λ0) 6= 0. The same relation Ty(x0, λ0) 6= 0
follows from (3.8) in the case x0 = 1. Hence we obtain

∂F (x0, λ)

∂x
=
y′(x0, λ0)Ty(x0, λ0)− y(x0, λ0)(Ty)′(x0, λ0)

(Ty (x0, λ0))2
=

y′(x0, λ0)
Ty (x0, λ0)

< 0.

The proof of Lemma 3.9 is complete. �

Lemma 3.10. Let 0 < µ < ν and y(x, µ) has m zeros in the interval (0, 1). Then
y(x, ν) has at least m zeros in (0, 1).

The proof of the above lemma is similar to that of [4, Lemma 3.6], using formula
(3.6) and Lemma 3.9.

Let m(λ) be the number of zeros of the function y(x, λ) in the interval (0, 1).
Then it follows from Remark 2.5 that

m(λk(0)) = k − 1, k ∈ N. (3.9)

As an immediate consequence of Lemmas 3.3, 3.10, Corollary 3.4 and relations
(3.8), (3.9), we obtain the following result.

Lemma 3.11. If λ ∈ (λk−1(0), λk(0)] ∩ (0,+∞), then m(λ) = k − 1.

4. Oscillatory properties of eigenfunctions of (1.1)-(1.4)

Problem (1.1)-(1.4) can be reduced to the eigenvalue problem for the linear
operator L in the Hilbert space H = L2(0, 1)⊕ C2 with inner product

(û, v̂) = ({y,m, n}, {v, s, t}) =
∫ 1

0

y(x)v(x) dx+ |a|−1ms̄+ |c|−1nt̄, (4.1)

where
Lŷ = L{y,m, n} = {(Ty(x))′ , T y(0), T y(1)}

with the domain

D(L) =
{
{y(x), m, n} : y ∈W 4

2 (0, 1), (Ty(x))′ ∈ L2(0, 1),

y′′(0) = y′′(1) = 0, m = ay(0), n = cy(1)
}

dense everywhere in H [27]. It is obvious that the operator L is well defined in H
and the eigenvalue problem (1.1)-(1.4) becomes

Lŷ = λŷ, ŷ ∈ D(L), (4.2)

i.e., the eigenvalues λk, k ∈ N, of problem (1.1)-(1.4) and those of the operator L
coincide; moreover, between the eigenfunctions, there is a one-to-one correspon-
dence

yk(x)↔ {yk(x),mk, nk},mk = ayk(0), nk = cyk(1).
Problem (1.1)-(1.4) is strongly regular in the sense of [27]; in particular, this prob-
lem has discrete spectrum.

Theorem 4.1. L is a self-adjoint operator in H. The system of eigenvectors
{yk(x),mk, nk} of the operator L forms a unconditional basis (Riesz basis after
normalization) in the space H.

The proof of this theorem is similar to that of [4, Theorem 5.1]; we omit it.
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Remark 4.2. It follows from Theorem 4.1 that the eigenvalues of problem (1.1)-
(1.4) are real. Moreover, by (4.2) we have

(Lŷ(λ), ŷ(λ)) = λ(ŷ(λ), ŷ(λ)),

where ŷ(λ) = {y(x, λ), ay(0, λ), cy(1, λ)}, which implies by (4.1) that∫ 1

0

{y′′2(x, λ) + q(x)y′2(x, λ)} dx

= λ
{∫ 1

0

y2(x, λ)dx+ ay2(0, λ)− cy2(1, λ)
}
.

(4.3)

Hence all eigenvalues of problem (1.1)-(1.4) are nonnegative.

We note that the eigenvalues (with regard to multiplicities) of the problem (1.1)-
(1.4) are the roots of the equation

Ty(1, λ)− cλy(1, λ) = 0. (4.4)

Remark 4.3. Let λ be an eigenvalue of problem (1.1)-(1.4). Hence by Remark 4.2
we have λ ≥ 0. If λ = 0, then it follows from (4.3) that y(x, λ) ≡ const 6= 0, which
implies by (3.2) that y(0, 0) = 1. If λ > 0, then y(1, λ) 6= 0 by virtue of (3.8).

In turn, by Remark 4.3 each root (with regard of multiplicities) of equation (4.4)
is also a root of the equation

G(λ) = cλ . (4.5)

Lemma 4.4. The eigenvalues of boundary-value problem (1.1)-(1.4) are simple and
form a countable set without finite limit point.

Proof. The entire function occurring on the left-hand side of (4.4) does not vanish
for nonreal λ in view of Remark 4.2. Hence it is distinct from the identically zero
function and its zeros form an at most countable set without finite limit point.

Now we claim that (4.5) has only simple roots. In fact, if λ is a multiple root of
equation (4.5), then G(λ) = cλ and G′(λ) = c. Hence by Remarks 4.2 and 4.3 it
follows from (3.3) that∫ 1

0

y2(x, λ)dx+ ay2(0, λ)− cy2(1, λ) = 0,

which is impossible in view of conditions a > 0 and c < 0. The proof is complete.
�

Theorem 4.5. Boundary-value problem (1.1)-(1.4) has a sequence of eigenvalues

0 = λ1 < λ2 < · · · < λk → +∞.

The corresponding eigenfunctions yk(x), k ∈ N, have k − 1 simple zeros in (0, 1).

Proof. By relations (3.3), (3.7) and (3.8), we have

lim
λ→λk(0)−0

G(λ) = +∞, lim
λ→λk−1(0)+0

G(λ) = −∞, k ∈ N.

Hence the function G(λ) takes each value in (−∞,+∞) at a unique point in the
interval (λk−1(0), λk(0)), k ∈ N. For the function H(λ) = c λ we have H ′(λ) =
c. Since c < 0 it follows that this function is strictly decreasing in the interval
(−∞,+∞).
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It follows from the preceding considerations that in the interval (λk−1(0), λk(0)), k ∈
N, there exists a unique λ = λk such that

G(λ) = H(λ)

i.e., condition (1.4) is satisfied. Therefore, λk is an eigenvalue of boundary-value
problem (1.1)-(1.4) and yk(x) = y(x, λk) is the corresponding eigenfunction.

By Remark 3.7 it follows from the preceding considerations that λ1 = λ1

(
π
2

)
= 0

and λk > λ1

(
π
2

)
for k ≥ 2. Consequently, by Remark 2.5, we have λk > 0 for k > 2.

Hence it follows by Lemma 3.11 and Remark 4.3 that m(λk) = k− 1. The proof is
complete. �

It follows from [17, (3.1)–(3.4)] that

4
√
λk(0, 0) = kπ +O

(1
k

)
, (4.6)

u
(0,0)
k (x) = sin kπx+O

(1
k

)
, (4.7)

4
√
λk(0) = (k − 1)π +O

(1
k

)
, (4.8)

u
(0)
k (x) = sin(k − 1)πx+O

(1
k

)
, (4.9)

where relations (4.7) and (4.9) hold uniformly for x ∈ [0, 1].

Theorem 4.6. The following asymptotic formulas hold:
4
√
λk = (k − 2)π +O(1/k), (4.10)

yk(x) = sin(k − 2)πx+O(1/k) (4.11)

where relation (4.11) holds uniformly for x ∈ [0, 1].

The proof of the above theorem is similar to that of [17, Theorem 3.1] using
Theorem 4.5. We omit the proof here.

5. Basis property in Lp(0, 1) , 1 < p <∞, of the eigenfunctions of
(1.1)-(1.4)

Let
δk = (ŷk, ŷk) . (5.1)

Then by conditions a > 0, c < 0 and (4.1) it follows from (5.1) that

δk = ‖yk‖2L2
+ a−1m2

k − c−1n2
k > 0. (5.2)

Hence, the system of eigenvectors {v̂k}∞k=1, v̂k = δ
−1/2
k ŷk, of operator L forms an

orthonormal basis (i.e. Riesz basis) in H.
Let r and l (r 6= l) be arbitrary fixed natural numbers and

∆̃r, l =

∣∣∣∣∣aδ−1/2
r yr(0) aδ

−1/2
1 y1(0)

cδ
−1/2
r yr(1) cδ

−1/2
1 y1(1)

∣∣∣∣∣ = acδ−1
r δ−1

1

∣∣∣∣yr(0) y1(0)
yr(1) y1(1)

∣∣∣∣ , (5.3)

∆r, l =
∣∣∣∣yr(0) y1(0)
yr(1) y1(1)

∣∣∣∣ . (5.4)

By (5.2) it follows from (5.3) and (5.4) that

∆̃r, l 6= 0 ⇔ ∆r, l 6= 0. (5.5)
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Theorem 5.1. Let r and l (r 6= l) be arbitrary fixed natural numbers. If ∆r, l 6= 0,
then the system of eigenfunctions {yk(x)}∞k=1, k 6=r, l of problem (1.1)-(1.4) forms a
basis in the space Lp(0, 1), 1 < p <∞, which is an unconditional basis for p = 2; if
∆r, l = 0, then this system is incomplete and nonminimal in the space L2(0, 1).

The proof of the above theorem in the case p = 2 is similar to that of [5, Theorem
4.1] using Theorem 4.1 and relation (5.5). In the case p ∈ (1,+∞)\{2} is similar
to that of [17, Theorem 5.1] using asymptotic formulas (4.6)-(4.11).

Using Theorem 5.1, we can obtain sufficient conditions for the subsystem of eigen-
functions {yk(x)}∞k=1, k 6=r,l of problem (1.1)-(1.4) to form a basis in Lp(0, 1), 1 < p <
∞.

Corollary 5.2. Let r and l (r 6= l) be arbitrary fixed natural numbers having
different parity. Then the system of eigenfunctions {yk(x)}∞k=1,k 6=r,l of problem
(1.1)-(1.4) forms a basis in the space Lp(0, 1), 1 < p <∞, which is an unconditional
basis for p = 2.

Proof. By (3.1) from (5.4) it follows that

∆r, l = yl(1)− yr(1). (5.6)

In view of (3.1) and Theorem 4.5 we have

sgn yk(1) = (−1)k+1, k ∈ N. (5.7)

Taking this equality into account, from (5.6) we obtain

∆r, l = (−1)l+1{(−1)r+l|yl(1)| − |yr(1)|}. (5.8)

Now the statement of this corollary follows from Theorem 5.1 in view of relation
(5.8). The proof is complete. �
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in the transparency of the obtained results.
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