Electron. J. Differential Equations, Vol. 2017 (2017), No. 300, pp. 1-19.

Growing sandpile problem with Dirichlet and Fourier boundary conditions

Estelle Nassouri, Stanislas Ouaro, Urbain Traore

Abstract:
In this work, we study the Prigozhin model for growing sandpile with mixed boundary conditions and an arbitrary time dependent angle of repose. On one part of the boundary the homogeneous Dirichlet boundary condition is provided, on the other one the Robin condition is used. Using the implicit Euler discretization in time, we prove the existence and uniqueness of variational solution of the model and for the numerical analysis we use a duality approach.

Submitted September 9, 2017. Published December 6, 2017.
Math Subject Classifications: 35D30, 35K86, 35R37, 35B40.
Key Words: Growing sandpile; Fourier boundary condition; nonlinear semi-group; Dirichlet boundary condition; Euler discretization in time.

Show me the PDF file (529 KB), TEX file for this article.

Estelle Nassouri
Laboratoire de Mathématiques et Informatique (LAMI)
UFR, Sciences Exactes et Appliquées
Université Ouaga I Pr Joseph Ki-Zerbo
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
email: nassouristella@yahoo.fr
Stanislas Ouaro
Laboratoire de Mathématiques et Informatique (LAMI)
UFR, Sciences Exactes et Appliquées
Université Ouaga I Pr Joseph Ki-Zerbo
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
email: ouaro@yahoo.fr, souaro@univ-ouaga.bf
Urbain Traoré
Laboratoire de Mathématiques et Informatique (LAMI)
UFR, Sciences Exactes et Appliquées
Université Ouaga I Pr Joseph Ki-Zerbo
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
email: urbain.traore@yahoo.fr

Return to the EJDE web page