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Abstract. In this article, we consider the existence and non-existence of pos-

itive solutions for the Kirchhoff type equation

−
“
a+ λM

“Z
Ω
|∇u|pdx

””
∆pu = f(u), in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω, a is a positive
constant, N ≥ 3, λ ≥ 0, 2 ≤ p < N , M and f are positive continuous functions.

Under some weak assumptions on f , we show that the above problem has at

least one positive solution when λ is small and has no nonzero solution when λ
is large. Our argument is based on iterative technique and variational methods.

1. Introduction and main results

The well-known nonlinear Kiffchhoff type equation has attracted massive atten-
tion as it stems from interesting physical problems, see [1, 10, 19]. The pioneer
research on Kirchhoff type problem belongs to Pohozaev [25] and Bernstein [3].
But only after the work of Lions [20], in which an abstract functional framework
to the equation was set, the equation received extensive attention.

In this article, we are interested in the existence of positive solutions for the
nonlinear Kirchhoff equation

−
(
a+ λM

(∫
Ω

|∇u|pdx
))

∆pu = f(u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a smooth bounded domain of RN , N ≥ 3, a > 0 is a positive constant,
λ ≥ 0 is a parameter, ∆pu = div(|∇u|p−2∇u) with 2 ≤ p < N , and M : R+ → R+

with R+ = [0,+∞). Moreover, the nonlinearity f(t) satisfies the following basic
assumptions:

(A1) f is Lipschitz continuous and limt→0+
f(t)
tp−1 = 0;

(A2) limt→+∞
f(t)
tp∗−1 = 0, where p∗ = pN

N−p ;

(A3) limt→+∞
f(t)
tp−1 = +∞.
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Since we are only interested in positive solutions, without loss of generality, we
suppose that f(t) ≡ 0 for t < 0.

Problem (1.1) has been widely researched in recent years, especially on the ex-
istence of positive solutions, multiple solutions and sign-changing solutions, see
[2, 7, 8, 16, 17, 23]. For example, Ourraoui [23] considered problem (1.1) involv-
ing critical Sobolev exponent. They got their results via the variational principle
of Ekeland. Correa et al [7] also studied problem (1.1). They established suffi-
cient conditions on M and the nonlinearity f under which (1.1) possesses positive
solutions. Later, based on the fountain theorem, Huang et al in [17] proved the
existence and multiplicity of solutions of problem (1.1) when the nonlinearity is
concave-convex.

The generalization of problem (1.1) to unbounded domain also attracted much
attention. For some interesting results, we refer to [4, 5, 9, 13, 24]. Chen, Song and
Xiu [4] studied the following general case:

M
(∫

RN
(|∇u|p + V (x)|u|p)dx

)
(−∆u+ V (x)|u|p−2u)

= f(x, u) + g(x), in RN ,
u(x)→ 0, as |x| → +∞.

(1.2)

Under different assumptions on the nonlinear term f(x, u), multiple solutions of
problem (1.2) was constructed by applying the Mountain Pass Theorem, Ekeland’s
variational principle and Krasnoselskii’s genus theory in [28]. Cheng and Dai [13]
also considered a class of generalized form of problem (1.1). They used a cut-off
function to get the bounded Palais-Smale sequences and proved the existence of a
positive solution. In addition, when M(t) = t, Chen and Zhu [5] utilized the Nehari
manifold method to study problem (1.1). They obtained that there exists at least
a positive ground state solution.

In the special case of p = 2, there are much more works than that of general
p. For example, Li et al [22] studied the existence of a positive solution to the
nonlinear Kirchhoff type problem(

a+ λ

∫
RN
|∇u|2dx+ λ

∫
RN

u2dx
)

(−∆u+ bu) = f(u), in RN . (1.3)

WhereN ≥ 3 and a, b are positive constants. Under the condition limt→+∞ f(t)/t =
+∞ and λ is sufficient small, a positive solution of problem (1.3) was obtained by
using a cut-off function and monotonicity trick. But they didn’t show whether there
still exists at least one positive solution when λ is not so small. More recently, Liu,
Liao and Tang [21] investigated problem (1.3) further. They considered two cases
where the nonlinearity respectively satisfied asymptotically linear and superlinear
conditions at the infinity. The most important is, they proved that if λ is large
enough the problem (1.3) has no nonzero solution. For more interesting results, we
refer to [11, 12, 26, 29, 30, 31] and the references therein.

In this article, motivated by the papers [13, 21, 22], we discuss the existence and
non-existence of positive solutions of problem (1.1). We adopt the method in [15],
which studied the solution for semilinear elliptic equation. More precisely, first of
all, we will use monotonicity tricks introduced in [18, 27] and iterative technique
to establish the existence of positive solutions for equation (1.1) whenever λ is
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sufficient small. Secondly, we will show that if λ is large enough, equation (1.1) has
no nonzero solution.

To state our main results clearly, we firstly introduce some Sobolev spaces and
norms. Let W 1,p

0 (Ω) be the usual Sobolev space. We denote the usual norm of
Ls(Ω) by ‖u‖s for all p ≤ s ≤ p∗. Define H := {u ∈ W 1,p

0 (Ω) : u(x) = u(|x|)},
equipped with the norm

‖u‖ =
(∫

Ω

|∇u|pdx
)1/p

, ∀u ∈ H.

It is clear that the embedding H ↪→ Ls(Ω) for p < s < p∗ is compact and continuous
for p ≤ s ≤ p∗, namely, there exists constants γs > 0 such that ‖u‖s ≤ γs‖u‖ for
p ≤ s ≤ p∗. Here and in the sequel, Ci denote positive constants, i = 1, 2, 3, . . . .
The following theorem is the first main result in the paper.

Theorem 1.1. Assume that Ω is convex and λ ≥ 0 is a parameter. If the conditions
(A1)–(A3) hold. Then for any positive continuous function M , there exists λ0 such
that for any λ ∈ [0, λ0), problem (1.1) has at least one positive solution.

Remark 1.2. We note that for the special case p = 2 and λ = 0, the above result
has been established in [32] and [14] respectively. Besides, Cheng and Dai [13] also
obtained the result under the conditions (A1), (A3) and the assumption

(A4) there exist constants C > 0 and q ∈ (p, p∗) such that

|f(t)| ≤ C(|t|p−1 + |t|q−1), ∀t ∈ R+.

Evidently, the condition (A4) is stronger than our condition (A2). Thus, our
result can be regarded as an extension of these papers mentioned above.

Nevertheless, if the parameter λ > 0 is big enough, and Ω is unbounded, in
addition to the following assumptions:

(A5) there exists a τ > 0 such that M(t) = tτ with p(τ + 1)/τ < N ;
(A6) f ∈ C(R,R) and limt→0

f(t)
tp−1 = 0;

(A7) lim sup|t|→+∞
|f(t)|
tp∗−1 < +∞;

we can obtain the following results:

Theorem 1.3. Assume that Ω = RN with N ≥ 3 and λ > 0 is a parameter. If
(A5)–(A7) hold, then there exists Θ > 0 such that for any λ > Θ, problem (1.1)
has no nontrivial solution.

The main results are proved in the sections below. In Section 2, some preliminary
concepts and results are presented. In Section 3, we prove Theorems 1.1 and 1.3.

2. Preliminary results

Throughout this section, we suppose T, S > 0 and ϕ ∈ H with ‖ϕ‖ ≤ S. For
given ϕ ∈ H and θ ∈ [ 1

p , 1], we study the energy functional Φϕ,θ : H → R define by

Φϕ,θ(u) =
a

p

∫
Ω

|∇u|pdx+
λ

p
M(‖ϕ‖p)

∫
Ω

|∇u|pdx− θ
∫

Ω

F (u)dx (2.1)

for all u ∈ H, where F (u) =
∫ u

0
f(t)dt. Obviously, the functional Φϕ,θ is well

defined and Φϕ,θ ∈ C1(H,R). Further, for any u, v ∈ H, we have

〈Φ′ϕ,θ(u), v〉 = (a+ λM(‖ϕ‖p))
∫

Ω

|∇u|p−2∇u∇v dx− θ
∫

Ω

f(u)v dx. (2.2)
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In the process of our argument, we will use the following proposition.

Proposition 2.1 ([18, 27]). Let (X, ‖ · ‖X) be a Banach space and I ⊂ R+ an
interval. Consider the family of C1 functionals on X

Jµ(u) = A(u)− µB(u), µ ∈ I,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖X → +∞ and
such that Jµ(0) = 0.

For any µ ∈ I, we set

Γµ = {γ ∈ C([0, 1], X) : γ(0) = 0, Jµ(γ(1)) < 0}.

If for every µ ∈ I the set Γµ is nonempty and cµ = infγ∈Γµ maxt∈[0,1] Jµ(γ(t)) > 0,
then for almost every µ ∈ I there is a sequence {un} ⊂ X such that

(1) {un} is bounded;
(2) Jµ(un)→ cµ;
(3) J ′µ(un)→ 0 in the dual X−1 of X.

To apply Proposition 2.1, in our case, we let

Aϕ(u) =
a

p
‖u‖p +

λ

p
M(‖ϕ‖p)‖u‖p, B(u) =

∫
Ω

F (u)dx.

The following Pohožaev equality is crucial to the proof of the boundedness of
the Palais-Smale sequence.

Lemma 2.2. If u ∈ H is a critical point of Φϕ,θ, namely, u is a week solution of

− (a+ λM(‖ϕ‖p)) ∆pu = θf(u), in Ω,
u = 0, on ∂Ω,

(2.3)

then the following Pohožaev type identity holds

[a+ λM(‖ϕ‖p)]
[(N
p
− 1
)
‖u‖p +

(
1− 1

p

) ∫
∂Ω

|∇u|p(x · ν)dσ
]

= θN

∫
Ω

F (u)dx.
(2.4)

Proof. Because u ∈ H is a week solution of (2.3), by the standard regularity results,
we get that u ∈W 2,p

0 (Ω) ∩W 1,p
0 (Ω). Setting

g(u) =
θf(u)

a+ λM(‖ϕ‖p)
.

Then, it is obvious that u ∈ H is also a solution of −∆pu = g(u). Applying the
Pohožaev identity in [6], we have(

1− 1
p

) ∫
∂Ω

|∇u|p(x · ν)dσ =
(
1− N

p

) ∫
Ω

g(u)udx+N

∫
Ω

G(u)dx, (2.5)

where G(t) =
∫ t

0
g(s)ds, we obtain the conclusion. �

Lemma 2.3. If (A3) holds, then there exist λ0 = λ0(T, S) > 0 and u0 ∈ H, such
that Φϕ,θ(u0) < 0 for every λ ∈ [0, λ0).
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Proof. For given T > 0, there exists a constant λ0 = λ0(T, S), such that

λ max
τ∈[0,Sp]

M(τ) ≤ T (2.6)

whenever λ ∈ [0, λ0). Choose φ ∈ H with φ ≥ 0 and ‖φ‖ = 1. In view of (A3), we
have that for any C1 > 0 with C1 > (a + T )/

∫
Ω
|φ|pdx, there exists C2 > 0 such

that
F (t) ≥ C1|t|p − C2, t ∈ R+. (2.7)

Thus, for any λ ∈ [0, λ0), we have

Φϕ,θ(tφ) =
1
p

(a+ λM(‖ϕ‖p))
∫

Ω

|∇(tφ)|pdx− θ
∫

Ω

F (tφ)dx

≤ tp

p
(a+ T )− θ

∫
Ω

F (tφ)dx

≤ tp

p

(
a+ T − C1

∫
Ω

|φ|pdx
)

+
C2|Ω|
p

.

(2.8)

Hence, we can choose t > 0 large enough such that Φϕ,θ(tφ) < 0, the proof is
completed. �

Lemma 2.4. Under assumptions (A1) and (A2), there exists positive constants
α, β such that

Φϕ,θ(u) ≥ α, ∀u ∈ H, ‖u‖ ≤ β. (2.9)

Proof. Using (A1) and (A2), for ε ∈ (0, 1/(2γpp)), there exists a constants C3(ε) > 0
such that

F (t) ≤ ε

p
tp + C3(ε)tp

∗
, t ∈ R+. (2.10)

Furthermore, for u ∈ H, by the Sobolev embedding,

Φϕ,θ(u) =
1
p

(a+ λM(‖ϕ‖p))‖u‖p − θ
∫

Ω

F (u)dx

≥ a

p
‖u‖p −

∫
Ω

(
ε

p
|u|p + C3(ε)|u|p

∗
)dx

≥ a

2p
‖u‖p − C3(ε)γp

∗

p∗ ‖u‖p
∗
.

(2.11)

Hence, choosing

β := ‖u‖ =
( 1

2p∗C3(ε)γp
∗

p∗

) 1
p∗−p

,

one has Φϕ,θ(u) ≥ α, where α = βp( a2p −
1

2p∗ ), which is independent of ϕ and θ. �

Lemma 2.5. If (A1)–(A3) hold, then there exist λ0 = λ0(T, S) > 0 and a sequence
{θk} ⊂ I satisfying θk → 1 (as k → +∞), such that Φϕ,θk has a nontrivial critical
point uϕ,θk for λ ∈ [0, λ0).

Proof. Set I = [ 1
p , 1], from Proposition 2.1, there is {θk} ⊂ I with θk → 1 as

k → +∞, and corresponding sequence {un,ϕ,θk} ⊂ H such that

{un,ϕ,θk} is bounded and Φϕ,θk(un,ϕ,θk)→ cϕ,θk ;

Φ′ϕ,θk(un,ϕ,θk)→ 0 in H−1;
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where cϕ,θk = infγ∈Γϕ,θk
supu∈γ([0,1]) Φϕ,θk(u) and

Γϕ,θk = {γ ∈ C([0, 1], H)|γ(0) = 0,Φϕ,θk(γ(1)) < 0}.

Up to a subsequence, we can assume that there exists uϕ,θk in H such that

un,ϕ,θk ⇀ uϕ,θk , in H;

un,ϕ,θk → uϕ,θk , on Ls(Ω), ∀s ∈ (p, p∗);
un,ϕ,θk → uϕ,θk , a.e. on Ω.

(2.12)

From (A1) and (A2), for any 0 < ε < 1
p , there exists Cε > 0 such that

|f(t)| ≤ ε|t|p−1 + ε|t|p
∗−1 + Cε|t|k0−1, k0 ∈ (p, p∗). (2.13)

Then, from Hölder’s inequality, we have∣∣ ∫
Ω

f(un,ϕ,θk)(un,ϕ,θk − uϕ,θk)dx
∣∣

≤
∫

Ω

|f(un,ϕ,θk)||un,ϕ,θk − uϕ,θk |dx

≤ ε‖un,ϕ,θk‖p−1
p ‖un,ϕ,θk − uϕ,θk‖p + ε‖un,ϕ,θk‖

p∗−1
p∗ ‖un,ϕ,θk − uϕ,θk‖p∗

+ Cε‖un,ϕ,θk‖
k0−1
k0
‖un,ϕ,θk − uϕ,θk‖k0

≤ εγpp‖un,ϕ,θk‖p−1‖un,ϕ,θk − uϕ,θk‖+ εγp
∗

p∗ ‖un,ϕ,θk‖p
∗−1‖un,ϕ,θk − uϕ,θk‖

+ Cεγ
k0−1
k0
‖un,ϕ,θk‖k0−1‖un,ϕ,θk − uϕ,θk‖k0 ,

which implies that ∫
Ω

f(un,ϕ,θk)(un,ϕ,θk − uϕ,θk)dx→ 0. (2.14)

Similar to the argument above, we can also conclude that

〈Φ′ϕ,θk(uϕ,θk), un,ϕ,θk − uϕ,θk〉 → 0,∫
Ω

f(uϕ,θk)(un,ϕ,θk − uϕ,θk)dx→ 0, as n→ +∞.

From this and (2.14), one has

〈Φ′ϕ,θk(un,ϕ,θk)− Φ′ϕ,θk(uϕ,θk), un,ϕ,θk − uϕ,θk〉

= a

∫
Ω

(|∇un,ϕ,θk |p−2∇un,ϕ,θk − |∇uϕ,θk |p−2∇uϕ,θk) · ∇(un,ϕ,θk − uϕ,θk)dx

+ λM(‖ϕ‖p)
∫

Ω

(
|∇un,ϕ,θk |p−2∇un,ϕ,θk − |∇uϕ,θk |p−2∇uϕ,θk

)
· ∇(un,ϕ,θk − uϕ,θk)dx

+ θk

∫
Ω

[f(un,ϕ,θk)− f(uϕ,θk)](un,ϕ,θk − uϕ,θk)dx→ 0.

Combining this with the standard inequality in RN given by

(|ζ|p−2ζ − |η|p−2η, ζ − η) ≥

{
Cp|ζ − η|p, p ∈ [2,+∞),
Cp|ζ − η|2(|ζ|+ |η|)p−2, 1 < p < 2.

(2.15)

We have that ‖un,ϕ,θk − uϕ,θk‖ → 0, that is, un,ϕ,θk → uϕ,θk in H.
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It follows from the above discussion that there exist λ0 = λ0(T, S) > 0 and a
sequences {θk} with θk → 1 such that

Φϕ,θk(uϕ,θk) = cϕ,θk and 〈Φ′ϕ,θk(uϕ,θk), uϕ,θk〉 = 0,

if λ ∈ [0, λ0). The proof is complete. �

Lemma 2.6. Let uϕ,θk be a critical point of Φϕ,θk at level cϕ,θk . Then for S > 0
sufficiently large, there exists λ0 = λ0(T, S) such that for any λ ∈ [0, λ0), subject
to a subsequence, ‖uϕ,θk‖ ≤ S for all k ∈ N.

Proof. On the one hand, since uϕ,θk be a critical point of Φϕ,θk , then from (2.4),
uϕ,θk satisfies the following Pohožaev identity

[a+ λM(‖ϕ‖p)]
[(N
p
− 1
)
‖uϕ,θk‖p +

(
1− 1

p

) ∫
∂Ω

|∇uϕ,θk |p(x · ν)dσ
]

= θkN

∫
Ω

F (uϕ,θk)dx.
(2.16)

We assume µ1 is an eigenvalue of the operator −∆p, and let φ1 > 0, x ∈ Ω be an
eigenfunction corresponding to µ1, in view of (A3), we have that for any κ > 0 with
κ > 2µ1(a+ T ), there exists C4(κ) > 0 such that

µ1(a+ λM(‖ϕ‖p))
∫

Ω

up−1
ϕ,θk

φ1dx = θk

∫
Ω

f(uϕ,θk)φ1dx

≥ κ
∫

Ω

up−1
ϕ,θk

φ1dx− C4(κ)
(2.17)

and
∫

Ω
up−1
ϕ,θk

φ1dx ≤ C5(T ) for a constant C5(T ) > 0. Combining this with the
results in [14], there is a constant C6(T ) > 0 such that |∇uϕ,θk |p ≤ C6(T ), x ∈ ∂Ω.
Thus, by (2.16), there exists a constant C7(T ) > 0 such that(N

p
− 1
)
‖uϕ,θk‖p −

θkN

a+ λM(‖ϕ‖p)

∫
Ω

F (uϕ,θk)dx

= −
(
1− 1

p

) ∫
∂Ω

|∇uϕ,θk |p(x · ν)dσ

≥ −C7(T ).

(2.18)

On the other hand, from Lemmas 2.3 and 2.5, there is a constant C8(T ) > 0
such that

cϕ,θk = Φϕ,θk(uϕ,θk)

≤ max
t≥0

Φϕ,θk(tφ)

≤ max
t≥0

{ tp
p

(a+ T )− 1
p

∫
Ω

F (tφ)dx
}
≤ C8(T ).

(2.19)

So, one has

1
p
‖uϕ,θk‖p −

θk
a+ λM(‖ϕ‖p)

∫
Ω

F (uϕ,θk)dx =
cϕ,θk

a+ λM(‖ϕ‖p)
≤ C8(T ). (2.20)

It follows from (2.18) and (2.20) that ‖uϕ,θk‖p ≤ NC8(T ) + C7(T ). Consequently,
for given T > 0, if we take S = (NC8(T ) + C7(T ))1/p, then ‖uϕ,θk‖ ≤ S. �
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From Lemma 2.6, for any k, if ϕ = ϕ0 ≡ 0, then we know that Φϕ0,θk has a
nontrivial critical point and we denote it by u1,k with ‖u1,k‖ ≤ S. Let ϕ = u1,k,
then Φu1,k,θk has a nontrivial critical point u2,k with ‖u2,k‖ ≤ S. Therefore, by
induction, we can obtain a sequence um,k with ‖um,k‖ ≤ S, m = 1, 2, . . . .

3. Proof of the main results

Proof of Theorem 1.1. In view of un,k with ‖un,k‖ ≤ S, for all n, k ∈ N. For fixed
k, up to a subsequence, we assume that un,k ⇀ uk in H, un,k → uk on Ls(Ω) for
all s ∈ (p, p∗) and un,k(x) → uk(x) a.e. in Ω, we also have ‖uk‖ ≤ S. Then, one
has

〈Φ′un−1,k,θk
(uk), un,k − uk〉

= (a+ λM(‖un−1,k‖p))
∫

Ω

|∇uk|p−2∇uk · ∇(un,k − uk)dx

− θk
∫

Ω

f(uk)(un,k − uk)dx→ 0, as n→ +∞,

(3.1)

and

〈Φ′un−1,k,θk
(un,k)− Φ′un−1,k,θk

(uk), un,k − uk〉

= (a+ λM(‖un−1,k‖p))
∫

Ω

(
|∇un,k|p−2∇un,k − |∇uk|p−2∇uk

)
· ∇(un,k − uk)dx− θk

∫
Ω

[f(un,k)− f(uk)](un,k − uk)dx

→ 0, as n→ +∞.

(3.2)

It follows from (3.2) and (2.15) that un,k → uk as n→ +∞. And for every v ∈ H,
one has

0 = lim
n→+∞

〈Φ′un−1,k,θk
(un,k), v〉

= lim
n→+∞

[
(a+ λM(‖un−1,k‖p))

∫
Ω

|∇un,k|p−2∇un,k · ∇vdx

− θk
∫

Ω

f(un,k)vdx
]

= (a+ λM(‖uk‖p))
∫

Ω

|∇uk|p−2∇uk · ∇vdx− θk
∫

Ω

f(uk)vdx

= 〈Φ′uk,θk(uk), v〉

(3.3)

and

Φuk,θk(uk) =
1
p

(a+ λM(‖uk‖p))‖uk‖p − θk
∫

Ω

F (uk)dx

= lim
n→+∞

[1
p

(a+ λM(‖un−1,k‖p))‖un,k‖p − θk
∫

Ω

F (un,k)dx
]

= lim
n→+∞

Φun−1,k,θk(un,k).

(3.4)

From Lemma 2.4, we have Φun−1,k,θk(un,k) = cun−1,k,θk ≥ α. Hence Φ′uk,θk(uk) = 0,
and Φuk,θk(uk) ≥ α follows directly from (3.3) and (3.4).

On the other side, because of ‖uk‖ ≤ S, k ∈ N, without lose of generality, we may
suppose that uk ⇀ u in H, uk → u on Ls(Ω) for all s ∈ (p, p∗) and uk(x) → u(x)
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a.e. in Ω. Together with the boundedness of λM(‖uk‖p), we get

〈Φ′uk,θk(u), uk − u〉

= (a+ λM(‖uk‖p))
∫

Ω

|∇u|p−2∇u · ∇(uk − u)− θk
∫

Ω

f(u)(uk − u)dx

→ 0, as n→ +∞,

(3.5)

and

〈Φ′uk,θk(uk)− Φ′uk,θk(u), uk − u〉

= (a+ λM(‖uk‖p))
∫

Ω

(|∇uk|p−2∇uk − |∇u|p−2∇u) · ∇(uk − u)dx

− θk
∫

Ω

[f(uk)− f(u)](uk − u)dx.

(3.6)

From (2.15), we also get that uk → u in H as k → +∞. Therefore, ∀ ω ∈ H, one
has

0 = lim
n→+∞

〈Φ′uk,θk(uk), ω〉

= lim
n→+∞

[
(a+ λM(‖uk‖p))

∫
Ω

|∇uk|p−2∇uk · ∇ωdx− θk
∫

Ω

f(uk)ωdx
]

= (a+ λM(‖u‖p))
∫

Ω

|∇u|p−2∇u · ∇ωdx−
∫

Ω

f(u)ωdx,

(3.7)

which shows that u is a solution of (1.1). Furthermore,

1
p

(a+ λM(‖u‖p))‖u‖p −
∫

Ω

F (u)dx

= lim
k→+∞

[1
p

(a+ λM(‖uk‖p))‖uk‖p − θk
∫

Ω

F (uk)dx
]

= lim
k→+∞

Φuk,θk(uk).

(3.8)

Combining this with Φuk,θk(uk) ≥ α > 0, we know that u is nontrivial. By the
strong maximum principle, we further obtain that u is positive in Ω. Hence, the
proof is complete. �

Proof of Theorem 1.3. From (A6) and (A7), for any ε > 0, there exists Cε > 0 such
that

|f(t)| ≤ ε|t|p−1 + Cε|t|p
∗−1.

Arguing by contradiction, assume that the problem (1.1) has a nontrivial solution
u ∈ H, one has

(a+ λM(‖u‖p))‖u‖p = a‖u‖p + λ‖u‖p(τ+1) ≤ ε

p
‖u‖p + Cε‖u‖p

∗
. (3.9)
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By p(τ + 1)/τ < N , we deduce that p∗ < p(τ + 1). Choosing ε = a/2, it follows
from (3.9) and the Young inequality that

a

p
‖u‖p + λ‖u‖p(τ+1)

≤ Cε‖u‖p
∗

=
( aτ

p(τ + 1)− p∗
) p(τ+1)−p∗

pτ ‖u‖
p(τ+1)−p∗

τ

(p(τ + 1)− p∗

aτ

) p(τ+1)−p∗
pτ

× Cε‖u‖
(p∗−p)(τ+1)

τ

≤ a

p
‖u‖p +

p∗ − p
pτ

(p(τ + 1)− p∗

aτ

) p(τ+1)−p∗
p∗−p

C
pτ

p∗−p
ε ‖u‖p(τ+1).

(3.10)

Define

Θ :=
p∗ − p
pτ

(p(τ + 1)− p∗

aτ

) p(τ+1)−p∗
p∗−p

C
pτ

p∗−p
ε .

Consequently, for any λ > Θ, the problem (1.1) has no nontrivial solution. �
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