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EXISTENCE AND NON-EXISTENCE OF SOLUTIONS FOR A
SINGULAR PROBLEM WITH VARIABLE POTENTIALS
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Abstract. The purpose of this article is to prove some existence and nonex-
istence theorems for the inhomogeneous singular Dirichlet problem

−∆pu =
λk(x)

uδ
± h(x)uq .

For proving our results we use the sub and super solution method, and mono-

tonicity arguments.

1. Introduction

In this paper we are interested in the following quasilinear and singular problem
with variable potentials:

−∆pu = λk(x)u−δ ± h(x)uq in Ω,

u|∂Ω = 0, u > 0 in Ω,
(1.1)

where Ω ⊂ RN , (N ≥ 2) is a bounded domain with smooth boundary, λ is a positive
parameter, 1 < p < ∞, p− 1 < q ≤ p∗ − 1, and 0 < δ < 1. As usual, p∗ = Np

N−p if
1 < p < N , p∗ ∈ (p,∞) is arbitrarily large if p = N , and p∗ =∞ if p > N , and the
variable weight functions h, k ∈ L∞(Ω) satisfy

ess infx∈Ω k(x) > 0 and ess infx∈Ω h(x) > 0. (1.2)

Associated with problem (1.1) we have the singular functional Eλ : W 1,p
0 (Ω)→ R

defined by

Eλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

1− δ

∫
Ω

k(x)u1−δ dx± 1
q + 1

∫
Ω

h(x)uq+1 dx (1.3)

in the Sobolev space W 1,p
0 (Ω).

Definition 1.1. u ∈ W 1,p
0 (Ω) is called a weak solution (or solution, for short) of

problem (1.1), that is, for functions u ∈ W 1,p
0 (Ω) satisfying ess infK u > 0 over

every compact set K ⊂ Ω and∫
Ω

|∇u|p−2∇u · ∇φdx = λ

∫
Ω

k(x)u−δφdx±
∫

Ω

h(x)uqφ dx (1.4)
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for all φ ∈ C∞c (Ω). As usual, C∞c (Ω) denotes the space of all C∞ functions φ : Ω→
R with compact support.

Obviously, every critical point of Eλ is a weak solution of the problem (1.1).
∆pu := div(|∇u|p−2∇u), where p > 1 is a real constant is called the p−Laplacian

or the p-Laplace operator. The p-Laplacian is an elliptic partial differential equa-
tion, which is degenerate if p > 2 and singular if p < 2. If p = 2, then the
p-Laplacian reduces to the simpler classical linear Laplace equation ∆u := ∇.∇u
and in the case of one spatial dimension, we have ∆pu = (|u′|p−2u′)′.

The class of problems (1.1) appears in many nonlinear phenomena, for instance,
in the theory of quasi-regular and quasi-conformal mappings (for this see [17, 23]),
in the generalized reaction-diffusion theory [13], in the turbulent flow of a gas in a
porous medium and in the non-Newtonian fluid theory [7]. In the non-Newtonian
fluid theory, the quantity p is the characteristic of the medium. If p < 2, the fluids
are called pseudo-plastics, if p = 2, the fluids are called Newtonian, and if p > 2,
the fluids are called dilatants.

This kind of problems with convex and concave nonlinearities have been ex-
tensively studied by many authors. We refer the reader to the celebrate paper of
Ambrosetti-Brezis-Cerami [1], Saoudi [19], Santos [22] with their references therein.
For p = 2, we refer the reader to [18, 3] and references therein. The basic work
in our direction is the paper [4] where Coclite-Palmieri have been considered the
nonlinear elliptic equation containing singular term

−∆u = up + λu−γ , in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.5)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω and λ is
a positive parameter. The exponent p of the sublinear satisfies 0 < p < 1. The
exponent γ of the singular term satisfies 0 < γ < 1. In [4] has been shown that
problem (1.5) possesses at least one solution for λ > 0 small enough, and has no
solution when λ is large. We mention that in the work [4] the authors have been
extended the results of Crandall-Rabinowitz-Tartar [5].

Problem (1.5) have been also studied with different elliptic operators. We refer
the reader to [4, 5, 8, 9, 10, 11, 14, 15, 20, 21] and references therein.

The aim of this work is to extend the results obtained in [4] to the more general
problems (1.1). Precisely, the main goal of this paper is to prove some existence and
non-existence theorems for the non-linear singular elliptic problem (1.1). Firstly,
we state the following definitions.

Definition 1.2. A function u ∈W 1,p
0 (Ω) is called a weak sub-solution to (1.1)+ if

u ∈ C2(Ω) ∩ C(Ω) and

−∆pu ≤ λk(x)u−δ + h(x)uq in Ω,

u|∂Ω = 0, u > 0 in Ω,

A function u ∈W 1,p
0 (Ω) is called a weak super-solution to (1.1)+ if u ∈ C2(Ω)∩

C(Ω) and

−∆pu ≤ λk(x)u−δ + h(x)uq in Ω,

u|∂Ω = 0, u > 0 in Ω,
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Definition 1.3. A solution uλ of problem (1.1)+ is called minimal if uλ ≤ v almost
everywhere in Ω for any further solution v of problem (1.1)+.

We state below the results that we will prove.

Theorem 1.4. Assume 0 < δ < 1, p− 1 < q < p∗− 1. Then there exists a positive
number Λ∗ such that the following properties hold:

(1) For all λ ∈ (0,Λ∗) problem (1.1)+ has a minimal solution uλ.
(2) Problem (1.1)+ has a solution if λ = Λ∗;
(3) Problem (1.1)+ does not have any solution if λ > Λ∗.

Theorem 1.5. Assume 0 < δ < 1, p− 1 < q < p∗− 1. Then there exists a positive
number Λ∗ such that the following properties hold:

(1) If λ > Λ∗, then problem (1.1)− has at least one solution;
(2) If λ < Λ∗, then problem (1.1)− does not have any solution.

A comparison between our main result (Theorems 1.4 and 1.5) and some of those
the previously cited ones, is now in order: in the present paper, we extended the
main result of Giacomoni-Schindler-Takáč [11, Theorem 2.1] to a class of perturbed
singular functionals, this feature gains a remarkable importance in the applications.
Moreover, it is worth noticing that, since parameter k(x) and h(x) in problem
(1.1)±, is variable, causes that the quasilinear singular problem is investigate in a
complete form. On the other hand, the main difference between Theorems 1.4 and
1.5 above and the main result of Rǎdulescu-Repovš [18, Theorems 1.1 and 1.2] in
applications consists in different from two directions: one is the operator considered
in this work is more general than in [18], the other is with considering singular term
instead of Rǎdulescu and Repovš in [18].

2. Proof of Theorem 1.4

The proof is organized in several steps.
Step 1: Existence of minimal solution for 0 < λ < Λ∗. Let us define

Λ∗ = sup{λ > 0: (1.1)+ has a weak solution} (2.1)

and let λ1(Ω,m) ≡ λ1 be the first (principal) eigenvalue of −∆p and let Φm denote
an eigenfunction of −∆p associated to λ1 i.e., Φm solves

−∆pΦm = λ1m(x)|Φm|p−2Φm in Ω
Φm > 0 in Ω

Φm = 0 in ∂Ω.

It is well-known that Φm belongs to C1(Ω), that Φm may be chosen positive in Ω
and that |∇Φ| is positive on a neighborhood of ∂Ω.

To show the existence of a solution to the problem (1.1)+, we construct a well
ordered pair of sub-solution uλ, and a super-solution uλ, such that uλ ≤ uλ.

To find a sub-solution, we assume that m(x) = min{k(x), h(x)} and λ1 ≤ λ.

Define ψc = cΦ
p

p−1+δ
m . By a straightforward calculation, we have

∇ψc = c
( p

p− 1 + δ

)
Φ

1−δ
p−1+δ
m ∇Φm

and

−∆p(ψc)
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= −div(|∇ψc|p−2∇ψc)

=
(pc)p−1(δ − 1)(p− 1)

(p− 1 + δ)p
|∇Φm|pΦ

−δp
p−1+δ
m + λ1

( pc

p− 1 + δ

)p−1

m(x)φpmΦ
−δp
p−1+δ
m

Thus,

−∆p(ψc)

=
(pc)p−1(δ − 1)(p− 1)

(p− 1 + δ)p
|∇Φm|pΦ

−δp
p−1+δ
m + λ1m(x)

( pc

p− 1 + δ

)p−1

φpmΦ
−δp
p−1+δ
m

≤ m(x)
(( p

(p− 1 + δ)p
)p cp−1+δ(δ − 1)(p− 1)

p
|∇Φm|pψ−δc

+ λ1

( p

p− 1 + δ

)p−1

cp−1−qcqΦ
p(p−1)
p−1+δ
m

)
≤ m(x)

(( p

(p− 1 + δ)p
)p cp−1+δ(δ − 1)(p− 1)

p
|∇Φm|pψ−δc

+ λ1

( p

p− 1 + δ

)p−1

cp−1−qcqΦ
pq

p−1+δ
m

)
≤ m(x)

(( p

(p− 1 + δ)p
)p cp−1+δ(δ − 1)(p− 1)

p
|∇Φm|pψ−δc

+ λ1

( p

p− 1 + δ

)p−1

cp−1−qψqc

)
Therefore, for c > 0 small enough, we have

−∆p(ψc) ≤ m(x)
(
λψ−δc + ψqc

)
≤ λk(x)ψ−δc + h(x)ψqc

This shows that ψc is a sub-solution of the problem (1.1)+.
Let us now show that problem (1.1)+ has a super-solution. Now, we put m(x) =

max{k(x), h(x)} and λ1 ≥ λ. Define ψM = MΦ
p

p−1+δ
m for M > c large enough.

Using similar arguments as above we have

∇ψM = M
( p

p− 1 + δ

)
Φ

1−δ
p−1+δ
m ∇Φm

and

−∆p(ψM )

= −div(|∇ψM |p−2∇ψM )

=
(pM)p−1(δ − 1)(p− 1)

(p− 1 + δ)p
|∇Φm|pΦ

−δp
p−1+δ
m + λ1m(x)

( pM

p− 1 + δ

)p−1

φpmΦ
−δp
p−1+δ
m

Thus,

−∆p(ψM )

=
( pM

p− 1 + δ

)p−1

Φ
−δp
p−1+δ
m

[ (δ − 1)(p− 1)
p− 1 + δ

|∇Φm|p + λ1m(x)φpm
]

=
( pM

p− 1 + δ

)p−1

Φ
−δp
p−1+δ
m

[ (δ − 1)(p− 1)
p− 1 + δ

|∇Φm|p +
λ1m(x)

2
φpm

]
+
λ1m(x)

2

( pM

p− 1 + δ

)p−1

Φ
−δp
p−1+δ
m φpm
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=
( p

p− 1 + δ

)p−1

Mp−1+δ

[
(δ − 1)(p− 1)
p− 1 + δ

|∇Φm|p +
λ1(m)m(x)

2
φpm

]
ψ−δM

+
λ1m(x)

2

( p

p− 1 + δ

)p−1

Mp−1−qΦ
p(p−1−q)
p−1+δ

m ψqM

Therefore, for M > 0 may be chosen arbitrarily large, we have

−∆p(ψM ) ≥ m(x)
(
λψ−δM + ψqM

)
≥ λk(x)ψ−δM + h(x)ψqM

This shows that ψM is a super-solution of the problem (1.1)+. It remains to show
that ψc = uλ ≤ ψM = uλ. Therefore, for c > 0 small enough and M > 0 large
enough, we obtain

−∆p(uλ)

=
( pc

p− 1 + δ

)p−1

Φ
−δp
p−1+δ
m

[ (δ − 1)(p− 1)
p− 1 + δ

|∇Φm|p + λ1m(x)φpm
]

≤
( pM

p− 1 + δ

)p−1

Φ
−δp
p−1+δ
m

[ (δ − 1)(p− 1)
p− 1 + δ

|∇Φm|p + λ1m(x)φpm
]

= −∆p(uλ).

Consequently, we may apply the weak comparison principle (see in [11, Theorem
2.3]) in order to conclude that uλ ≤ uλ. Thus, By the classical iteration method
(1.1)+ has a solution between the sub-solution and the super-solution.

Let us now prove that uλ is a minimal weak solution of (1.1)+. We use here the
weak comparison principle (see Proposition 2.3 in Cuesta and Takáč [6]) and the
following monotone iterative scheme:

−∆pun − λk(x)u−δn = h(x)uqn−1 in Ω;

un|∂Ω = 0,
(2.2)

where u0 = uλ, according to Giacomoni, Schindler and Takáč [11], is the unique
solution to the following purely singular problem

−∆pu = λk(x)u−δ in Ω,

u|∂Ω = 0, u > 0 in Ω.

Note that u0 is a weak subsolution to (1.1)+ and u0 ≤ U where U is any weak
solution to (1.1)+. Then, from the weak comparison principle, we obtain easily
that u0 ≤ u1 and {un}∞n=1 is a nondecreasing sequence. Furthermore, un ≤ U and
{un}∞n=1 is uniformly bounded in W 1,p

0 (Ω). Hence, it is easy to prove that {un}
converges weakly in W 1,p

0 (Ω) and pointwise to uλ, a weak solution to the problem
(1.1)+. Let us show that uλ is the minimal solution to (1.1)+ for any 0 < λ < Λ∗.
Let vλ a weak solution to (1.1)+ for any 0 < λ < Λ∗. Then, u0 = uλ ≤ vλ. From
the weak comparison principle, un ≤ vλ for any n ≥ 0. Letting n→∞, we obtain
uλ ≤ vλ. This completes the proof of the Step 1.
Step 2: (1.1)+ has no positive solution for λ > Λ∗. Firstly, from Step 1 we have
that Λ∗ > 0. Now, let us show that Λ∗ <∞. We argue by contradiction: suppose
there exists a sequence λn →∞ such that (1.1)+ admits a solution un. Denote

m := min{ess infx∈Ω k(x), ess infx∈Ω inf h(x)} > 0.

There exists λ∗ > 0 such that

m
(
λt−δ + tq

)
≥ (λ1 + ε)tp−1 for all t > 0, ε ∈ (0, 1), λ > λ∗
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where λ1 is the first Dirichlet eigenvalue of −∆p is positive and is given by

λ1 = min
u6=0

∫
Ω
|∇u|p∫

Ω
|u|p

(2.3)

(see Lindqvist [16]). Choose λn > λ∗. Clearly un is a supersolution of the problem

−∆pu = (λ1 + ε)up−1 in Ω;

u > 0, u|∂Ω = 0.
(2.4)

for all ε ∈ (0, 1). We now use the [11, Lemma 3.1] to choose µ < λ1 +ε small enough
so that µφ1(x) < un(x) and µφ1 is a subsolution to problem (2.4). By a monotone
interation procedure we obtain a solution to (2.4) for any ε ∈ (0, 1), contradicting
the fact that λ1 is an isolated point in the spectrum of −∆p in W 1,p

0 (Ω) (see Anane
[2]). This proves the claim and completes the proof of the step 2.
Step 3: Existence of at least one positive weak solution for λ = Λ∗ to (1.1)+.
Let {λk}k∈N such that λk ↑ Λ∗ as k → ∞. Then, from Step 1, there exists
uk = uλk ≥ uλk to a weak positive solution to (1.1)+ for λ = λk. Therefore,
for any φ ∈ C∞c (Ω), we have:∫

Ω

|∇uk|p−2∇uk∇φdx = λk

∫
Ω

k(x)u−δk φ dx+
∫

Ω

h(x)uqkφdx. (2.5)

Since uk ∈ W 1,p
0 (Ω) and uk ≥ uλk it is easy to see that (2.5) holds also for φ ∈

W 1,p
0 (Ω). Moreover, from above

Eλk(uk) ≤ Eλk(uλk) <
1
p

∫
Ω

|∇uλk |
p dx− λk

1− δ

∫
Ω

k(x)uλk
1−δ dx < 0, (2.6)

Thus, by Sobolev imbedding and using the fact that k, h ∈ L∞(Ω) it follows that

sup
k
‖uk‖p <∞. (2.7)

Hence, there exists uΛ∗ ≥ uλk such that uk ⇀ uΛ∗ in W 1,p
0 (Ω) as k →∞ and

uk ⇀ uΛ∗ in Lq(Ω) since p− 1 < q < p∗ − 1, and pointwise a.e. as k →∞. (2.8)

From (2.5), (2.7) and (2.8), for any φ ∈W 1,p
0 (Ω) we obtain∫

Ω

|∇uΛ∗ |p−2∇uΛ∗∇φdx = Λ∗
∫

Ω

k(x)u−δΛ∗φdx+
∫

Ω

h(x)uqΛ∗φdx (2.9)

which completes the proof of the Step 3 and gives the proof of Theorem 1.4.

3. Proof of Theorem 1.5

The study of existence of solutions to problem (1.1)− is done by looking for
critical points of the functional Jλ : W 1,p

0 (Ω)→ R defined by

Jλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

1− δ

∫
Ω

k(x)|u|1−δ dx+
1

q + 1

∫
Ω

h(x)|u|q+1 dx (3.1)

in the Sobolev space W 1,p
0 (Ω). In the next we adopt the following notations. The

norm in W 1,p
0 (Ω) will be denoted by

‖u‖ =
(∫

Ω

|∇u|p dx
)1/p

.
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The norm in Lq+1(Ω) will be denoted by

‖u‖q+1 =
(∫

Ω

|u|q+1 dx
)1/q+1

.

The proof of the theorem is organized in several steps.
Step 1: The energy functional Jλ has a global minimizer. We first prove that Jλ
is coercive. In order to verify this claim, we first observe that by using Hölder’s
and Sobolev’s inequalities, we have for any u ∈W 1,p

0 (Ω) and all λ > 0

Jλ(u) ≥ 1
p
‖u‖p − C1‖u‖1−δ + C2‖u‖q+1

q+1 (3.2)

where C1 = λ|Ω|D+E(1−δ)S
δ−1
p
||k||L∞
(1−δ) with D = q+δ

q+1 , E = p∗−q−1
p∗(q+1) and S > 0 is the

best Sobolev constant and C2 = (q+ 1)−1 ess infx∈Ω h(x) are positive constants. It
follows from (3.2) that

Jλ(u) ≥ 1
p
‖u‖p − C1‖u‖1−δ. (3.3)

and hence Jλ(u)→ +∞ as ‖u‖ → ∞. This completes the proof of our Claim.
Now, let n 7→ un be a minimizing sequence of Jλ in W 1,p

0 (Ω). The coercivity
of Jλ implies the boundedness of un in W 1,p

0 (Ω). Since Jλ(u) = Jλ(|u|), without
loss of generality, we may assume that (un)n is non-negative, converges weakly
to some u in W 1,p

0 (Ω) and converges also pointwise. Moreover, by the weak lower
semicontinuity of the norm ‖·‖ and the boundedness of (un)n in W 1,p

0 (Ω) we obtain

Jλ(u) ≤ lim
n→∞

inf Jλ(un).

Hence u is a global minimizer of Jλ in W 1,p
0 (Ω). Which completes the proof of the

Step 1.
Step 2: The weak limit u is a non-negative weak solution of problem (1.1)− if
λ > 0 is sufficiently large. Firstly, observe that Jλ(0) = 0. So, to prove that the
non-negative solution is non-trivial, it suffices to prove that there exists λ∗ > 0
such that

inf
u∈W 1,p

0 (Ω)
Jλ(u) < 0 for all λ > 0. (3.4)

For this purpose, take any positive u and consider εu. Then, for a fixed λ > 0,
Jλ(εu) < 0 if ε > 0 is small enough. Therefore the minimum is negative for all
λ > 0.

Now, we consider the variational problem with constraints,

λ∗ = inf
{1
p

∫
Ω

|∇w|p dx+
1

q + 1

∫
Ω

h(x)|w|q+1 dx : w ∈W 1,p
0 (Ω) and

1
1− δ

∫
Ω

k(x)|w|1−δ dx = 1
}
.

(3.5)

and define

Λ∗ = inf{λ > 0: (1.1)− admits a nontrivial weak solution}. (3.6)

From above, we have

Jλ(u) = λ∗ − λ < 0 for any λ > λ∗.

Therefore, the above remarks show that λ∗ ≥ Λ∗ and that problem (1.1)− has a
solution for all λ > λ∗.
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We now argue that problem (1.1)− has a solution for all λ > Λ∗. Fixed λ > Λ∗,
by the definition of Λ∗, we can take µ ∈ (Λ∗, λ) such that that Jµ has a non-trivial
critical point uµ ∈ W 1,p

0 (Ω). Since µ < λ, uµ is a sub-solution of the problem
(1.1)−. In order to find a super-solution of the problem (1.1)− which dominates
uµ. For this purpose we consider the constrained minimization problem

inf{Jλ(w) : w ∈W 1,p
0 (Ω) and w ≥ uµ.} (3.7)

Arguments similar to those used to treat (3.5) show that the above minimization
problem has a solution uλ > uµ. Moreover, uλ is also a weak solution of problem
(1.1)− for all λ > Λ∗. With the arguments developed in [11] we deduce that problem
(1.1)− has a solution if λ = Λ∗.

Thus, one applies [2, Theorem A.1], based on the Moser iteration, shows that
u ∈ L∞loc. Next, again by a bootstrap regularity due to Giacomoni-Schindler-Takáč
[11, Theorem B.1] shows that the weak solution u ∈ C1,α(Ω) where α ∈ (0, 1).
Finally, the non-negative follows immediately by the strong maximum principle
(see [11, Theorem 2.3]) since u is a C1 non-negative weak solution of the differential
inequality

−∇(|∇u|p−2∇u) + h(x)uq ≥ 0 in Ω.

We deduce that u is positive everywhere in Ω. The proof of the step 2 is now
complete.
Step 3: Non-existence for λ > 0 small. The same monotonicity arguments as in
Step 2 show that (1.1)− does not have any solution if λ < Λ∗. Which completes
the proof of the Theorem 1.5.

Acknowledgments. I would like to thank the referees for their suggestions and
helpful comments which improved the presentation of the original manuscript.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami; Combined effects of concave and convexe nonlinearities

in some elliptic problems, Journal of Functional Analysis, 122 (1994), 519–543.
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pisa, classe di scienze, série V 6 No.1 (2007) 117–158.



EJDE-2017/291 A SINGULAR PROBLEM WITH VARIABLE POTENTIALS 9

[12] Z. Guo and J. R. L. Webb; Uniqueness of positive solutions for quasilinear elliptic equations

when a parameter is large, Proceedings of the Royal Society of Edinburgh, 124, (1994) 189–

198.
[13] M. A. Herrero, J. L. vásquez; On the propagation properties of a nonlinear degenerate para-

bolic equation, Communication in Partial Differential Equations, 7 (12) (1982) 1381–1402.

[14] A. C. Lazer, P. J. Mckenna; On a singular nonlinear elliptic boundary value problem, Pro-
ceedings of the American Mathematical Society 111 (1991) 721–730.

[15] A. V. Lair, A. W. Shaker; Classical and weak solutions of a singular semilinear elliptic

problem, Journal of Mathematical Analysis and Applications, 211 (1997) 371–385.
[16] P. Lindqvist; On the equation div(|∇u|p−2∇u) +λ|u|p−2u = 0, Proceedings of the American

Mathematical Society, 109(1)(1990) 157–164.
[17] V. Mikljukov; On the asymptotic properties of subsolutions of quasilinear equations of elliptic

type and mappings with bounded distortion, Sbornik Mathematics (N.S.) 111 (1980) (in

Russian).
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