# REGULARITY LIFTING RESULT FOR AN INTEGRAL SYSTEM INVOLVING RIESZ POTENTIALS 

YAYUN LI, DEYUN XU


#### Abstract

In this article, we study the integral system involving the Riesz potentials $$
\begin{gathered} u(x)=\sqrt{p} \int_{\mathbb{R}^{n}} \frac{u^{p-1}(y) v(y) d y}{|x-y|^{n-\alpha}}, \quad u>0 \text { in } \mathbb{R}^{n}, \\ v(x)=\sqrt{p} \int_{\mathbb{R}^{n}} \frac{u^{p}(y) d y}{|x-y|^{n-\alpha}} \quad v>0 \text { in } \mathbb{R}^{n}, \end{gathered}
$$ where $n \geq 1,0<\alpha<n$ and $p>1$. Such a system is related to the study of a static Hartree equation and the Hardy-Littlewood-Sobolev inequality. We investigate the regularity of positive solutions and prove that some integrable solutions belong to $C^{1}\left(\mathbb{R}^{n}\right)$. An essential regularity lifting lemma comes into play, which was established by Chen, Li and Ma [20.


## 1. Introduction

Recently, many authors have studied the stationary Hartree type equation

$$
\begin{equation*}
(-\Delta)^{\alpha / 2} u=p u^{p-1}\left(|x|^{\alpha-n} * u^{p}\right), \quad u>0 \text { in } \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

where $n \geq 1, \alpha \in(0, n)$ and $p>1$.
When $\alpha=2,1.1$ is a simplified model of the Maxwell-Schrödinger system (cf. [1, 3, 10] and references therein). It is also [4, Example 3.2.8]. A more general form is the Choquard type equation in the papers [13, 21. Paper [8] studied the existence and the regularity results of positive solutions of the static Schrödinger equation with the fractional Laplacian. Another interesting work related to 1.1 are paper [11] and the references therein. Equation (1.1) is also helpful in understanding the blowing up or the global existence and scattering of the solutions of the dynamic Hartree equation (cf. [16]), which arises in the study of boson stars and other physical phenomena, and also appears as a continuous-limit model for mesoscopic molecular structures in chemistry. Such an equation also arises in the Hartree-Fock theory of the nonlinear Schrödinger equations (cf. [18]). More related mathematical and physical background can be found in [9, 12, 22].

[^0]Since 1.1 has a convolution term, it seems difficult to investigate the existence directly. Write

$$
v(x)=\sqrt{p} \int_{\mathbb{R}^{n}} \frac{u^{p}(y) d y}{|x-y|^{n-\alpha}}
$$

Then $v>0$ in $\mathbb{R}^{n}$. As in [14, 15, 21], we introduce an integral system

$$
\begin{gather*}
u(x)=\sqrt{p} \int_{\mathbb{R}^{n}} \frac{u^{p-1}(y) v(y) d y}{|x-y|^{n-\alpha}}, \quad u>0 \text { in } \mathbb{R}^{n}  \tag{1.2}\\
v(x)=\sqrt{p} \int_{\mathbb{R}^{n}} \frac{u^{p}(y) d y}{|x-y|^{n-\alpha}}, \quad v>0 \text { in } \mathbb{R}^{n}
\end{gather*}
$$

According to the results in [6], we can also see that the equivalence between 1.1 and 1.2 if omitting constants.

In addition, 1.2 is analogous to the system

$$
\begin{gather*}
u(x)=\int_{\mathbb{R}^{n}} \frac{v^{q}(y) d y}{|x-y|^{n-\alpha}}, \quad u, v>0 \text { in } \mathbb{R}^{n}  \tag{1.3}\\
v(x)=\int_{\mathbb{R}^{n}} \frac{u^{p}(y) d y}{|x-y|^{n-\alpha}}, \quad p, q>0
\end{gather*}
$$

It is the Euler-Lagrange equations which the extremal functions of the following Hardy-Littlewood-Sobolev inequality satisfies

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{f(x) g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}} d x d y \leq C_{\alpha, \beta, s, \lambda, n}\|f\|_{r}\|g\|_{s}
$$

where $1<s, r<\infty, 0<\lambda<n, \lambda \leq \bar{\lambda}=\lambda+\alpha+\beta \leq n, \frac{1}{r}+\frac{1}{s}+\frac{\bar{\lambda}}{n}=2$, $\frac{\alpha}{n}<1-\frac{1}{r}<\frac{\lambda+\alpha}{n}, \frac{\beta}{n}<1-\frac{1}{s}<\frac{\lambda+\beta}{n}$. Some classical work can be found in [2, 5, [7, 17] ${ }^{r}$ and many other papers.

The main conclusions of this paper are stated as follows, which are proved in section 2.

Theorem 1.1. Let $n \geq 1$ and $0<\alpha<n$. If $1<p \leq \frac{n}{n-\alpha}$, 1.2 does not have any positive solution.

Theorem 1.2. Assume $u$ is a positive solution of 1.2 and $1<\alpha<n$. If $u \in L^{\frac{n(p-1)}{\alpha}}\left(\mathbb{R}^{n}\right)$, then $u \in C^{1}\left(\mathbb{R}^{n}\right)$.

To prove Theorem 1.2 , we need a regularity lifting lemma in [5] which was established by Chen, Li and Ma [20. This powerful technique was successfully applied to obtain the Lipschitz continuity of positive solutions of integral systems involving the Riesz potential, Bessel potential and the Wolff potential (cf. [13, 20, [25]). In particular, those regularity properties of (1.3) are helpful to understand well the shape of the extremal functions of the Hardy-Littlewood-Sobolev inequality.

Let $V$ be a function space equipped with two norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$. Define

$$
X=\left\{v \in V:\|v\|_{X}<\infty\right\}, \quad Y=\left\{v \in V:\|v\|_{Y}<\infty\right\}
$$

Assume that spaces $X$ and $Y$ are complete under the corresponding norms and the convergence in $X$ or in $Y$ implies the convergence in $V$.

From [5, Theorem 3.3.5 and Remark 3.3.5], we have the following regularity lifting lemma.

Lemma 1.3. Let $X=L^{\infty}\left(\mathbb{R}^{n}\right) \times L^{\infty}\left(\mathbb{R}^{n}\right)$ and $Y=C^{0,1}\left(\mathbb{R}^{n}\right) \times C^{0,1}\left(\mathbb{R}^{n}\right)$ with the norms

$$
\|(f, g)\|_{X}=\|f\|_{\infty}+\|g\|_{\infty}, \quad \text { and } \quad\|(f, g)\|_{Y}=\|f\|_{0,1}+\|g\|_{0,1}
$$

Define their closed subset

$$
\begin{aligned}
X_{1} & =\left\{(f, g) \in X ;\|f\|_{\infty}+\|g\|_{\infty} \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)\right\}, \\
Y_{1} & =\left\{(f, g) \in Y ;\|f\|_{\infty}+\|g\|_{\infty} \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)\right\} .
\end{aligned}
$$

Assume
(i) $T$ is a contraction map from $X_{1} \rightarrow X$;
(ii) $T$ is a shrinking map from $Y_{1} \rightarrow Y$;
(iii) $(F, G) \in X_{1} \cap Y_{1}$;
(iv) $T(\cdot, \cdot)+(F, G)$ is a map from $X_{1} \cap Y_{1}$ to itself.

If $(u, v) \in X$ is a pair of solutions of the operator equation $(f, g)=T(f, g)+(F, G)$, then $(u, v) \in Y$.

## 2. Proof of main results

Theorem 2.1. If $1<p \leq n /(n-\alpha)$, then there is no positive solution of 1.2 .
Proof. If $u, v$ are positive solutions, we can deduce a contradiction by the ideas in [2]. Clearly,

$$
\begin{equation*}
u(x) \geq c \int_{B_{R}(0)} \frac{u^{p-1}(y) v(y) d y}{|x-y|^{n-\alpha}} \geq \frac{c}{(R+|x|)^{n-\alpha}} \int_{B_{R}(0)} u^{p-1}(y) v(y) d y \tag{2.1}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\int_{B_{R}(0)} u^{p}(x) d x & \geq c \int_{B_{R}(0)} \frac{d x}{(R+|x|)^{p(n-\alpha)}}\left(\int_{B_{R}(0)} u^{p-1}(y) v(y) d y\right)^{p}  \tag{2.2}\\
& \geq \frac{c}{R^{p(n-\alpha)-n}}\left(\int_{B_{R}(0)} u^{p-1}(y) v(y) d y\right)^{p}
\end{align*}
$$

Here $c$ is independent of $R$. Similarly, from

$$
\begin{equation*}
v(x) \geq \frac{c}{(R+|x|)^{n-\alpha}} \int_{B_{R}(0)} u^{p}(y) d y \tag{2.3}
\end{equation*}
$$

and (2.1), 2.2 , we deduce

$$
\begin{aligned}
\int_{B_{R}(0)} u^{p-1}(x) v(x) d x & \geq \int_{B_{R}(0)} \frac{c u^{p-1}(x) d x}{(R+|x|)^{n-\alpha}} \int_{B_{R}(0)} u^{p}(y) d y \\
& \geq \frac{c}{R^{2[p(n-\alpha)-n]}}\left(\int_{B_{R}(0)} u^{p-1}(y) v(y) d y\right)^{p}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\int_{B_{R}(0)} u^{p-1}(x) v(x) d x \leq C R^{2[p(n-\alpha)-n] /(p-1)} \tag{2.4}
\end{equation*}
$$

If $1<p<n /(n-\alpha)$, then (2.4) with $R \rightarrow \infty$ leads to $\left\|u^{p-1} v\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=0$. This contradicts with $u^{p-1} v>0$.

If $p=n /(n-\alpha)$, then 2.4$)$ implies $u^{p-1} v \in L^{1}\left(\mathbb{R}^{n}\right)$ if we let $R \rightarrow \infty$. Multiplying 2.3) by $u^{p-1}$ and integrating on $A_{R}:=B_{R}(0) \backslash B_{R / 2}(0)$, we still have

$$
\int_{A_{R}} u^{p-1}(x) v(x) d x \geq c\left(\int_{B_{R}(0)} u^{p-1}(y) v(y) d y\right)^{p} .
$$

Letting $R \rightarrow \infty$ and noting $u^{p-1} v \in L^{1}\left(\mathbb{R}^{n}\right)$, we obtain $\left\|u^{p-1} v\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=0$. It is also impossible.

Note that Theorem 2.1 implies

$$
\begin{equation*}
p>\frac{n}{n-\alpha} \tag{2.5}
\end{equation*}
$$

which is the necessary condition of the existence of positive solutions for 1.2 .
Theorem 2.2. Assume $u$ is a positive solution of (1.2) with $\alpha \in(1, n)$. If $u \in$ $L^{\frac{n(p-1)}{\alpha}}\left(\mathbb{R}^{n}\right)$, then $u \in C^{1}\left(\mathbb{R}^{n}\right)$.

Proof. Step 1. By [24, Lemmas 2.3 and 2.4], we know that $u, v$ are bounded.
Step 2. Moreover, we claim that $u, v \in C^{0,1}\left(\mathbb{R}^{n}\right)$. We use the regularity lifting lemma (Lemma 1.3) to prove this claim. Let $X=L^{\infty}\left(\mathbb{R}^{n}\right) \times L^{\infty}\left(\mathbb{R}^{n}\right)$ and $Y=$ $C^{0,1}\left(\mathbb{R}^{n}\right) \times C^{0,1}\left(\mathbb{R}^{n}\right)$ with the norms

$$
\begin{aligned}
\|(f, g)\|_{X} & =\|f\|_{\infty}+\|g\|_{\infty} \\
\|(f, g)\|_{Y} & =\|f\|_{0,1}+\|g\|_{0,1}
\end{aligned}
$$

Define their closed subset

$$
\begin{aligned}
X_{1} & =\left\{(f, g) \in X ;\|f\|_{\infty}+\|g\|_{\infty} \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)\right\}, \\
Y_{1} & =\left\{(f, g) \in Y ;\|f\|_{\infty}+\|g\|_{\infty} \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)\right\} .
\end{aligned}
$$

Let $d>0$. Set

$$
\begin{gathered}
T_{1}(f, g)=\sqrt{p} \int_{B_{d}(x)} \frac{f^{p-1}(y) g(y) d y}{|x-y|^{n-\alpha}}, \\
T_{2}(f)=\sqrt{p} \int_{B_{d}(x)} \frac{f^{p}(y) d y}{|x-y|^{n-\alpha}} \\
F(x)=\sqrt{p} \int_{\mathbb{R}^{n} \backslash B_{d}(x)} \frac{u^{p-1}(y) v(y) d y}{|x-y|^{n-\alpha}}, \\
G(x)=\sqrt{p} \int_{\mathbb{R}^{n} \backslash B_{d}(x)} \frac{u^{p}(y) d y}{|x-y|^{n-\alpha}},
\end{gathered}
$$

and $T(f, g)=\left(T_{1}(f, g), T_{2}(f)\right)$. Then $(u, v)$ solves the operator equation

$$
(f, g)=T(f, g)+(F, G)
$$

Claim 1. $T$ is a contracting map from $X_{1}$ to $X$. In fact, for two functions $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right) \in X_{1}$, we deduce that

$$
\begin{aligned}
& \left\|T_{1}\left(f_{1}, g_{1}\right)-T_{1}\left(f_{2}, g_{2}\right)\right\|_{\infty} \\
& \leq C\left(\left\|\int_{B_{d}(x)} \frac{\left|g_{1}\left(f_{1}^{p-1}-f_{2}^{p-1}\right)\right|}{|x-y|^{n-\alpha}} d y\right\|_{\infty}\right.
\end{aligned}
$$

$$
\left.+\left\|\int_{B_{d}(x)} \frac{\left|\left(g_{1}-g_{2}\right) f_{2}^{p-1}\right|}{|x-y|^{n-\alpha}} d y\right\|_{\infty}\right)
$$

By the mean value theorem and noting the definition of $X_{1}$, we obtain

$$
\begin{aligned}
& \left\|T_{1}\left(f_{1}, g_{1}\right)-T_{1}\left(f_{2}, g_{2}\right)\right\|_{\infty} \\
& \leq C d^{\alpha}\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p-1}\left[\left\|g_{1}-g_{2}\right\|_{\infty}+\left\|f_{1}-f_{2}\right\|_{\infty}\right]
\end{aligned}
$$

Similarly, we obtain

$$
\left\|T_{2}\left(f_{1}\right)-T_{2}\left(f_{2}\right)\right\|_{\infty} \leq C d^{\alpha}\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p-1}\left\|f_{1}-f_{2}\right\|_{\infty}
$$

Choose $d$ sufficiently small such that $C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p-1} d^{\alpha}<1$, then $T$ is a contracting map.
Claim 2. $T$ is a shrinking map from $Y_{1}$ to $Y$. In fact, for $(f, g) \in Y_{1}$ and for any $x_{1}, x_{2} \in \mathbb{R}^{n}$, we have

$$
\begin{align*}
& \left|T_{1}(f, g)\left(x_{1}\right)-T_{1}(f, g)\left(x_{2}\right)\right| \\
& \leq\left. C\left|\int_{B_{d}(0)}\right| y\right|^{\alpha-n}\left(\left(g f^{p-1}\right)\left(y+x_{1}\right)-\left(g f^{p-1}\right)\left(y+x_{2}\right)\right) d y \mid  \tag{2.6}\\
& \leq C d^{\alpha}\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p-1}\left(\|f\|_{0,1}+\|g\|_{0,1}\right)\left|x_{1}-x_{2}\right|
\end{align*}
$$

Choosing $d$ sufficiently small, we have

$$
\frac{\left|T_{1}(f, g)\left(x_{1}\right)-T_{1}(f, g)\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|} \leq \frac{1}{3}\left(\|f\|_{0,1}+\|g\|_{0,1}\right)
$$

Similarly, we deduce that

$$
\frac{\left|T_{2}(f)\left(x_{1}\right)-T_{2}(f)\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|} \leq C d^{\alpha}\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p-1}\|f\|_{0,1} \leq \frac{1}{3}\|f\|_{0,1}
$$

Thus, $T$ is a shrinking map.
Claim 3. $(F, G) \in X_{1} \cap Y_{1}$. First, 1.2 and the definitions of $F$ and $G$ imply $F \leq u$ and $G \leq v$. So $(F, G) \in X_{1}$.

Next, for any $x_{1}, x_{2} \in \mathbb{R}^{n}$ satisfying $\left|x_{1}-x_{2}\right|:=\delta<d / 3$, we have

$$
\begin{aligned}
\mid F & \left(x_{2}\right)-F\left(x_{1}\right) \mid / \sqrt{p} \\
\leq & \int_{\mathbb{R}^{n} \backslash B_{d}\left(x_{1}\right)}| | x_{2}-\left.y\right|^{\alpha-n}-\left|x_{1}-y\right|^{\alpha-n} \mid u^{p-1}(y) v(y) d y \\
& +\int_{B_{d}\left(x_{1}\right) \backslash B_{d-\delta}\left(x_{1}\right)}\left|x_{2}-y\right|^{\alpha-n} u^{p-1}(y) v(y) d y \\
:= & I_{1}+I_{2} .
\end{aligned}
$$

Using the mean value theorem and the integrability, we obtain

$$
I_{1} \leq C\|u\|_{s}^{p-1}\|v\|_{\infty}\left(\int_{d}^{\infty} r^{n-t(n-\alpha+1)} \frac{d r}{r}\right)^{1 / t}\left|x_{1}-x_{2}\right| \leq C \delta
$$

where $\frac{p-1}{s}+\frac{1}{t}=1$ with $s=\frac{n+\epsilon}{n-\alpha}$. Here $\epsilon>0$ is suitably small such that $n<$ $t(n-\alpha+1)$. On the other hand,

$$
I_{2} \leq C\|u\|_{\infty}^{p-1}\|v\|_{\infty} \int_{B_{d}\left(x_{1}\right) \backslash B_{d-\delta}\left(x_{1}\right)}\left|x_{2}-y\right|^{\alpha-n} d y \leq C \delta
$$

Combining the estimates of $I_{1}$ and $I_{2}$, we see $F \in C^{0,1}\left(\mathbb{R}^{n}\right)$.

Finally, we prove $G \in C^{0,1}\left(\mathbb{R}^{n}\right)$. Interchanging the order of integration, we obtain

$$
\begin{aligned}
G(x) & =\sqrt{p}(n-\alpha)\left(\int_{d}^{1} \frac{\int_{B_{t}(x)} u^{p}(y) d y}{t^{n-\alpha}} \frac{d t}{t}+\int_{1}^{\infty} \frac{\int_{B_{t}(x)} u^{p}(y) d y}{t^{n-\alpha}} \frac{d t}{t}\right) \\
& :=\sqrt{p}(n-\alpha)\left[G_{1}(x)+G_{2}(x)\right]
\end{aligned}
$$

For any $x_{1}, x_{2} \in \mathbb{R}^{n}$ satisfying $\left|x_{1}-x_{2}\right|:=\delta<1 / 3$, by scaling we obtain

$$
G_{2}\left(x_{2}\right) \leq \int_{1}^{\infty} \frac{\int_{B_{t+\delta}\left(x_{1}\right)} u^{p}(y) d y}{t^{n-\alpha}} \frac{d t}{t} \leq G_{2}\left(x_{1}\right)(1+\delta)^{n-\alpha+1}
$$

Therefore, $\left|G_{2}\left(x_{2}\right)-G_{2}\left(x_{1}\right)\right| \leq G_{2}\left(x_{1}\right)\left[(1+\delta)^{n-\alpha+1}-1\right] \leq C \delta$. In addition,

$$
\left|G_{1}\left(x_{2}\right)-G_{1}\left(x_{1}\right)\right| \leq C \int_{d}^{1} \frac{\int_{B_{t+\delta}\left(x_{1}\right) \backslash B_{t}\left(x_{1}\right)} u^{p}(y) d y}{t^{n-\alpha}} \frac{d t}{t} \leq C\|u\|_{\infty}^{p} \delta
$$

Thus, we deduce $G \in C^{0,1}\left(\mathbb{R}^{n}\right)$. Hence, $(F, G) \in Y$. Claim 3 is complete.
Claim 4. $T(\cdot, \cdot)+(F, G)$ is a map from $X_{1} \cap Y_{1}$ to itself. In fact, for $(f, g) \in X_{1} \cap Y_{1}$,

$$
\begin{align*}
\|T(f, g)\|_{\infty} & =\left\|T_{1}(f, g)\right\|_{\infty}+\left\|T_{2}(f)\right\|_{\infty} \\
& \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)^{p} d^{\alpha} . \tag{2.7}
\end{align*}
$$

Similar to (2.6), we have

$$
\|T(f, g)\|_{0,1}=\left\|T_{1}(f, g)\right\|_{0,1}+\left\|T_{2}(f)\right\|_{0,1} \leq C
$$

Thus, $T(f, g) \in X \cap Y$.
In addition, 2.7) implies $\|T(f, g)\|_{\infty} \leq\|u\|_{\infty}+\|v\|_{\infty}$ as long as $d$ is chosen suitably small. Thus,

$$
\|T(f, g)+(F, G)\|_{\infty} \leq\|T(f, g)\|_{\infty}+\|(F, G)\|_{\infty} \leq C\left(\|u\|_{\infty}+\|v\|_{\infty}\right)
$$

Claim 4 is verified.
Since $(u, v)$ solves $(f, g)=T(f, g)+(F, G)$, claims 1-4 lead to $u, v \in C^{0,1}\left(\mathbb{R}^{n}\right)$ by Lemma 1.3 .
Step 3. We claim that $u \in C^{1}\left(\mathbb{R}^{n}\right)$. We use the classical potential estimation to verify $u \in C^{1}\left(\mathbb{R}^{n}\right)$ and $\nabla u$ can be expressed formally as

$$
\begin{equation*}
\nabla u(x)=(\alpha-n) \int_{\mathbb{R}^{n}} u^{p-1}(y) v(y) \frac{x-y}{|x-y|^{n-\alpha+2}} d y \tag{2.8}
\end{equation*}
$$

Write

$$
\begin{gathered}
J_{1}=(\alpha-n) \int_{\mathbb{R}^{n} \backslash B_{d}(x)} u^{p-1}(y) v(y) \frac{x-y}{|x-y|^{n-\alpha+2}} d y \\
J_{2}=\int_{B_{d}(x) \backslash B_{\varepsilon}(x)} u^{p-1}(y) v(y) \nabla\left(|x-y|^{\alpha-n}\right) d y
\end{gathered}
$$

We claim that the improper integral $J_{1}$ converges uniformly about $x$. In fact,

$$
\begin{aligned}
\left|J_{1}\right| & \leq C \int_{\mathbb{R}^{n} \backslash B_{d}(x)} \frac{u^{p-1}(y) v(y) d y}{|x-y|^{n-\alpha+1}} \\
& \leq C\|u\|_{s}^{p-1}\|v\|_{\infty}\left(\int_{d}^{\infty} \rho^{n-(n-\alpha+1) t} \frac{d \rho}{\rho}\right)^{1 / t}
\end{aligned}
$$

where $\frac{p-1}{s}+\frac{1}{t}=1$. Let $s=\frac{n+\delta}{n-\alpha}$. Here $\delta>0$ is sufficiently small such that $\frac{1}{t}<\frac{n-\alpha+1}{n}$. Thus, from the integrability it follows $J_{1}<\infty$.

Clearly,

$$
\begin{aligned}
\left|J_{2}\right| \leq & \int_{B_{d}(x) \backslash B_{\varepsilon}(x)} \frac{\left|u^{p-1}(y) v(y)-u^{p-1}(x) v(x)\right|}{|x-y|^{n-\alpha+1}} d y \\
& +u^{p-1}(x) v(x)\left|\int_{B_{d}(x) \backslash B_{\varepsilon}(x)} \nabla\left(|x-y|^{\alpha-n}\right) d y\right| \\
:= & J_{21}+J_{22} .
\end{aligned}
$$

In view of $u, v \in C^{0,1}\left(\mathbb{R}^{n}\right)$,

$$
J_{21} \leq C\left(\left\|u^{p-1}\right\|_{\infty}\|v\|_{0,1}+\left\|u^{p-2}\right\|_{\infty}\|v\|_{\infty}\|u\|_{0,1}\right) \int_{B_{d}(x) \backslash B_{\varepsilon}(x)} \frac{|x-y| d y}{|x-y|^{n-\alpha+1}}<\infty
$$

On the other hand, integration by parts yields

$$
J_{22} \leq C\|u\|_{\infty}^{p-1}\|v\|_{\infty}\left|\int_{\partial\left(B_{d}(x) \backslash B_{\varepsilon}(x)\right)}\right| x-\left.y\right|^{\alpha-n} d s \mid<\infty
$$

as long as $\alpha>1$. Hence, $J_{\varepsilon}$ is convergent uniformly about $x$ when $\varepsilon \rightarrow 0$.
Combining the estimates of $J_{1}$ and $J_{2}$, we know that 2.8 makes sense, and hence $u \in C^{1}\left(\mathbb{R}^{n}\right)$.

Acknowledgements. This research was supported by the NSF (No. 11471164) of China.

## References

[1] A. Ambrosetti; On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.
[2] G. Caristi, L. D'Ambrosio, E. Mitidieri; Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
[3] I. Catto, J. Dolbeault, O. Sanchez, J. Soler; Existence of steady states for the Maxwell-Schrödinger-Poisson systems: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., 23 (2013), 1915-1938.
[4] T. Cazenave; Semilinear schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[5] W. Chen, C. Li; Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010.
[6] W. Chen, C. Li; Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
[7] W. Chen, C. Li, B. Ou; Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
[8] P. Felmer, A. Quaas, J. Tan; Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.
[9] J. Ginibre, G. Velo; Long range scattering and modified wave operators for some Hartree type equations, Rev. Math. Phys., 12 (2000), 361-429.
[10] E. Hebey, J. Wei; Schrödinger-Poisson systems in the 3-sphere, Calc. Var. Partial Differential Equations, 47 (2013), 25-54.
[11] L. Jeanjean, T. Luo; Sharp nonexistence results of prescribed $L^{2}$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.
[12] V. I. Karpman, A. G. Shagalov; Stabilization of soliton describe by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D., 144 (2000), 194-210.
[13] Y. Lei; On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
[14] Y. Lei; Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., 45 (2013), 388-406.
[15] C. Li, L. Ma; Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
[16] D. Li, C. Miao, X. Zhang; The focusing energy-critical Hartree equation, J. Differential Equations, 246 (2009), 1139-1163.
[17] E. Lieb; Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
[18] E. Lieb, B. Simon; The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.
[19] S. Liu; Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.
[20] C. Ma, W. Chen, C. Li; Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.
[21] L. Ma, L. Zhao; Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.
[22] K. Nakanishi; Energy scattering for Hartree equations, Math. Res. Lett., 6 (1999), 107-118.
[23] E. M. Stein; Singular integrals and differentiability properties of function, Princetion Math. Series, Vol. 30, Princetion University Press, Princetion, NJ, 1970.
[24] D. Xu, Y. Lei; Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Appl. Math. Lett., 43 (2015), 85-89.
[25] Y, Zhao; Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391 (2012), 209-222.

Yayun Li
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

E-mail address: liyayun.njnu@qq.com
Deyun Xu
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal UniverSity, Nanjing, 210023, China

E-mail address: $954816700 @ q q$. com


[^0]:    2010 Mathematics Subject Classification. 35J10, 35Q55, 45E10, 45G05.
    Key words and phrases. Riesz potential; integral system; regularity lifting lemma;
    Hartree equation; Hardy-Littlewood-Sobolev inequality.
    (C) 2017 Texas State University.

    Submitted May 16, 2017. Published November 14, 2017.

